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Theorem 1.1 .

A Remark on Unique Continuation

ABSTRACT.

	

In this paper a unique continuation result is provedfor differential inequality ofsecond order.

We prove the following result :

There is a numerical constant E > 0 making the following true . Assume that u is a function
defined on a (connected) neighborhood U of the origin in IEBn for some n > 2, which belongs to the
Sobolev space W2,2 and satisfies the differential inequality

for some constant A. Assume also that

for all k < oc . Then u = 0 .
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1 . Introduction
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The proof will be done using the standard Carleman method and essentially well-known L2
estimates (cf . [2, 6], and the application in [4]) and the result is perhaps not really new . However, it
does not appear in the literature and may be of some interest as representing the borderline situation
where such a statement is true . We now briefly discuss this . It is important to make a distinction
between real-valued functions u on the one hand, and complex- or vector-valued functions on the
other.

For real-valued functions, the situation is as follows : in [8] an example is constructed in any
dimension > 4 of a smooth real-valued function satisfying IAuI < Ix~ Iou1 for a certain constant
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C and vanishing to infinite order at the origin . On the other hand, in [4] it is shown that this is
impossible in the two-dimensional case, i.e ., the theorem above is valid for any constant e in that
case, at least if A = 0.

In the complex case, the two-dimensional resultjust mentioned from [4] is no longer valid. This
is due to Alinhac and Baouendi ; actually it was proved some years ago although not circulated until
recently [1] . On the other hand, since the proof of Theorem 1 .1 just uses the Carleman method, it
works equally well in both cases .

We thank X. Huang who showed us the paper of [1], while we were writing up the present
paper for publication . After seeing [1], we worked out an alternate approach to their construction
which is included at the end of the paper. Paper [1] also indicates that an observation similar to our
Theorem 1 .1 had been made by Regbaoui in his thesis [5], independently and somewhat earlier.

2 . Proof of the theorem

Theorem 1 .1 will be a corollary of the following Carleman inequality.

Proposition .

	

Let i1o be a positive constant. Assume that r > n and dist(r -
u E Co (Rn \0) . Then

where C depends on rlo only.

with C depending on t1o only.

111x1 -iu 112 < Cr-' 111x12-1Au112

111x1' -T°u11z < C 111x1 2- TAu112

111 x 1-iu112 < Cmin(k-',r-') 111x12-7Au112

Illxl '-Tou112 -< C 111x12-,AuII2

> t1o . Let

As has already been mentioned, this proposition should be considered implicit in the literature,
e.g ., in [2] . However, we give the simple proof. In what follows, we always assume that r satisfies
the conditions in the proposition . The proposition will be a corollary of the following lemma :

Lemma.

	

IfY is a degree k spherical harmonic, b is a radial function belonging to Co (B" \0) and
u = bY, then

Proof.

	

We will write x<y to mean that x _< Cy where C is a constant depending only on rlo .

Following an approach discussed, e.g ., in [3, p . 14] and [7, p . 147] we identify Rn with Sn -I x 1<8 via
x = eta), t E R, (o E S' 1 . This is an isometry if Sn-1 x R is given the metric e 2t (dt2 +do)2) where

dto2 is the usual metric on the sphere . The Laplacian on Sn- x ll8 is e-2t(dz2 + (n -2) d~ +As) where

As is the Laplacian on the sphere, and the gradient satisfies IVs-, XRul = e-t (1 dr IZ + Iosu12)z
where Vs is the gradient on the sphere . Furthermore, the volume element is en t dtodt where dto is

the volume element on the sphere . These assertions follow from the basic formulas of Riemannian
geometry, cf. [7] . Thus, what we have to prove is that if Y is an eigenfunction of As with eigenvalue
-k(k + n - 2) and if b E Co(R), then

IIe-rtb(t)Y((o)11 L2(entdtdco) ~ min(k-1 , r-1)

	

e-rt
(dr + (n - 2) at + As) (b(t)Y(,)) 11 j,21e"Idtdco)
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Equivalently (a(t) = e-(T-z)rb(t))
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Next we show that
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In other words, we want to show that

Ila1IL2(dt)Cmin (k-1 , t -1 ) Ilatt +Jwt +Aa1IL2(dt )
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where ;, = 2(r - 1), A = (r - z - k)(r + z +k - 2) . To prove (2.1), we take Fourier Transforms
in t obtaining

)1I~ I +
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Since T is large, it is clear that the left side of (2 .4) is ? Ii; I . For the rest of (2 .4), we first observe
(using that T - z is bounded away from the integers and that T < 2( -c - i)) that

max(T, k)

	

always
W2

1 max(T2 ,k2 )

	

if k < 4 or k > 4T

If I~ 12
<_

	

1

	

II , then it follows immediately that the second term on the left side of (2 .4) is

N max(r, k) .

