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UNIQUE CONTINUATION FOR SCHRODINGER OPERATORS
WITH SINGULAR POTENTIALS
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ABSTRACT: It is shown in this paper that the Schrodinger operator with
a potential satisfying IV(x)l < M/Jx12 a.e . in the unit ball B has the strong
unique continuation property in H2,2(B) for n >_ 2 .

1 . Introduction

Consider the Laplace operator A _ -

	

e on R" and a function V(x)
on the unit ball B = B(0,1) of R". We say the~Schrodinger operator

AU +Vu=0

satisfies the strong unique continuation property in Sobolev space H2,4(B),

if whenever u E H2,9(B) is a solution of the operator and vanishes to infinite
order at a point, u is identically zero . Here, a function f E L;': is said to
vanish to infinite order at 0 if

r

	

f'dx = 0(rk)

for every k as r ---+ 0. When n = 2 and V is bounded, Carleman proved a
unique continuation theorem, and all subsequent work follows his basic idea .
There is large literature of applications of Carleman-type inequalities to this
and other uniqueness questions .
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Over the past several years, considerable attention has been paid to the
case V E L"(B) for w < oo ; this is largely because the unique continuation
property can be used to prove that the Schrodinger operator on L2 (R") has
no positive eigenvalues provided V E L-jR") and V has suitable behavior
at infinity. Recently, Jerison and Kenig [JK] proved that if n > 2, the
Schrodinger operator has the strong unique continuation property for V E
Ln/2 in the Sobolev space H2,q(B) with q = 2n/(n + 2) . This improves all
previous results (see the references in [JK]) and is best possible in the context
of LP spaces . However Jerison and Kenig's theorem does not cover the case
V(x) = C/x12 since it does not belong to L"12(B) . We take up this issue
and prove the following.

Theorem 1. Suppose n > 2. The Schrodinger operator with the potential
IV(x)l < M/Ixlz a.e . in B has the strong unique continuation property in
H2 . 2(B).

Remarks. 1) Theorem 1 establishes the unique continuation result in an
important borderline case not coverd by the general result of Jerison and
Kenig [JK] since 1/Jx12 ~ L"/2 . Moreover, since we do not require any
local restriction on the size of V, Theorem 1 is not contained either in E .
Stein's subsequent improvement of Jerison and Kenig's result concerning
V E Li/2'-(R"), the Lorentz space of weak n/2 type, see [JK] . It is worth
mentioning that T. Wolff has constructed an example showing that in the
result of Stein, a smallness condition on the norm of the potential is needed
[W] . On the other hand, easy examples show that the potential C/Jx12 is
of strongest singularity for unique continuation to hold . For example, as in
[JK], if e > 0, f(x) = e-0ogl/1xFli+ ` for 1xl < 1, then f vanishes at 0 of
infinite order, and (Of/f) =Y satisfies V ti (log l/jxj)2`(1/jxj2) .

2) The Schrodinger operators

were also considered in [GL] and some related results sere obtained . It was
shown by Garofalo and F.H . Lin in [GL] that if V =~ where f is a
bounded function homogeneous of degree zero, i .e ., if w = x/lxl,x 34 0, we
have

f(w) = f(Ixl)

	

and

	

lf(w)l < C
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the operator H has the unique continuation property. So this result may be
considered as a special case of Theorem 1 . In particular it was also shown
in [GL] that if V(x) = V+(x) - V - (x) satisfies

and
0 < V-(x) <-

CZ
x

for x E B, then any solution u of (1) in H1,2 satisfying

r

	

u2dx = O(exp-Ar')

	

for some

	

A,a > 0
JIx~<r

as r --+ 0 must be identically zero in B .
In this paper, we also consider the partial differential equation

Lu = -A + b(x)Vu + V(x)u = 0.

	

(2)

in B. Assume that there exists ro > 0, f : (O,ro) --~ R+ and c > 0 such that
f is increasing and satisfies

and for x E B,

In [GL], Garofalo and Lin proved in particular that the operator L satisfying
the conditions (2), (3) and (4) has the strong unique continuation property
in the sense that the only HI.C (SZ) solution of Lu = 0 which vanishes of
infinite order at 0 is u = 0 . Concerning the function f we note from (3) that
f(x) tends to zero as x tends to 0. So it would be interesting to see if one
can weaken the condition (4) by replacing f by 1 in (4) to prove the unique
continuation property.

