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UNIQUE CONTINUATION FOR SCHRODINGER OPERATORS

WITH SINGULAR POTENTIALS

Yifei Pan

Indiana-Purdue Univeristy at Fort Wayne

ABSTRACT: It is shown in this paper that the Schrodinger operator with
a potential satisfying |V (z)| < M/|z|? a.e. in the unit ball B has the strong
unique continuation property in H%2%(B) for n > 2.

1. Introduction
Consider the Laplace operator A = — 7 -2 -—5 on R™ and a function V(z)
on the unit ball B = B(0,1) of R". We say the Schxodmger operator
Au+Vu=0

satisfies the strong unique continuation property in Sobolev space H?9(B),
if whenever u € H%4(B) is a solution of the operator and vanishes to infinite
order at a point, u is identically zero. Here, a function f € L}, is said to
vanish to infinite order at 0 if

/ f2dz = O(r*)
lzl<r

for every k as r — 0. When n = 2 and V is bounded, Carleman proved a
unique continuation theorem, and all subsequent work follows his basic idea.
There is large literature of applications of Carleman-type inequalities to this
and other uniqueness questions.
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Over the past several years, considerable attention has been paid to the
case V € L¥(B) for w < oo; this is largely because the unique continuation
property can be used to prove that the Schrodinger operator on L?(R") has
no positive eigenvalues provided V' € L{, (R") and V has suitable behavior
at infinity. Recently, Jerison and Kenig [JK] ptdved that if n > 2, the
Schrodinger operator has the strong unique continuation property for V €
L™/2 in the Sobolev space H24(B) with g = 2n/(n + 2). This improves all
previous results (see the references in [JK]) and is best possible in the context
of L? spaces. However Jerison and Kenig’s theorem does not cover the case
V(z) = C/|z|? since it does not belong to L™/?(B). We take up this issue
and prove the following.

Theorem 1. Suppose n > 2. The Schrodinger operator with the potential
V()] < M/|z|? a.e. in B has the strong unique continuation property in
H>%(B).

Remarks. 1) Theorem 1 establishes the unique continuation result in an
important borderline case not coverd by the general result of Jerison and
Kenig [JK] since 1/|z[*> ¢ L"/2. Moreover, since we do not require any
local restriction on the size of V, Theorem 1 is not contained either in E.
Stein’s subsequent improvement of Jerison and Kenig’s result concerning
Ve L;:,/:'m(R”), the Lorentz space of weak n/2 type, see [JK]. It is worth
mentioning that T. Wolff has constructed an example showing that in the
result of Stein, a smallness condition on the norm of the potential is needed
[W]. On the other hand, easy examples show that the poteutial C/|z|? is
of strongest singularity for unique continuation to hold. For eiample, as in

(K], if € > 0, f(z) = e~(081/1z1)"* for |2] < 1, then f vanishes at 0 of

infinite order, and (Af/f) = V satisfies V = (log1/|z|)?¢(1/]=}?).
2) The Schrodinger operators
H=-A4+V (1)
were also considered in [GL) and some related results were obtained. It was
shown by Garofalo and F.H. Lin in [GL] that if V = lri%l where f is a
bounded function homogeneous of degree zero, i.e., if w = z/|z],z # 0, we

have

f(w)=f(T:—,) and |f(w)l<C
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the operator H has the unique continuation property. So this result may be
considered as a special case of Theorem 1. In particular it was also shown
in [GL] that if V(z) = V+(z) — V() satisfies

C
<VHz) < —
0<V™(z) £ BE

and

c
<V- < —
oV (z)_|:c|2

for z € B, then any solution u of (1) in H*? satisfying
/ u’dz = O(exp —Ar®) for some A,a >0
lzi<r

as r — 0 must be identically zero in B.
In this paper, we also consider the partial differential equation

Lu = —A +b(z)Vu + V(z)u = 0. (2)

in B. Assume that there exists 7o > 0, f : (0,70) — R* and ¢ > 0 such that
f is increasing and satisfies

™ £(r)

——Ldr < o00. (3)
0 T
and for z € B,
e < D, vy < S, @

In [GL], Garofalo and Lin proved in particular that the operator L satisfying
the conditions (2), (3) and (4) has the strong unique continuation property
in the sense that the only H,:?(f2) solution of Lu = 0 which vanishes of
infinite order at 0 is u = 0. Concerning the function f we note from (3) that
f(z) tends to zero as z tends to 0. So it would be interesting to see if one
can weaken the condition (4) by replacing f by 1 in (4) to prove the unique
continuation property.

 We prove the unique continuation result for smooth solutions of (2) with

some restrictions on the coefficents.



