COMMUN. IN PARTIAL DIFFERENTIAL EQUATIONS, 17(5&6), 953-965 (1992)

UNIQUE CONTINUATION FOR SCHRODINGER OPERATORS WITH SINGULAR POTENTIALS

Yifei Pan

Indiana-Purdue University at Fort Wayne

ABSTRACT: It is shown in this paper that the Schrodinger operator with a potential satisfying $|V(x)| \leq M/|x|^2$ a.e. in the unit ball B has the strong unique continuation property in $H^{2,2}(B)$ for $n \geq 2$.

1. Introduction

Consider the Laplace operator $\Delta = -\sum \frac{\partial^2}{\partial x_i^2}$ on \mathbb{R}^n and a function V(x) on the unit ball B = B(0,1) of \mathbb{R}^n . We say the Schrödinger operator

$$\Delta u + Vu = 0$$

satisfies the strong unique continuation property in Sobolev space $H^{2,q}(B)$, if whenever $u \in H^{2,q}(B)$ is a solution of the operator and vanishes to infinite order at a point, u is identically zero. Here, a function $f \in L^2_{loc}$ is said to vanish to infinite order at 0 if

$$\int_{|x| < r} f^2 dx = O(r^k)$$

for every k as $r \to 0$. When n = 2 and V is bounded, Carleman proved a unique continuation theorem, and all subsequent work follows his basic idea. There is large literature of applications of Carleman-type inequalities to this and other uniqueness questions.

953

Copyright © 1992 by Marcel Dekker, Inc.

Over the past several years, considerable attention has been paid to the case $V \in L^{\omega}(B)$ for $\omega < \infty$; this is largely because the unique continuation property can be used to prove that the Schrodinger operator on $L^2(\mathbb{R}^n)$ has no positive eigenvalues provided $V \in L^{\omega}_{loc}(\mathbb{R}^n)$ and V has suitable behavior at infinity. Recently, Jerison and Kenig [JK] proved that if n > 2, the Schrodinger operator has the strong unique continuation property for $V \in L^{n/2}$ in the Sobolev space $H^{2,q}(B)$ with q = 2n/(n+2). This improves all previous results (see the references in [JK]) and is best possible in the context of L^p spaces. However Jerison and Kenig's theorem does not cover the case $V(x) = C/|x|^2$ since it does not belong to $L^{n/2}(B)$. We take up this issue and prove the following.

Theorem 1. Suppose $n \ge 2$. The Schrödinger operator with the potential $|V(x)| \le M/|x|^2$ a.e. in B has the strong unique continuation property in $H^{2,2}(B)$.

Remarks. 1) Theorem 1 establishes the unique continuation result in an important borderline case not coverd by the general result of Jerison and Kenig [JK] since $1/|x|^2 \notin L^{n/2}$. Moreover, since we do not require any local restriction on the size of V, Theorem 1 is not contained either in E. Stein's subsequent improvement of Jerison and Kenig's result concerning $V \in L_{loc}^{n/2,\infty}(\mathbb{R}^n)$, the Lorentz space of weak n/2 type, see [JK]. It is worth mentioning that T. Wolff has constructed an example showing that in the result of Stein, a smallness condition on the norm of the potential is needed [W]. On the other hand, easy examples show that the potential $C/|x|^2$ is of strongest singularity for unique continuation to hold. For example, as in [JK], if $\epsilon > 0, f(x) = e^{-(\log 1/|x|^2)^{1+\epsilon}}$ for |x| < 1, then f vanishes at 0 of infinite order, and $(\Delta f/f) = V$ satisfies $V \approx (\log 1/|x|)^{2\epsilon}(1/|x|^2)$.