We prove the unique continuation result for smooth solutions of (2) with
some restrictions on the coefficents .

rru

Jo ff~r) dr < oo.r (3)

Ib(x)I
< Cf(Ix1)

1V(M)1 <_
CAM) . (4)

IXI IMP
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Theorem 2. Let u E C°°(B) be a solution of

-Du + a(Ixl)eru + V(Ixl)u = 0

	

(5)

where r = IxI and a and V are radial functioons satisfying

la(Ixl)I s r,

	

IV(Ixl)I s

If u vanishes of infinite order at 0, then u = 0 in B.
In RZ, we prove the following, the proof of which is reduced to the

Cauchy-Riemman operator.

Theorem 3. Let u E E1,2(B) where BC RZ , be a solution of

-Au+ a(x)Vu = 0

where the vector function a(x) satisfies

la(x)l <_
xl

"

If u vanishes ofinfinite order at 0, then u = 0 in B.

Remark. A special case of the main theorem in Rz in [K] can be stated as
follows : an operator of the form

in R2 has the strong unique continuation property if a(x) satisfies

la(x)l S

	

Cr(log r)
in B. So Theorem 3 generalizes this special case by allowing the best possible
singularity for unique continuation to hold in this case . A counterexample
of this kind is given in the end of the paper.

2 . Proof of Theorem 1

Our proof of Theorem 1 is based on the Carleman-type inequality of
Amerin et al . in [ABG] . We state a special case of it for our need.

	

Let
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us denote by H,24(0) the subspace of H2,e(fl) of functions having compact

support in fl .

Theorem 4. (Amerin et al.) The inequality

IIIMI'rfIIW(R^) < C(r)1I1x1r+2ofJIL2(R^)

	

(6)

holds for any r E R and for all f E H2 ' 2 (R° - 0) . The constant C(r) is

finite provided that

for 1 = 0,1,2,3, .. . and it is given by

(r -1 + 2 - n/2)(r + I + n/2) 9k 0

C(r) = Supt>o i(r -1 + 2 - n/2)(r + I + n/2)1-1 .

Remark.

	

With r = -(n/2 + 1/2 + 7n),m = 1,2, . . ., C(r) is not only
uniformally bounded but also goes to zreo as m -). oo . This is one of the
key facts that will be used in the proof of Theorem 1 . Indeed, if r�, _
-(n/2 + 1/2 + m), then

(r-1+2-n/2)(r+1+n/2)=-(n+m+l-3/2)(1-m-1/2)

Since I,m are nonegative integers, we have 11 - m -1/21 >_ 1/2 . It follows
that

C(rm) = Sups>o I (rm -1 + 2 - n/2)(T. + I + n/2)1-1

= Supt>o((n +m + 1- 3/2)11- m - 1/2I)-1< 2
_ n +-m- 3/2,

which tends to 0 as m -, oo .
To prove Theorem 1, we need to check if the vanishing to infinite order

of a solution of the Shrodinger operator implies to that of its gradient . To

this end, we begin with the following lemma .
Lemma S. Let f be a H2,2(B) solution of (1) with IV(x)I < M/1x12 a.e .
such that it vanishes to infinite order at the origin . Then Vf also vanishes
to infinite order at 0.



Proof. We will use the well-known L2 inequality,

IVfI2dx < C{a

	

f2dx+a2
J

	(Vf)2} .
I=I<?

	

a I=I<a

	

Izl<a

Now we prove that if f vanishes to infinite order, then so does IxI -2f. Given
n, choose M so that

Then we have

Proof of Theorem 1.

r

	

f2dx < Ma"+4
J'xl<a

00

(IxI-2f)2dx = E

	

z-u+~)a<Izl<z-~a
(IxI

	

2 f) 2
I=I<a

	

j=of2-~a

< E(2-j+la)-4

	

f2dx
j=o 4-1<2-Ja
00< E(2-j+la)-4(2-ja)n+4M
j=0

= 32Ma" .

So IxI-2f vanishes to infinite order . Since Iof1 < MIMI-2IfI, both terms
on the right side of the L2 inequality are O(an) for every n and the lemma
follows .