956 PAN
Theorem 2. Let u € C*°(B) be a solution of
—Au + a|z])0ru + V(|z|)u =0 (5)

where r» = |z| and a and V are radial functioons satisfying
C C
el < S, wiei < &

If u vanishes of infinite order at 0, then v = 0 in B.
In R?, we prove the following, the proof of which is reduced to the
Cauchy-Riemman operator.

Theorem 3. Let u € H?(B) where B C R? , be a solution of
~Au+a(z)Vu =0

where the vector function a(z) satisfies

la(2)| < Ii’-,

If u vanishes of infinite order at 0, then u = 0 in B.

Remark. A special case of the main theorem in R? in [K] can be stated as
follows: an operator of the form

—A + a(2)Vu

in R? has the strong unique continuation property if a(z) satisfies

c
le(z)] £ —=—55
r(log 2)
in B. So Theorem 3 generalizes this special case by allowing the best possible
singularity for unique continuation to hold in this case. A counterexample

of this kind is given in the end of the paper.
2. Proof of Theorem 1

QOur proof of Theorem 1 is based on the Carleman-type inequality of
Amerin et al. in [ABG]. We state a special case of it for our need. Let
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us denote by H2:4(Q) the subspace of H?:9(Q2) of functions having compact
support in .

Theorem 4. (Amerin et al.) The inequality

2™ fllL2(rey < C()lz| ™2 AFllL2(rm) (6)

holds for any T € R and for all f € H>* (R® —0). The constant C(7) is
finite provided that

(r=1+2-n/2)(t+14+n/2)#0
for1=0,1,2,3,... and it is given by

C(7) = Supisol(T — 1+ 2 — n/2)(T + 1+ n/2)| .

Remark. With r = —(n/2 + 1/2 + m),m = 1,2,..,, C(7) is not only
uniformally bounded but also goes to zreo as m — oco. This is one of the
key facts that will be used in the proof of Theorem 1. Indeed, if 7, =
—(n/2 4+ 1/2 +m), then

(r=1+2-n/2)(r+1+n/2)=—(n+m+1-3/2)(l -m —1/2)

Since I,m are nonegative integers, we have || — m —1/2| > 1/2. 1t follows
that
C(mm) = Supizo|(tm =1 +2 ~ n/2)(Tm + 1 +n/2)|7?
= Supi>o((n + m +1—3/2)l - m —1/2})7}
2
s n+m-—3/2
which tends to 0 as m — co.

To prove Theorem 1, we need to check if the vanishing to infinite order
of a solution of the Shrodinger operator implies to that of its gradient. To
this end, we begin with the following lemma.

Lemma 5. Let f be a H22(B) solution of (1) with |V(z)| < M/|z|* a.e.
" such that it vanishes to infinite order at the origin. Then V f also vanishes
to infinite order at 0.
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Proof. We will use the well-known L? inequality,

2 1 2 2 2
[ wiriesotg [ pavat [ @,

|z|<a
Now we prove that if f vanishes to infinite order, then so does |z|~2f. Given
n, choose M so that

f2dz < Ma™t*,
lzl<a
Then we have

Ammrﬁu=2

j=0

< i(2'i+la)'4/ fidz

i=o lzl<2-/a

L. (lal2 5y
2-(itVa<|z|<2~ia

00
< 2(2—j+1a)-4(2—ja)n+4M
3=0
= 32Ma".
So |z|~2f vanishes to infinite order. Since |[Af| < M]z|~?|f|, both terms
on the right side of the L? inequality are O(a") for every n and the lemma
follows.

Proof of Theorem 1.

Let f € H*?(B) be a solution of the Schrodinger operator. Let ¢ €
C§°(B) be a cutoff function such that 0 < ¢ <1,¢(z) =1 for |2| < ./2. Let
9 =¢f. Choose 0 < ¥; < ¥;;, <1,¥;(z) =1 for |z| > 2/5,¥;(z) =0 for
j2l < 1/3,[99,(z)] < C'4,JA¥,(2)] < C'7%. Let g5(z) = ¥5(a)g(a).

Now it is easy to that g; € H2?(R"—0) since f € H*?(B). By Theorem
4, we see that (6) holds for g;. From now on we set r = ™ = —(n/2 +
1/2 +m),m = 1,2,3,..., for which it is shown early that the constants C(7)
appearing in Theorem 5 satisfy C(7y;) = O(1/m). Now choose 0 < p < 1/2
and m sufficiently large such that C(7m)M < 1/2. we shall show that f =0
in |z]| < p. We have by (6)

W=l 25 f)lL2z1<0) < lll2l7 g5l L24z) < C()I=" 2 Agjll L2(az)
< C()lle™F2 A5 )l L2jz1<p)
+ C(r)l|=I"** AgllL2(jz)> p)- (9)
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Leibniz’s rule shows that A(¥;f) = ¥;Af + fAY; + 2VY¥;Vf. Thus, the
right hand side of (9) is bounded (for j large)by