2) The Schrodinger operators

$$H = -\Delta + V \tag{1}$$

were also considered in [GL] and some related results were obtained. It was shown by Garofalo and F.H. Lin in [GL] that if $V = \frac{f(\omega)}{|x|^2}$ where f is a bounded function homogeneous of degree zero, i.e., if $\omega = x/|x|, x \neq 0$, we have

$$f(\omega) = f(rac{x}{|x|}) \quad ext{and} \quad |f(\omega)| \leq C$$

the operator H has the unique continuation property. So this result may be considered as a special case of Theorem 1. In particular it was also shown in [GL] that if $V(x) = V^+(x) - V^-(x)$ satisfies

$$0 \leq V^+(x) \leq \frac{C}{|x|^2}$$

and

$$0 \leq V^-(\boldsymbol{x}) \leq \frac{C}{|\boldsymbol{x}|^2}$$

for $x \in B$, then any solution u of (1) in $H^{1,2}$ satisfying

$$\int_{|x|< r} u^2 dx = O(\exp - Ar^{\alpha}) \quad \text{for some} \quad A, \alpha > 0$$

as $r \to 0$ must be identically zero in B.

In this paper, we also consider the partial differential equation

$$Lu = -\Delta + b(x)\nabla u + V(x)u = 0.$$
 (2)

in B. Assume that there exists $r_0 > 0$, $f: (0, r_0) \to R^+$ and c > 0 such that f is increasing and satisfies

$$\int_0^{r_0} \frac{f(r)}{r} dr < \infty.$$
(3)

and for $x \in B$,

$$|b(x)| \leq \frac{Cf(|x|)}{|x|}, \quad |V(x)| \leq \frac{Cf(|x|)}{|x|^2}.$$
 (4)

In [GL], Garofalo and Lin proved in particular that the operator L satisfying the conditions (2), (3) and (4) has the strong unique continuation property in the sense that the only $H_{loc}^{1,2}(\Omega)$ solution of Lu = 0 which vanishes of infinite order at 0 is u = 0. Concerning the function f we note from (3) that f(x) tends to zero as x tends to 0. So it would be interesting to see if one can weaken the condition (4) by replacing f by 1 in (4) to prove the unique continuation property.

We prove the unique continuation result for smooth solutions of (2) with some restrictions on the coefficients.

956

Theorem 2. Let $u \in C^{\infty}(B)$ be a solution of

$$-\Delta u + a(|x|)\partial_r u + V(|x|)u = 0$$
(5)

where r = |x| and a and V are radial functions satisfying

$$|a(|\mathbf{x}|)| \leq \frac{C}{r}, \quad |V(|\mathbf{x}|)| \leq \frac{C}{r^2}.$$

If u vanishes of infinite order at 0, then u = 0 in B.

In R^2 , we prove the following, the proof of which is reduced to the Cauchy-Riemman operator.

Theorem 3. Let $u \in H^{1,2}(B)$ where $B \subset R^2$, be a solution of

$$-\Delta u + a(x)\nabla u = 0$$

where the vector function a(x) satisfies

$$|a(x)| \leq \frac{C}{|x|}.$$

If u vanishes of infinite order at 0, then u = 0 in B.

Remark. A special case of the main theorem in \mathbb{R}^2 in [K] can be stated as follows: an operator of the form

$$-\Delta + a(x)\nabla u$$

in R^2 has the strong unique continuation property if a(x) satisfies

$$|a(x)| \leq \frac{C}{r(\log \frac{2}{r})}$$

in B. So Theorem 3 generalizes this special case by allowing the best possible singularity for unique continuation to hold in this case. A counterexample of this kind is given in the end of the paper.

2. Proof of Theorem 1

Our proof of Theorem 1 is based on the Carleman-type inequality of Amerin et al. in [ABG]. We state a special case of it for our need. Let

us denote by $H^{2,q}_{c}(\Omega)$ the subspace of $H^{2,q}(\Omega)$ of functions having compact support in Ω .