Let f E H2,2(B) be a solution of the Schrodinger operator. Let 0 E
Ca(B) be a cutoff function such that 0 <0 < 1,O(x) = 1 for IxI < ./2. Let
g = ¢f. Choose 0 < Tj < Tj+l < 1,Tj(x) = 1 for IxI > 2/j,Tj(x) = 0 for
IxI < 1/j, IV`@j(x)I :5 C'j, I0Pj(x)I

:5 C'j2 . Let gj(x) ='Fj(x)g(x).
Now it is easy to that gj E He,2 (R"-0) sincef E H2'2(B) . By Theorem

4, we see that (6) holds for gj . From now on we set r = r'" = -(n/2
1/2 -{- m),m= 1, 2,3, . . ., for which it is shown early that the constants C(r)
appearing in Theorem 5 satisfy C(r�,) = O(1/m) . Now choose 0 < p < 1/2
and m sufficiently large such that C(r�,)M < 1/2. we shall show that f = 0
in IxI < p. We have by (6)

IIIxIT`~'jfIIL~(IZI<v)

	

IIIZIrgjllL-(d.) < C(r)IIIMIr+2ogjlIL2(dz)

< C(7)Ill_Ir+2o(Tj
f)IIL2(Izl<p)

+ C(r)IIIZIr+2ogIIL2(I=I>o) .
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Leibniz's rule shows that A(Tjf) = QjAf + fA%Fj + 2V PjVf. Thus, the

right hand side of (9) is bounded (for j large)by

C(T)IIITI' +2Tjofi1L2(I=I<p) + C'C(T)j
-' IIf IIL2 (Ix1 <2/j)

+C'C(T)j-T-'i1VfIIL2(Iml<2/j) + C(T)P'+211o911L2(I=I>p) .

Since Iof1 < IV(x)Ilf(x)l, we have, using IXI2IVI < M,

C(T)IIlxl'+ 2 QjoflILI(I=I<P) <_ C(T)IIIXIT+2gjVfIIL2(I=I<o)

= C(T)Illxl'pjflxl2VIIL2(I=I<P)

< C(T)MIIIMI'QjflIL2(I=I<,,)

<_ 1/2IIIMI'kjfJIL2(I=I<p) < +oo .

The last term is finite since f E H2,2(B) Thus from (9) and (10)

1/2111x1'`Yjf11L2(I=I<,) <_ C'C(-r)j-'IIf1IL2(I .I<2/j)

(10)

+C'C(T)j-r-'I1VfIIL2(I=I<2/j) + C(,.)pr+2 11o911L2(I=I>,) .

	

(11)

We need to show the first two terms go to zero as j --~ oo . But by the

definition and Lemma 5, we have

j -'I11fIIL2(I=I<2/;) - 0

j '-'IlVfIIL2(Iz1<2/j) ' 0

as j -> oo . It is worth mentioning that T = r .. are negative . So by the

monotone convergence theorem, it follows from (11)

11(IXI/P)'fIIL2(I=I<p) :5 2C(T)p211'&911L2(I=I>p)

Letting m. --~ oo with T = r��we see that f = 0 on IxJ < p. The proof of

Theorem is then complete .

3 . Proofs of Theorem 2 and 3

In this section we shall see that the proof of Theorem 2 is reduced to

prove the following lemma.



Lemma 6. Let u E C°°((0, R]) and satisfy

Ifu = O(rN) for every N as r --+ 0, then u = 0 in [0, R] .

Assuming the truth of Lemma 6, we begin with

Proof of Theorem 2. For x E R", we set r = Ixl and x = rw where w varies
over the uint sphere S�_1 . The Laplacian A can be written in the spherical
coordinates

where 0,,, is the Laplace-Beltrami operator onS�_1. In Lz(S�_1) we choose
an orthonormal basis of spherical harmonics Pj,o, with 1 E N and 1 < a <
a(1) where

for n > 2. In particular, we have

lu"(r)l <
C(Tlu(r)I + 1lu'(r)I) .

z
n_1= 5.2 +r

	

'd-,. + ;72 Aw

a(1)
- (21 + n - 2)(n

	

1- 3)!
(n - 2)!1!

(12)

A.(pl,.(w)) = -1(1 + n - 2)Pj,,,,(w) .