	

If I~ 1 2 >_ L1, then (using that T is large) the first term on the left side of (2 .4) is

> 3 r

	

Iwl

	

If 1 r < k < 4T, then this is clearly >max(T, k) . If k <_

	

4 T or k > 4T, then we have
seen that

	

Itt1? max(r, k), hence T

	

Iw1? max(r, k) also . So (2 .4) is proved, and therefore (2 .1)
is proved also . For (2.2) we argue similarly : by taking Fourier Transform in t we obtain

)11~1+I~-11 2 1 n
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and (2.2) follows. Equation (2.3) follows from (2.1) since

f
s

I VSY1 2 = -
fs
YASY = k(k + n - 2)

fs
Y2

so that 11osYllz =

	

k(k + n - 2) <

	

k(k +'r) < ~max(k, r)
kllYllz

Proofof the proposition.

	

Ifu is expanded in a series ofradial functions times spherical harmon-
ics, u(x) = Ek,jakj (Ix 1)Ykj (x) where (Yk . j) is an orthonormal basis for the degree k harmonics with
respect to integration over the unit sphere, then the terms 0(ak.j (Ix I) Yk,j (x)) are orthogonal with re-
spect to integration over any sphere S centered at 0, and similarly with the terms V(ak,j (Ix I)Ykj (x))

regarded as elements of L2 (S, (C") . This is a well-known fact verified by integration by parts. We
therefore have

111x1-Tu112

	

_< Max

	

11
Ix l -Tak .jYk,j 112

111x12-TAu112

	

kJ

	

111x12-T D (ak .jYkj) ll2 '
which is Nr -1 by the first part of the lemma. The first order inequality follows similarly using the
second part of the lemma.

Completion of proof of Theorem 1.1 .

	

We note first that the assumptions and Corollary 17.1 .4
of [3] also imply that limo r-k

f.'1"
Ipu12 = 0 for all k. In view of this, a standard limiting

argument shows that the inequalities in the proposition above are applicable to Ou for any 0 E

Co(U) . We may therefore carry out the Carleman argument in the following way : choose 17 small
enough so that [x : Ix I < nl C U, andchoose O E Co (U) with o (x) = 1 when Ix ( < q . Let v = Ou,
then 1 t,v I <

	

Iz11 IDv 1 + Ixz I v l + E with E E L2 and E supported in I {x : Ix 1 > q) . If r is as in the

proposition with (say) i7o = z, then we get I I Ix 1
2-T -'0v 112 <

C(6
+ A) I I Ix 1

2-T
t,v 112 + I I I x I'`

-T
E 112,

with C a fixed constant . If E < 2c and r is large enough, then it follows that IIIx12-Tov112 <
( 2-T

3111x1 2-TEII2, II
\In1)

	

ovIIL2(I .r :1_r~<_n1)

	

311E 112 .

	

Letting r

	

oo we get that v is harmonic

near 0. In view of the infinite order vanishing, it follows that v = 0 near 0, then since u satisfies a
nonsigular differential inequality away from the origin it follows that u vanishes identically .

	

0



ARemark on Unique Continuation

We now present an alternate approach to the counterexample of [1] .

(i) vk(Z) = Zk when IzI >_ 2, vk(Z) = Zk+1 when IzI < i .

(ii) I A Vk I < C IVVk I with C independent of k.

Vk(z) = re (Zk01(z)) + i im (Zk02(z))

rk-jaj
_ k-lal k-lal

I Da vk(Z)I

	

Cka~ k

	

rk 1 Z

	

< Cka~

	

IZI

l lko<j <k rj

	

l lko<j <k rj

k_lal
Thus in the region 2rk+l < IzI < 2rk where u is equal to vk, we have I DauI < 2k-1a1Cka

	

rk
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Theorem.