Theorem 4. (Amerin et al.) The inequality

$$|||x|^{\tau} f||_{L^{2}(\mathbb{R}^{n})} \leq C(\tau) |||x|^{\tau+2} \Delta f||_{L^{2}(\mathbb{R}^{n})}$$
(6)

holds for any $\tau \in R$ and for all $f \in H_c^{2,2}$ $(R^n - 0)$. The constant $C(\tau)$ is finite provided that

$$(\tau - l + 2 - n/2)(\tau + l + n/2) \neq 0$$

for $l = 0, 1, 2, 3, \dots$ and it is given by

$$C(\tau) = Sup_{l\geq 0}|(\tau - l + 2 - n/2)(\tau + l + n/2)|^{-1}.$$

Remark. With $\tau = -(n/2 + 1/2 + m), m = 1, 2, ..., C(\tau)$ is not only uniformally bounded but also goes to zreo as $m \to \infty$. This is one of the key facts that will be used in the proof of Theorem 1. Indeed, if $\tau_m = -(n/2 + 1/2 + m)$, then

$$(\tau - l + 2 - n/2)(\tau + l + n/2) = -(n + m + l - 3/2)(l - m - 1/2)$$

Since l, m are nonegative integers, we have $|l - m - 1/2| \ge 1/2$. It follows that

$$egin{aligned} C(au_m) &= Sup_{l\geq 0} |(au_m-l+2-n/2)(au_m+l+n/2)|^{-1} \ &= Sup_{l\geq 0}((n+m+l-3/2)|l-m-1/2|)^{-1} \ &\leq rac{2}{n+m-3/2}, \end{aligned}$$

which tends to 0 as $m \to \infty$.

To prove Theorem 1, we need to check if the vanishing to infinite order of a solution of the Shrodinger operator implies to that of its gradient. To this end, we begin with the following lemma.

Lemma 5. Let f be a $H^{2,2}(B)$ solution of (1) with $|V(x)| \leq M/|x|^2$ a.e. such that it vanishes to infinite order at the origin. Then ∇f also vanishes to infinite order at 0.

Proof. We will use the well-known L^2 inequality,

$$\int_{|x|<\frac{a}{2}} |\nabla f|^2 dx \leq C\{\frac{1}{a^2} \int_{|x|$$

Now we prove that if f vanishes to infinite order, then so does $|x|^{-2}f$. Given n, choose M so that

$$\int_{|x|$$

Then we have

$$\begin{split} \int_{|x|$$

So $|x|^{-2}f$ vanishes to infinite order. Since $|\Delta f| \leq M|x|^{-2}|f|$, both terms on the right side of the L^2 inequality are $O(a^n)$ for every *n* and the lemma follows.

Proof of Theorem 1.

Let $f \in H^{2,2}(B)$ be a solution of the Schrödinger operator. Let $\phi \in C_0^{\infty}(B)$ be a cutoff function such that $0 \leq \phi \leq 1, \phi(x) = 1$ for |x| < ./2. Let $g = \phi f$. Choose $0 \leq \Psi_j \leq \Psi_{j+1} \leq 1, \Psi_j(x) = 1$ for $|x| > 2/j, \Psi_j(x) = 0$ for $|x| < 1/j, |\nabla \Psi_j(x)| \leq C'j, |\Delta \Psi_j(x)| \leq C'j^2$. Let $g_j(x) = \Psi_j(x)g(x)$.

Now it is easy to that $g_j \in H_c^{2,2}(\mathbb{R}^n - 0)$ since $f \in H^{2,2}(B)$. By Theorem 4, we see that (6) holds for g_j . From now on we set $\tau = \tau^m = -(n/2 + 1/2 + m), m = 1, 2, 3, ...,$ for which it is shown early that the constants $C(\tau)$ appearing in Theorem 5 satisfy $C(\tau_m) = O(1/m)$. Now choose $0 < \rho < 1/2$ and m sufficiently large such that $C(\tau_m)M < 1/2$. we shall show that f = 0 in $|x| < \rho$. We have by (6)

$$\begin{aligned} |||x|^{\tau} \Psi_{j}f||_{L^{2}(|x|<\rho)} &\leq |||x|^{\tau}g_{j}||_{L^{2}(dx)} \leq C(\tau)|||x|^{\tau+2} \Delta g_{j}||_{L^{2}(dx)} \\ &\leq C(\tau)|||x|^{\tau+2} \Delta (\Psi_{j}f)||_{L^{2}(|x|<\rho)} \\ &+ C(\tau)|||x|^{\tau+2} \Delta g||_{L^{2}(|x|>\rho)}. \end{aligned}$$
(9)