	

(13)

For R' < R,u E C°°(BR), and we have

where

C'U)

u(x) = E,Eut,.(r)Pt,.(w)
1=0 1=0

() f - u(rw)Pj~(w)dw .
s� ,

(14)

The series above converges uniformaly in BR , and fit,, E Cz.
We will show that fil,a = 0 in BR, . Indeed, subsituting Laplacian into

the equation (5) in Theorem 2, multiplying the resulting equation by PJ,a
integrating with respect to dw over S._l, and using the self-adjontness of

A,,, and the equations (13) and (14) we obtain the equation satisfied by uj,,,

82

	

n-1 8 _

	

8 _

	

1(. . n-2) 1
8rz ur,c,+

	

r

	

8ruj'&+a(r)8ru1,~+

	

V(r) -

	

rz

	

fir,a = 0 . (15)



We get from (19)

Integrating (20) over [0, R] gives, using u = O(rN),

Then we have the inequality

On the other hand we have
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From (15), there exists a constant C depending on a, b such that

I~i~(r)I 5 C(1 Ii1i,«(r)I +TIik-MI). (16)

Then by Lemma 6 and (16), it,. = 0, so u = 0 .
Now we are in a position to prove Lemma 6 and Theorem 3 .

ProofofLemma 6. First we observe that if u = 0(rN), then u' = O(rN) and
u" = O(rN) for every N. Therefore the functions r-Pu,r-Pu' and r-Pu"

are integrable on (0, R] . We claim that if u = O(rN) for every N, then the
following holds : there exists a constant C such that for,6 >_ 2

R(r-4 Iu(r)I' +r-2Iu'(r)I2)r-1'dr <
(A +1)2 Jo' Iu"(r)12r-Odr .

	

(17)
0

Indeed, consider the identity

(u'2)' = 2u'u" .

	

(18)

Mutltiplying r-0-1 on (18) gives

r-0-1
(u

rz)I = r-P-1 2u'u" .

	

(19)

(r-6-1u,2), + ()3 + 1)r-fl-2U12 = 2r-P-l ulu" .

	

(20)

R

	

R
R-0-1u'(R)2 + (Q + 1)1 r-P-2u'2dr = 2 f r-P -1u'u"dr .

0

	

0

W +1)
J
Rr-P-2u'2dr < 2

J

R
r-fl-1u'u"dr .

	

(21)
0

	

0

J

R
r-P-1 ,u ,,u"dr =

J

R(0+ 1 )2/2r-p_2/2,u,(

	

4

	

)1/2r-P/2u"dr
0

	

0 4

	

'6+1



R

	

R,Q + 1

	

u12r-P-2dr -f-

	

4

	

u"2r-9dr .

	

(22)4 10

	

Q+1
From (21) and (22) it follows that

R

	

4 R
r-0-2u'2dr <_ ()9 + 1)2

	

u'dr-fidr .

	

(23)
0 fo

Now we consider
R
u2r-0-4dr = -R~_,+

38-3
u2(R) +

	

1
0+3 ,fR

2uur-fl-3dr
0

R
< 2 UU Ir-P-3dr
Q+3 fo

p + 3
__

	

1(Q
4
3)1/2U,-0-4/2

(

	

4

	

)1/2u/r,6-2/2dr~
Q+3

R

	

R
2

	

0

	

't62T-P-4dT +
(N + 3)2

	

u'2r- -ZdT .

	

(24)

Therefore we get from (23) and (24)

R u2r-16-4dr <

	

16

	

fR u' 12 r-Pdr

	

(25)(0+3)2

Combining (23) and (25) yields the proof of (12) .

	

Now we are back to
prove Lemma 6 . Indeed if u is not identically zero then we come out with a
controdication by letting Q --+ oo in (17) .

To prove Theorem 3 it suffices to prove the following lemma which can
be considered as a generalization of a lemma in [BL] .

Lemma 7. Suppose v is a function on the unit disk such that jvxj < -~ wIf
for some positive constant C. If v vanishes of infinite order at the origin,
then v is identically zero.

Proof. Define a function A on the unit disk to be equal to V,-./v when v
is not zero and equal to zero when v is zero . Note that A is well-defined
except at z = 0. But by assumption , A is Ll integrable on the unit disk.
So A(z)dz n dz is a Borel measure with compact support U , the unit disk .
Define a function u on U via

U(Z)

	

T76 ,w C (~) dt; n dC .