	

There is a smooth function u : R2 _-> cC which vanishes to infinite order at the origin
and satisfies I Du(z) I _< ~~, I I Vu(z) I for a certain constant C .

	

0

Remark.

	

It should be pointed out that [1] gives a specific value for the constant C and also states
several additional properties of u which we will not consider. On the other hand, the construction
below (which is related to the construction in [8]) would appear to be simpler.

Proof of the Theorem.

	

Wefirst show that if k E 7G+ is sufficiently large, then there is a smooth
function Vk : C

	

(C satisfying

Namely, choose two functions 01 : cC -* 1C and 02 : (C ~ (C such that 01 (z) and 02 (z) are both
equal to 1 when Iz I >_ 2 and to z when IzI <_ i and so that 01 and 02 have no common zeroes in the
region i < IzI <_ 2. Existence of such functions is obvious . Now let

Statement (i) is then clear and we must prove (ii) . A simple calculation shows that IVrevk(z)I >_
C -1

kjzjk-1
10, (Z)I - CIZIk when 2 < IzI < 2, and similarly IViMVk(z)I >_ C-1 kjZlk-l 102(z)I -

CIZIk . Since 01 and 02 do not vanish simultaneously, it follows that IVvk(z)I >_ C-1 kIzIk for large
k. Also a calculation with the product rule using that zk is harmonic shows that IOvk1 <_ CklzIk
and (ii) follows .

To finish the proof ofthe theorem, we choose a sequence {rkIkk'-k o of positive numbers, tending
rapidly to zero . Here ko should be large enough so that the function Vk above is defined for all
k > ko . We let ak =

7

	

rk

	

r . and vk(Z) = akvk(r 1 Z), and note that vk(Z) = Uk+l(Z) ifI lkp<j<- J
2rk+l < IzI < z . We now define a function u as follows : if IzI > 2rko , then u (z) = vko (z) ; if
k >_ ko and 2rk+1 < IzI < 2rk, then u(z) = vk(z); and finally u(0) = 0 . Then u is smooth on the
boundaries IzI = 2rk, k > ko since Uk and vk+1 are equal when IzI is slightly greater than 2rk+1 .
Furthermore, if (rd decrease sufficiently rapidly, then all derivatives of u approach 0 as z -> 0 .
Namely, we have I D'Vk(Z)I <_ Cka IZI

k-1a1 for suitable constants Cka, and therefore by scaling

l lko<j<k rj
If we take rk small enough compared to rk-1, then it is clear that this will approach 0 as k --> 00
(i .e ., as IzI --* 0) for all a, as claimed . It follows that u is smooth on R2 . Property (ii) above implies
by stalling that I A v, I < -~ I Vvn I, so I Au I < ~C~ I Vu I and the proof is complete .

[1]

	

Alinhac, S . and Baouendi, M.S . A counterexample to strong unique continuation for partial differential equations of
Schrodinger's type, preprint, (1993) .

[2]

	

Amrein, W.O ., Berthier, A.M., and Georgescu, V LP inequalities for the laplacian and unique continuation, Ann. Inst.
Fourier (Grenoble), 31, 153-168, (1981) .



604 Yifei Pan and Thomas Wolff

[3]

	

Hormander, L . The Analysis ofLinear Partial Differential Operators, Vol . 3, Springer-Verlag, Berlin, 1985 .
[4]

	

Pan, Y Unique continuation for Schrodinger operators with singular potentials, Comm . PDE, 17, 953-965, (1992) .
[5]

	

Regbaoui, R . Prolongement unique pour les operateurs de Schrodinger, thesis, Rennes, (1993) .
[6]

	

Reed, M . and Simon, B . Methods ofModern Mathematical Physics, Vol. 4, Academic Press, New York, 1979 .
[7]

	

Sogge, C . Fourier Integrals in Classical Analysis, Cambridge University Press, Cambridge, 1993 .
[8]

	

Wolff, T. A counterexample in a unique continuation problem, preprint, June 1993, to appear in Commun . Anal. Geom .

Received January 10, 1994

Indiana University-Purdue University at Fort Wayne, Fort Wayne, IN 46805
e-mail : pan@cvax.ipfw.inidiana .ed u

University of California at Berkeley
e-mail : wolf@cco.caltech .ed u