Leibniz's rule shows that $\Delta(\Psi_j f) = \Psi_j \Delta f + f \Delta \Psi_j + 2\nabla \Psi_j \nabla f$. Thus, the right hand side of (9) is bounded (for j large)by

- $C(\tau)|||x|^{\tau+2}\Psi_j\Delta f||_{L^2(|x|<\rho)} + C'C(\tau)j^{-\tau}||f||_{L^2(|x|<2/j)}$
- $+C'C(\tau)j^{-\tau-1}||\nabla f||_{L^{2}(|x|<2/j)}+C(\tau)\rho^{\tau+2}||\Delta g||_{L^{2}(|x|>\rho)}.$

Since $|\Delta f| \leq |V(x)||f(x)|$, we have, using $|x|^2|V| \leq M$,

$$C(\tau)|||x|^{\tau+2}\Psi_{j}\Delta f||_{L^{2}(|x|<\rho)} \leq C(\tau)|||x|^{\tau+2}\Psi_{j}Vf||_{L^{2}(|x|<\rho)}$$

$$= C(\tau)|||x|^{\tau}\Psi_{j}f|x|^{2}V||_{L^{2}(|x|<\rho)}$$

$$\leq C(\tau)M|||x|^{\tau}\Psi_{j}f||_{L^{2}(|x|<\rho)}$$

$$\leq 1/2|||x|^{\tau}\Psi_{j}f||_{L^{2}(|x|<\rho)} < +\infty.$$
(10)

The last term is finite since $f \in H^{2,2}(B)$ Thus from (9) and (10)

$$1/2|||x|^{\tau}\Psi_{j}f||_{L^{2}(|x|<\rho)} \leq C'C(\tau)j^{-\tau}||f||_{L^{2}(|x|<2/j)}$$

$$+C'C(\tau)j^{-\tau-1}||\nabla f||_{L^{2}(|x|<2/j)}+C(\tau)\rho^{\tau+2}||\Delta g||_{L^{2}(|x|>\rho)}.$$
 (11)

We need to show the first two terms go to zero as $j \to \infty$. But by the definition and Lemma 5, we have

$$j^{-\tau} |||f||_{L^2(|x|<2/j)} \to 0$$

$$j^{-\tau-1} || \nabla f ||_{L^2(|x| < 2/j)} \to 0$$

as $j \to \infty$. It is worth mentioning that $\tau = \tau_m$ are negative. So by the monotone convergence theorem, it follows from (11)

$$||(|x|/\rho)^{\tau}f||_{L^{2}(|x|<\rho)} \leq 2C(\tau)\rho^{2}||\Delta g||_{L^{2}(|x|>\rho)}$$

Letting $m \to \infty$ with $\tau = \tau_m$, we see that f = 0 on $|x| < \rho$. The proof of Theorem is then complete.

3. Proofs of Theorem 2 and 3

In this section we shall see that the proof of Theorem 2 is reduced to prove the following lemma.

Lemma 6. Let $u \in C^{\infty}((0, R])$ and satisfy

$$|u''(r)| \le C(\frac{1}{r^2}|u(r)| + \frac{1}{r}|u'(r)|).$$
(12)

If $u = O(r^N)$ for every N as $r \to 0$, then u = 0 in [0, R].

Assuming the truth of Lemma 6, we begin with

Proof of Theorem 2. For $x \in \mathbb{R}^n$, we set r = |x| and $x = r\omega$ where ω varies over the unit sphere S_{n-1} . The Laplacian Δ can be written in the spherical coordinates

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{n-1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\Delta_{\omega}$$

where Δ_{ω} is the Laplace-Beltrami operator on S_{n-1} . In $L^2(S_{n-1})$ we choose an orthonormal basis of spherical harmonics $P_{l,\alpha}$ with $l \in N$ and $1 \leq \alpha \leq \alpha(l)$ where

$$\alpha(l) = \frac{(2l+n-2)(n+l-3)!}{(n-2)!l!}$$

for $n \geq 2$. In particular, we have

$$\Delta_{\omega}(P_{l,\alpha}(\omega)) = -l(l+n-2)P_{l,\alpha}(\omega). \tag{13}$$

