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A Remark on Unique Continuation

By Yifei Pan and Thomas Wolff

ABSTRACT.  In this paper a unique continuation result is proved for differential inequality of second order:

1. Introduction

We prove the following result:

Theorem 1.1.

There is a numerical constant € > 0 making the following true. Assume that u is a function
defined on a (connected) neighborhood U of the origin in R" for some n > 2, which belongs to the
Sobolev space W** and satisfies the differential inequality

A

[Au| <
x|

€
5l + —|Vu|
” |x]

for some constant A. Assume also that

lim r_kf lul* =0
r—0 lx|=r

forallk < oc. Thenu = 0.

The proof will be done using the standard Carleman method and essentially well-known L?>
estimates (cf. [2, 6], and the application in [4]) and the result is perhaps not really new. However, it
does not appear in the literature and may be of some interest as representing the borderline situation
where such a statement is true. We now briefly discuss this. It is important to make a distinction
between real-valued functions « on the one hand, and complex- or vector-valued functions on the
other.

For real-valued functions, the situation is as follows: in [8] an example is constructed in any
dimension > 4 of a smooth real-valued function satistying |Au| < ]%]Vu[ for a certain constant
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C and vanishing to infinite order at the origin. On the other hand, in [4] it is shown that this is
impossible in the two-dimensional case, i.e., the theorem above is valid for any constant € in that
case, at least if A = 0.

In the complex case, the two-dimensional result just mentioned from [4] is no longer valid. This
is due to Alinhac and Baouendi; actually it was proved some years ago although not circulated until
recently [1]. On the other hand. since the proof of Theorem 1.1 just uses the Carleman method, it
works equally well in both cases.

We thank X. Huang who showed us the paper of [1], while we were writing up the present
paper for publication. After seeing [1], we worked out an alternate approach to their construction
which is included at the end of the paper. Paper [1] also indicates that an observation similar to our
Theorem 1.1 had been made by Regbaoui in his thesis [5], independently and somewhat earlier.

2. Proof of the theorem

Theorem 1.1 will be a corollary of the following Carleman inequality.

Proposition. Let ng be a positive constant. Assume thatt > n and dist(t — 5,7) = no. Let
u € Cg°(R"\0). Then

[l ], < €27 lxlP7 Aul,
[ix1"=Vul, < € [1x~* Aul,

—_

where C depends on ng only. Ll

As has already been mentioned, this proposition should be considered implicit in the literature,
e.g., in [2]. However, we give the simple proof. In what follows, we always assume that 7 satisfies
the conditions in the proposition. The proposition will be a corollary of the following lemma:

Lemma. IfY isa degree k spherical harmonic, b is a radial function belonging to Cg°(R"\0) and
u = bY, then

Jixt~"u], < Cmin (k! =) [P Au]
Jixtt =V, = € 1P~ Au]

with C depending on 1o only. L]

Proof. We will write x<y to mean that x < Cy where C is a constant depending only on 7.
Following an approach discussed, e.g., in [3, p. 14] and 7, p. 147] we identify R" with §"~! x R via
v =c'w.t € R we S Thisisanisometry if $"~! x R is given the metric ¢*' (df* +dw?) where
dw? is the usual metric on the sphere. The Laplacian on S xRise (;ifg +(n—2) 5“% +Ag) where

Ay is the Laplacian on the sphere, and the gradient satisfies |Vgi-1, gu| = c’:“’(l‘:;—‘;l2 + |V5u|3)’l£
where Vg is the gradient on the sphere. Furthermore, the volume element is "' dwdt where dw is
the volume element on the sphere. These assertions follow from the basic formulas of Riemannian
geometry, cf. [7]. Thus, what we have to prove is thatif ¥ is an eigenfunction of Ag with eigenvalue
—k(k +n — 2) and if b € C§"(R), then

e~ b)Y (@)

Loy S T e (£ 4+ (1= 24 + As) BOY @)

L2 (e" drdw)
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e Y @B | 2 rrgrany S [T (2 + (1 = 2% + As) DY @)

L2 (e drdw)
e~ b VY @ | 2iemaraen S | (42 + 1 — D4 + A5) GO @)

Li(eMdidw)

Equivalently (a(r) = e "3 b(1))