C(M)lel™ ;A fllLa(z1<p) + C'C(T)i "I fllL2z1<2/5)
+C'C(T)i "V fllL2(e1<2si) + C(T)e 2| Agl La(2)> 0)-

Since |Af| < |V(2)||f(z)], we have, using |2|2|V]| < M,

C(lizl™2 ;A || L2(jz1<p) < COIll™* ¥V fllL2(iz1 <)
= C()liz|"%; fl2 2V |lz2()z1<p)
S C(r)M|||=["¥;fllL2(j21<p)
< 1/2/l|2|"¥;fllza(lz1<p) < +oo.  (10)

The last term is finite since f € H 22(B) Thus from (9) and (10)
1/2|||lz"%;fllz2jei<p) < C'C(T)i "N FllL2(i2l<2/)

+C'C(1);i "IV fliagei<zsiy + C(Tp 2100l La(zi>p).  (11)
We need to show the first two terms go to zero as j — oo. But by the

definition and Lemma 5, we have

37N A2 qzi<2rsy — 0

P UIV A L2 (jzi<2ri) — O

as § — oco. It is worth mentioning that » = 7, are negative. So by the

monotone convergence theorem, it follows from (11)

(1zl/p) Fllzagizi<p) < 2C(T)P* 1180 L2(121>0)

Letting m — oo with 7 = 7,,we see that f = 0 on |z| < p. The proof of
Theorem is then complete.

3. Proofs of Theorem 2 and 3

In this section we shall see that the proof of Theorem 2 is reduced to
prove the following lemma.
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Lemma 8. Let v € C°°((0, R]) and satisfy
()l < Gl tule)l + TR/, (12)

Ifu = O(rN) for every N asr — 0, then v =0 in [0, R].
Assuming the truth of Lemma 6, we begin with

Proof of Theorem 2. For z € R", we set » = |z| and 2z = rw where w varies
over the uint sphere S,,_;. The Laplacian A can be written in the spherical
coordinates )

where A, is the Laplace-Beltrami operator on Sy—1. In L?(Sy~1) we choose
an orthonormal basis of spherical harmonics Py, withl € Nand1 < a <
a(l) where

() = @2l+n—-2)(n+1-3)
(n—2)

for n > 2. In particular, we have

Aw(Pl,n,(w)) = -—l(l +n- 2)P1,°,(w). (13)

For R' < R,u € C“(F;;), and we have

oo a(l)
u(z) =YD iit,a(r)Pra(w)
1=0 1=0
where
it a(r) = j; | u(r) Pl (). (14)

The series above converges uniformaly in Bgrr and ;4 € C?.

We will show that 4;, = 0 in Bg:. Indeed, subsituting Laplacian into
the equation (5) in Theorem 2, multiplying the resulting equation by P;
, integrating with respect to dw over S,_;, and using the self-adjontness of
A, and the equations (13) and (14) we obtain the equation satisfied by i;

-8 -198 . . I{: n-2)).
'Zar—zﬁl.a‘f'ﬁ‘;—gr‘ul.a'*‘a("')‘a‘;“l.a'*'{v(") L ,:: )}‘“.a =0. (15)




UNiQUE CONTINUATION FOR SCHRODINGER OPERATORS 961

From (15), there exists a constant C depending on @, b such that

[3fa(r)| < CG 184 olr)] + 5 a())- (16)

T
Then by Lemma 6 and (16), @, =0, so u = 0.
Now we are in a position to prove Lemma 6 and Theorem 3.
Proof of Lemma 6. First we observe that if u = O(r"V), then v’ = O(rV) and
u" = O(+N) for every N. Therefore the functions r~Pu,r=Pu' and r=Fu"
are integrable on (0, R]. We claim that if v« = O(rN) for every N, then the
following holds: there exists a constant C such that for 8 > 2

/0 ® ) + e )y < Ua’%)? j; et (1)
Indeed, consider the identity
(u?) = 2u'v". (18)
Mutltiplying »~#-1 on (18) gives
A (u?) =B oy, (19)
We get from (19)
(rP1u"2Y 4 (B + 1)rP=24/2 = 2p=F-1y/y, (20)
Integrating (20) over [0, R} gives, using u = O(r"V),
RPW(R? +(B+1) /OR P P22 = 2 /oa-r"ﬁ‘lu'u"dr.
Then we have the inequality ‘
R R
B+ 1)‘/0 P22 < 2‘/0‘ vy dp. (21)
On the other hand we have