For $R' < R, u \in C^{\infty}(\overline{B}'_R)$, and we have

$$u(x) = \sum_{l=0}^{\infty} \sum_{l=0}^{\alpha(l)} \tilde{u}_{l,\alpha}(r) P_{l,\alpha}(\omega)$$

where

$$\tilde{u}_{l,\alpha}(r) = \int_{S_{n-1}} u(r\omega) \overline{P_{l,\alpha}}(\omega) d\omega.$$
 (14)

The series above converges uniformaly in $B_{R'}$ and $\tilde{u}_{l,\alpha} \in C^2$.

We will show that $\tilde{u}_{l,\alpha} = 0$ in $B_{R'}$. Indeed, substituting Laplacian into the equation (5) in Theorem 2, multiplying the resulting equation by $\overline{P}_{l,\alpha}$, integrating with respect to $d\omega$ over S_{n-1} , and using the self-adjontness of Δ_{ω} and the equations (13) and (14) we obtain the equation satisfied by $\tilde{u}_{l,\alpha}$

$$\frac{\partial^2}{\partial r^2}\tilde{u}_{l,\alpha} + \frac{n-1}{r}\frac{\partial}{\partial r}\tilde{u}_{l,\alpha} + a(r)\frac{\partial}{\partial r}\tilde{u}_{l,\alpha} + \left\{V(r) - \frac{l(r-n-2)}{r^2}\right\}\tilde{u}_{l,\alpha} = 0.$$
(15)

From (15), there exists a constant C depending on a, b such that

$$|\tilde{u}_{l,\alpha}'(r)| \le C(\frac{1}{r}|\tilde{u}_{l,\alpha}'(r)| + \frac{1}{r^2}|\tilde{u}_{l,\alpha}(r)|).$$
(16)

Then by Lemma 6 and (16), $\tilde{u}_{l,\alpha} = 0$, so u = 0.

Now we are in a position to prove Lemma 6 and Theorem 3.

Proof of Lemma 6. First we observe that if $u = O(r^N)$, then $u' = O(r^N)$ and $u'' = O(r^N)$ for every N. Therefore the functions $r^{-\beta}u, r^{-\beta}u'$ and $r^{-\beta}u''$ are integrable on (0, R]. We claim that if $u = O(r^N)$ for every N, then the following holds: there exists a constant C such that for $\beta \ge 2$

$$\int_0^R (r^{-4}|u(r)|^2 + r^{-2}|u'(r)|^2)r^{-\beta}dr \leq \frac{C}{(\beta+1)^2}\int_0^R |u''(r)|^2r^{-\beta}dr.$$
 (17)

Indeed, consider the identity

$$(u'^2)' = 2u'u''. (18)$$

Mutltiplying $r^{-\beta-1}$ on (18) gives

$$r^{-\beta-1}(u'^2)' = r^{-\beta-1}2u'u''.$$
(19)

We get from (19)

$$(r^{-\beta-1}u'^2)' + (\beta+1)r^{-\beta-2}u'^2 = 2r^{-\beta-1}u'u''.$$
 (20)

Integrating (20) over [0, R] gives, using $u = O(r^N)$,

$$R^{-\beta-1}u'(R)^{2} + (\beta+1)\int_{0}^{R}r^{-\beta-2}u'^{2}dr = 2\int_{0}^{R}r^{-\beta-1}u'u''dr$$

Then we have the inequality

$$(\beta+1)\int_0^R r^{-\beta-2} u'^2 dr \le 2\int_0^R r^{-\beta-1} u' u'' dr.$$
 (21)

On the other hand we have

$$\int_0^R r^{-\beta-1} u' u'' dr = \int_0^R (\frac{\beta+1}{4})^{1/2} r^{-\beta-2/2} u' (\frac{4}{\beta+1})^{1/2} r^{-\beta/2} u'' dr$$

$$\leq \frac{\beta+1}{4} \int_0^R u'^2 r^{-\beta-2} dr + \frac{4}{\beta+1} \int_0^R u''^2 r^{-\beta} dr.$$
 (22)