[la()Y (@)l 121w

n dq d "
—(r—§)n (o5
e ( %) +(n—2) - + A‘\) (e 2 a{r)Y(w))

|| (% -+ ('r — g) a{r)) Y(w)

S,min(k_'.r"'}

L2 (dtdw)

L2 (dtdw)

uy { d° d :
o D (— +(n—-2)—+ As) D 1a ()Y (w)
dr? dt ( ) L2 (dtdw)
la()VsY ()l L2¢d1de)
" dz d 2
L e 2 ( =+ (n—-2)—+ As) eD'at)Y ()
H dr? dr ( ) L2 (dtdew)

which are also equivalent to
la®Y (@)l 22 (drde)

<mintk~', 7

[arr+2(f = l)a,+((r_%)2+(n =y
(T—%) ~k(k+n—2))a:|}’

o+ (-3 )0

S

L2 (dtdw)

L2 (dtdw)

[au+2(r*l)a,+((t—;)Z—F(H—Z}(r—%)—k(k+n—2))a]Y

L3 (dtdw)
la(t)VsY (@)l 12 4rdew)

[{m+2(r—l)a;+((r—%)2+{n—2} (r—%)—k(k+n—2))a]y

In other words, we want to show that

<

~

L(dtdew)

a2y S min (k™' 7") N+ 20 + a2 e
n
a+(r——)a Slay + hay + pall 2 2
“ ? 2 L2(dt) lla t+ nallg (dt) 22
MY 122 ey
lall 2 S Naw + Aay + pall 2 ———5—— .
L2an= llan 4 LD 19T Il 124w

where A=2(r - 1), u=( -5 —-k)(r + % + k — 2). To prove (2.1), we take Fourier Transforms
in ¢ obtaining

lave + 2 + el 2apy 2 min (Mg1+ [ = £2]) el 2qar

Next we show that
A€l + | — £2| 2 max(z, k, € (2.4)
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Since 7 is large, it is clear that the left side of (2.4) is 2|&|. For the rest of (2.4), we first observe
(using that  — 7 is bounded away from the integers and that T < 2(r — %)) that

> max(z, k) always
MR\ max(®, k%) if k<5 or k>4t

If | < L‘j—' then it follows immediately that the second term on the left side of (2.4) is
Zmax(t, k). If €2 > L‘;—'. then (using that 7 is large) the first term on the left side of (2.4) is
> %r\/ﬁfl. If _111 < k < 4r, then this is clearly 2 max(z, k). If k < ;'{r or k > 41, then we have
seen that /[;z]> max(t, k), hence t4/iz|= max(z, k) also. So (2.4) is proved, and therefore (2.1)
is proved also. For (2.2) we argue similarly: by taking Fourier Transform in r we obtain

_ MEI+ | — (€17 n
lai +Aa; + pallp2qy 2 min ——————— "a’ ¥ (t . _) aHLfcm

geR €| +T—% 2
max(t, |§]) n
> ROAMES BT i
~ MREro-giImT ("= 2) 2
n
> _
~ ”a, * (1’ Z)H L2(d1)
and (2.2) follows. Equation (2.3) follows from (2.1) since
f IVsY|* = —[ YAsY =k(k+n— 2)[ ) e
5 s 5
so that [z = VA& +n —2) < VEK+71) < vV2max(k, 1) O

Proof of the proposition. If « is expanded in a series of radial functions times spherical harmon-
ics, u(x) = Ly jay;(|x|)Ye;(x) where {¥} ;) is an orthonormal basis for the degree k harmonics with
respect to integration over the unit sphere, then the terms A (ag ; (|x[) ¥y, ;(x)) are orthogonal with re-
spect to integration over any sphere § centered at 0, and similarly with the terms V(ay_; (|x[) ¥, j(x))
regarded as elements of L2(S, C"). This is a well-known fact verified by integration by parts. We
therefore have
Iei~"ul, l1x1~"ax. Ye. [,
flxiP=raul, = % [xP-r A (. jYe )|,

which is <z~! by the first part of the lemma. The first order inequality follows similarly using the
second part of the lemma. L]