R R
/ r‘ﬁ_lu'u”dr — / (ﬂ 1‘ 1 )1/2,,,—;3—2/2,“!(
0 0

4 iz -pr2n
ﬁ+1) v PRy dy
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.3+1jR 12, —f—2 1. 4 /R w2, —p
< .
£ our dr+ﬂ+10ur dr (22)
From (21) and (22) it follows that
R s 2,12 4 R o -p
- ) < n2, - .
/o dr (ﬂ+1)2,/ u'"?r " Pdy (23)
Now we consider
. ] R
/0 ur~P4dr = —IZ T3 v*(R) + 3 _]*'_ 3/ 2uu'rP=3dr
< _2_ /Ruu’r“ﬁ“sdr
B+3
__2 B+3vi2, . —p-1/2 1/2,1.8-2/2
=~ 7+3 {( —) ( ) u'r dr
1 8 R
5/ uzr"""“dr+ (ﬂ+3)2/ u'2r~P2dp, (24)
Therefore we get from (23) and (24)
fR T 16 /R u"r~Pdp (25)
0 B+3y

Combining (23) and (25) yields the proof of (12). Now we are back to
prove Lemma 6. Indeed if u is not identically zero then we come out with a
controdication by letting 8 — oo in (17).

To prove Theorem 3 it suffices to prove the following lemma which can
be considered as a generalization of a lemma in [BL).

Lemma 7. Suppose v is a function on the unit disk such that |vz| < fzﬁ [v]
for some positive constant C. If v vanishes of infinite order at the origin,
then v is identically zero.

Proof. Define a function A on the unit disk to be equal to vz/v when v
is not zero and equal to zero when v is zero. Note that A is well-defined
except at z = 0. But by assumption , ) is L! integrable on the unit disk.
So A(z)dz A dZ is a Borel measure with compact support U , the unit disk.
Define a function u on U via

1 [ A0

u(z) = 5~ s A AL (26)
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We claim that u(z) = O(log Ti—l) when z # 0,i.e, we have to prove by (26)

d(Ad 1

= = Otee ) &7
Assuming the truth of the claim, we prove the lemma. Note that u is con-
tinuous on U except at 0 and has the property that it is C° where v is not
zero and 4z = vg/v when v # 0,z # 0. Now consider the function h = ve™™.
So h is continuous on U — 0 and is holomorphic when it is not zero. Thus,
Rado’s Theorem implies that h is holomorphic on U — 0. Now we want to
show that 0 is also a removable singularity of h. Indeed, let O = {Ruz > 0}.
" Then on O
e =e R < 1.

On U - 0, by the claim,

—Ru < |yl L Clogi:l;i

for some positive constant C. Therefore. on U — O

1
-y _ —Ru
|e “l =€ .<_. |z|c‘

Since v vanishes of infinite order at 0, there exists a M > 0 such that
lo(2) < M|z|€.

Then
1h(2)] = fo(2)lle™| < M

for z € U, i.e., 0 is a removable singularity of h.

Now it is clear that h vanishes of infinite order at 0 so it must be zero
identically, and hence, so must v, The proof of Lemma 7 is comlpete provided
we prove the claim. To this end, let us break U into three pieces as follows:

I={[|<a/2}
where 0 < a = |2]| < 1/2,

II = {a/2 < |¢| < 2a} andIII={2a<|{|<1}
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Then we have

d¢ A d¢ [4 dg/\dz=
[aesase )= a =ow, (28)

and

cic—a =3 JyIc=dl
C 27 p2a
<2 [ [" dpas = 0, (29)

/ d¢ AdC <C d¢ AdC
I

where we have used the polar coordinates centered at a. Finally,

/ dAd _ / dpdd
e lClC —al — Jrrr lpet® —a
_ /h' 1 dpd0
“Jo Ja ((p— a)? +2pasin® 6/2)1/2
1

dp 1
<2 =log~+C. 30
4 24(/"—") ga ( )

Combining all estmates (28), (29) and (30) togather yields the proof of (27)
Proof of Theorem 3. It is a consequence of Lemma 7 by observing that
A = 1:2 and the condition

= 48:5z
c
[Ay| < =V

||

is equivelent to c

[Bv] < = vl

|2

where v = Zu.

8z
We conclude the section by giving a simple example showing that the

singularity in Lemma 7 cannot be replaced by 1/|z|'*¢. Let us consider the
equation

’ c
—~Au + L—:I-I:;V‘u =0 (31)

with ¢ a constant vector. If we look for radial solutions of (31), we are led
to consider the ode

24" (r) + (r — 17N/ (r) = 0.
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Letting » = v/, we come out with
2 4 (r =" =0.

Now it is easy to see that

v=_Ce™ "

(32)

for some constant C. So u determined by (32) vanishes of infinite order at
0, but is identically zero.
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