From (21) and (22) it follows that

$$\int_0^R r^{-\beta-2} u'^2 dr \leq \frac{4}{(\beta+1)^2} \int_0^R u''^2 r^{-\beta} dr.$$
 (23)

Now we consider

$$\int_{0}^{R} u^{2} r^{-\beta-4} dr = -\frac{R^{-\beta-3}}{\beta+3} u^{2}(R) + \frac{1}{\beta+3} \int_{0}^{R} 2u u' r^{-\beta-3} dr$$

$$\leq \frac{2}{\beta+3} \int_{0}^{R} u u' r^{-\beta-3} dr$$

$$= \frac{2}{\beta+3} \left\{ (\frac{\beta+3}{4})^{1/2} u r^{-\beta-4/2} (\frac{4}{\beta+3})^{1/2} u' r^{\beta-2/2} dr \right\}$$

$$\leq \frac{1}{2} \int_{0}^{R} u^{2} r^{-\beta-4} dr + \frac{8}{(\beta+3)^{2}} \int_{0}^{R} u'^{2} r^{-\beta-2} dr. \quad (24)$$

Therefore we get from (23) and (24)

$$\int_0^R u^2 r^{-\beta-4} dr \leq \frac{16}{(\beta+3)^2} \int_0^R u''^2 r^{-\beta} dr$$
 (25)

Combining (23) and (25) yields the proof of (12). Now we are back to prove Lemma 6. Indeed if u is not identically zero then we come out with a controdication by letting $\beta \to \infty$ in (17).

To prove Theorem 3 it suffices to prove the following lemma which can be considered as a generalization of a lemma in [BL].

Lemma 7. Suppose v is a function on the unit disk such that $|v_{\overline{x}}| \leq \frac{C}{|\overline{x}|}|v|$ for some positive constant C. If v vanishes of infinite order at the origin, then v is identically zero.

Proof. Define a function λ on the unit disk to be equal to $v_{\overline{z}}/v$ when v is not zero and equal to zero when v is zero. Note that λ is well-defined except at z = 0. But by assumption, λ is L^1 integrable on the unit disk. So $\lambda(z)dz \wedge d\overline{z}$ is a Borel measure with compact support U, the unit disk. Define a function u on U via

$$u(z) = \frac{1}{2\pi i} \int_{U} \frac{\lambda(\zeta)}{\zeta - z} d\zeta \wedge d\overline{\zeta}.$$
 (26)

We claim that $u(z) = O(\log \frac{1}{|z|})$ when $z \neq 0$, i.e., we have to prove by (26)

$$\int_{U} \frac{d\zeta \wedge d\overline{\zeta}}{|\zeta||\zeta - z|} = O(\log \frac{1}{|z|}).$$
(27)

Assuming the truth of the claim, we prove the lemma. Note that u is continuous on U except at 0 and has the property that it is C^{∞} where v is not zero and $u_{\overline{z}} = v_{\overline{z}}/v$ when $v \neq 0, z \neq 0$. Now consider the function $h = ve^{-u}$. So h is continuous on U - 0 and is holomorphic when it is not zero. Thus, Rado's Theorem implies that h is holomorphic on U - 0. Now we want to show that 0 is also a removable singularity of h. Indeed, let $O = \{\Re u > 0\}$. Then on O

$$|e^{-u}|=e^{-\Re u}\leq 1.$$

On U - O, by the claim,

$$-\Re u \leq |u| \leq C \log \frac{1}{|z|}$$

for some positive constant C. Therefore. on U - O

$$|e^{-u}|=e^{-\Re u}\leq \frac{1}{|z|^C}.$$

Since v vanishes of infinite order at 0, there exists a M > 0 such that

$$|v(z)| \leq M |z|^C.$$

Then

$$|h(z)| = |v(z)||e^{-u}| \le M$$

for $z \in U$, i.e., 0 is a removable singularity of h.