Completion of proof of Theorem 1.1. We note first that the assumptions and Corollary 17.1.4
of [3] also imply that lim, .or~* [, _ |Vu|?> = 0 for all k. In view of this, a standard limiting
argument shows that the inequalities in the proposition above are applicable to ¢u for any ¢ €
C5P(U). We may therefore carry out the Carleman argument in the following way: choose n small
enoughsothat {x : |x| < n} C U,andchoose ¢ € C5~(U) with¢(x) = | when |x| < n. Letv = ¢u,
then |Av| < £ |Vu| + ﬁyiv[ + E with E € L? and E supported in |{x : x| > n). If T is as in the

=l
proposition with (say) 7o = 3, then we get ||[x[>"7 Av|[2 < C(e + 2)|l[x [>T Av||2 + |[|x[* T E||2,
with C a fixed constant. If ¢ < 1'? and t is large enough, then it follows that x> T Av||a <

2—1
31127 El. || (%) Avllz2(xixi<ny < 3IIEll2. Letting T — oo we get that v is harmonic
near 0. In view of the infinite order vanishing, it follows that v = 0 near O, then since u satisfies a
nonsigular differential inequality away from the origin it follows that « vanishes identically. L]
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We now present an alternate approach to the counterexample of [1].

Theorem. There is a smooth function u : R* — C which vanishes to infinite order at the origin
and satisfies |Au(z)| < Tl |Vu(z)| for a certain constant C. ]

Remark. It should be pointed out that [1] gives a specific value for the constant C and also states
several additional properties of u which we will not consider. On the other hand, the construction
below (which is related to the construction in [8]) would appear to be simpler. ]

Proof of the Theorem. We first show that if k € Z7 is sufficiently large, then there is a smooth
function v; : C — C satisfying

(i) vk (z) = z* when [z| > 2, vk(z) = z**! when |z] < 1.
(ii) [Avg| < C|Vvy| with C independent of k.

Namely, choose two functions ¢ : C —+ C and ¢p; : C — C such that ¢ (z) and ¢ (z) are both
equal to 1 when |z| > 2 and to z when |z| < 5 L and so that ¢, and ¢> have no common zeroes in the

reglon < |z| = 2. Existence of such functions is obvious. Now let

w(@) =re (1 (z)) +iim(4:()

Statement (i) is then clear and we must prove (ii). A simple calculation shows that |Vrev(z)| =
C 'Kzl "1(2)| — Clz|F when § < |z| < 2, and similarly [Vimue(z)| > C~'k|z[F! o (2)| —
C|z|*. Since ¢; and ¢ do not vanish simultaneously, it follows that |V (z)| > C~'k|z|* for large
k. Also a calculation with the product rule using that z¥ is harmonic shows that |Av| < Ckiz]"
and (ii) follows,

To finish the proof of the theorem, we choose a sequence {r }2° f—, Of positive numbers, tending
rapidly to zero. Here ky should be large enough so that the funcnon v above is defined for all

k = kyg. Weleta, = ﬁ and Ux(z) = apvi(r, .,) and note that U;(z) = Ug. () if
g=S=<kJ

2ri+y < lz| < 5. We now define a function u as follows: if |z| > 2riy, then u(z) = vy, (2); if
k = ko and 2r 1 < |z| < 2rg, then u(z) = vx(z); and finally #(0) = 0. Then u is smooth on the
boundaries |z| = 2r¢, k > ko since vy and U are equal when |z| is slightly greater than 2ry ;.
Furthermore, if {r;] decrease sufficiently rapidly, then all derivatives of u approach 0 as z — 0.
Namely, we have | D%v;(z)| < Cirq)z|*~1¢! for suitable constants Cg. and therefore by scaling

e el _y_[klel |z [k lel
D0 < Cra |2 et
nkngj-:k rj ﬂkog <kTj
J'« |ee|
Thus in the region 2r1| < |z| < 2r; where u is equal to T, we have | D%u| < 2k-1@lcy, -
kﬂf.jc J

If we take ry small enough compared to r;_1, then it is clear that this will approach 0 as k — o0
(ie., as |z| — 0) forall &, as claimed. It follows that u is smooth on R?. Property (ii) above implies
by scalling that [AD,| < ;- |iVu,,l so |Au| < & |Vu| and the proof is complete. L]
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