	

(26)
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We claim that u(z) = O(log

	

) when z :~ O,i .e, we have to prove by (26)

J,-, ICIIC a-I

	

O(log IZI ) .

	

(27)

Assuming the truth of the claim, we prove the lemma. Note that u is con-
tinuous on U except at 0 and has the property that it is C°° where v is not
zero and uz = vZ/v when v ~& 0, z :A 0 . Now consider the function h = ve-u .
So h is continuous on U - 0 and is holomorphic when it is not zero. Thus,
Rado's Theorem implies that h is holomorphic on U - 0. Now we want to
show that 0 is also a removable singularity of h. Indeed, let 0 = {$2u > 0} .
Then on 0

Ie-ul = e-8tu < 1 .

On U - 0, by the claim,

_RU < Iuj < Clog
IzI

for some positive constant C. Therefore . on U - 0

Then

where 0 < a = IzI < 1/2,

Ie-"I =e-$tu <

	

IC .

Since v vanishes of infinite order at 0, there exists a M > 0 such that

1V(Z)1 < MIZI'.

Ih(z)I = Iv(z)IIe

	

u I < M

for z E U, i .e ., 0 is a removable singularity of h.
Now it is clear that h vanishes of infinite order at 0 so it must be zero

identically, and hence, so must v. The proof of Lemma 7 is comlpete provided
we prove the claim. To this end, let us break U into three pieces as follows :

I = {ICI < a/2}

II = {a/2 < ICI < 2a}

	

and1II = {2a < ICI < 1}



is equivelent to

Combining all estmates (28), (29) and (30) togather yields the proof of (27)
Proof of Theorem 3. It is a consequence of Lemma 7 by observing that

A = 4 6881 and the condition

Ioul <
IC

IVUI

-Au -f- Ixh+EVu = 0

	

(31)

r2u"(r) + (r - rl-f)u'(r) = 0.

where a = su .
We conclude the section by giving a simple example showing that the

singularity in Lemma 7 cannot be replaced by 1/Izl'+° . Let us consider the
equation

with c a constant vector. If we look for radial solutions of (31), we are led
to consider the ode

964 PAN

Then we have
dC A d( _C dC A dC =
ICIIC -

0(l),
- al a ICI

(28)

and

dCAd _C dCAdC

I ICIIC - al a IC - al
2~r

<C =a
f I2a

dpdB O(1), (29)
o

where we have used the polar coordinates centered at a . Finally,

d~ Ad- dpdB-

III ICIIC - al III Ipeie - al
2,ril dpdB

((p - a)2 + 2pa sine 0/2) 1/2

1
< 2r f2.

dp _- 1
(p

log + C.- a) a (30)
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Letting v = u', we come out with

rzv' -}- (r - rl '`)v = 0.

Now it is easy to see that
v = Ce-, `

	

(32)

for some constant C. So u determined by (32) vanishes of infinite order at
0, but is identically zero.

ACKNOWLEGMENTS
The author thnaks Professors B.A . Taylor, D. Baxrett and Zhongyuan

Li for their helpful comments. Thanks go to Professors S. Bell and L. Lem-
pert whose paper [BL] led the author to consider the unique continuation
problems in R" .

REFERENCES
[ABG] W.O. Amerin, A.M . Berthier, and V. Georgescu, LP inequalities for
the Laplacian and unique continuation, Ann. Inst . Fourier (Grenoble) 31
(1981),153-168.
[GL] N. Garofalo and F.H . Lin, Unique continuation for elliptic operators
Comm. pure . appl. Math, XL(1987) 347-366
[JK] D. Jerison and C.E. Kenig, Unique continuation of Schrodinger operator
Ann. of. Math 121(1985), 463-488

[BL] S. Bell and Lempert, C°° Schwartz reflection principle in one and several
complex variables, J. Diff. Geometry . 32 (1990), 899-915.
[K] J. Kazdan, Unique continuation in geometry , Comm. pure . appl. math,
XL1 667-681,(1988)
[W] T. Wolff, Note on counterexamples in strong unique continuation prob-
lems, Proc . A. M. S. vol. 114, No. 2 (1992) 351-355.

Received September 1991