Now it is clear that h vanishes of infinite order at 0 so it must be zero identically, and hence, so must v. The proof of Lemma 7 is complete provided we prove the claim. To this end, let us break U into three pieces as follows:

$$I = \{|\zeta| < a/2\}$$

where 0 < a = |z| < 1/2,

$$II = \{a/2 < |\zeta| < 2a\} \quad \text{and} III = \{2a < |\zeta| < 1\}$$

Then we have

 $\int_{I} \frac{d\zeta \wedge d\overline{\zeta}}{|\zeta||\zeta - a|} \leq \frac{C}{a} \int_{I} \frac{d\zeta \wedge d\overline{\zeta}}{|\zeta|} = O(1),$ (28)

and

$$\int_{II} \frac{d\zeta \wedge d\overline{\zeta}}{|\zeta||\zeta - a|} \leq \frac{C}{a} \int_{I} \frac{d\zeta \wedge d\overline{\zeta}}{|\zeta - a|} \leq \frac{C}{a} \int_{0}^{2\pi} \int_{0}^{2a} d\rho d\theta = O(1),$$
(29)

where we have used the polar coordinates centered at a. Finally,

$$\int_{III} \frac{d\zeta \wedge d\overline{\zeta}}{|\zeta||\zeta - a|} = \int_{III} \frac{d\rho d\theta}{|\rho e^{i\theta} - a|}$$
$$= \int_0^{2\pi} \int_a^1 \frac{d\rho d\theta}{((\rho - a)^2 + 2\rho a \sin^2 \theta/2)^{1/2}}$$
$$\leq 2\pi \int_{2a}^1 \frac{d\rho}{(\rho - a)} = \log \frac{1}{a} + C.$$
(30)

Combining all estmates (28), (29) and (30) togather yields the proof of (27) Proof of Theorem 3. It is a consequence of Lemma 7 by observing that $\Delta = \frac{1}{4} \frac{\partial^2}{\partial z \partial \overline{z}}$ and the condition

$$|\Delta u| \leq \frac{C}{|\boldsymbol{x}|} |\nabla u|$$

is equivelent to

$$|\overline{\partial} v| \leq \frac{C}{|z|} |v|$$

where $v = \frac{\partial}{\partial z} u$.

We conclude the section by giving a simple example showing that the singularity in Lemma 7 cannot be replaced by $1/|z|^{1+\epsilon}$. Let us consider the equation

$$-\Delta u + \frac{c}{|x|^{1+\epsilon}} \nabla u = 0 \tag{31}$$

with c a constant vector. If we look for radial solutions of (31), we are led to consider the ode

$$r^{2}u''(r) + (r - r^{1-\epsilon})u'(r) = 0.$$

Letting v = u', we come out with

$$r^2v'+(r-r^{1-\epsilon})v=0.$$

Now it is easy to see that

$$v = C e^{-r^{-\epsilon}} \tag{32}$$

for some constant C. So u determined by (32) vanishes of infinite order at 0, but is identically zero.

ACKNOWLEGMENTS

The author thnaks Professors B.A. Taylor, D. Barrett and Zhongyuan Li for their helpful comments. Thanks go to Professors S. Bell and L. Lempert whose paper [BL] led the author to consider the unique continuation problems in \mathbb{R}^n .

REFERENCES

[ABG] W.O. Amerin, A.M. Berthier, and V. Georgescu, L^p inequalities for the Laplacian and unique continuation, Ann. Inst. Fourier (Grenoble) 31 (1981), 153-168.

[GL] N. Garofalo and F.H. Lin, Unique continuation for elliptic operators Comm. pure. appl. Math, XL(1987) 347-366

[JK] D. Jerison and C.E. Kenig, Unique continuation of Schrodinger operator , Ann. of. Math 121(1985), 463-488

[BL] S. Bell and Lempert, C^{∞} Schwartz reflection principle in one and several complex variables, J. Diff. Geometry. 32 (1990), 899-915.

[K] J. Kazdan, Unique continuation in geometry, Comm. pure. appl. math, XLI 667-681,(1988)

[W] T. Wolff, Note on counterexamples in strong unique continuation problems, Proc. A. M. S. vol. 114, No. 2 (1992) 351-355.

Received September 1991