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Abstract. We study the singular behavior of kth angular derivatives of ana-
lytic functions in the unit disk in the complex plane C and positive harmonic
functions in the unit ball in Rn. Faá di Bruno’s formula is a crucial tool in our
proofs.

1. Introduction

In this paper, we study the singular behavior of kth angular derivatives of
analytic functions in the unit disk in the complex plane C and positive harmonic
functions in the unit ball in Rn. Faá di Bruno’s formula plays an important role
in our proofs.

Let D = {z : |z| < 1} ⊂ C and T = ∂D. Let ϕ : D → D be analytic and
ζ ∈ T. ζ is a fixed point of ϕ if limr→1 ϕ(rζ) = ζ. The angular derivative at ζ is
defined as ϕ′(ζ) = limr→1 ϕ

′(rζ). It is a consequence of the Julia Lemma [6] that
the angular derivative at the fixed point exists and that ϕ′(ζ) ∈ (0,∞]. When the
angular derivative of a fixed point is finite, what could be the limiting behavior of
the higher order angular derivatives? We describe an asymptotic property of the
higher order derivatives of the fixed point in the following theorem.

Theorem 1.1. Let ϕ(z) : D→ D be analytic. Let ζ ∈ T be a fixed point of ϕ with
angular derivative ϕ′(ζ) <∞. Then ∀` ≥ 2, the `-th angular derivative

(1) ϕ(`)(rζ) = o

(
1

(1− r)`−1

)
as r → 1.

The above is equivalent to limr→1(1 − r)`−1ϕ(`)(rζ) = 0 by the definition of the
little o notation.

The order `− 1 in Theorem 1.1 is sharp in the sense illustrated in the following
proposition and its proof.

Proposition 1.2. For any ε ∈ (0, 1) and ζ ∈ T, there exists an analytic function
ψ(z) : D→ D such that ζ is a fixed point of ψ, ψ′(ζ) <∞, and

(2) lim
r→1

(1− r)`−1−ε|ψ(`)(rζ)| > 0, ∀` ≥ 2.
1
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Furthermore, for any integer m ≥ 1, there exists an analytic function ψ(z) : D→
D such that ζ is a fixed point of ψ,

ψ(m−j)(ζ) <∞, ∀j ≥ 0,

ψ(m+k)(ζ) = ∞, ∀k ≥ 1,

lim
r→1

(1− r)m+k−1ψ(n+k)(rζ) = 0,

lim
r→1

(1− r)m+k−1−ε|ψ(m+k)(rζ)| > 0.

(3)

Results analogous to Theorem 1.1 can be obtained for positive harmonic func-
tions, as stated in the following theorem.

Theorem 1.3. Let u be a positive harmonic function in the unit ball Bn ⊂ Rn, n ≥
2. Let ζ ∈ Sn−1 = ∂Bn. Then for k ≥ 1,

(4) lim
r→1

{
(1− r)n+k−1 d

k

drk
u(rζ)

}
= 2

(n+ k − 2)!
(n− 2)!

lim
r→1

(1− r)n−1

1 + r
u(rζ).

Consequently,

(5) lim
r→1

{
(1− r)n+k−1 d

k

drk
u(rζ)

}
= 0

except possibly on a countable set of points on the sphere.

From the proof of Theorem 1.3 we can see that the results can be extended to
harmonic functions defined by complex measures. We may restate Theorem 1.3
as the following.

Theorem 1.3′. Let u be a harmonic function in the unit ball Bn, n ≥ 2 defined
by a complex measure µ on Sn−1 (with the Poisson kernel). Let ζ ∈ Sn−1. Then
for k ≥ 1,

lim
r→1

{
(1− r)n+k−1 d

k

drk
u(rζ)

}
= 2

(n+ k − 2)!
(n− 2)!

lim
r→1

(1− r)n−1

1 + r
u(rζ).

2. Proof of Theorem 1.1

First we prove a lemma needed for the proof of Theorem 1.1.

Lemma 2.1. Let f(z) be analytic and Ref(z) > 0 for z ∈ D. Let ζ ∈ T. Then

lim
r→1

(1− r)k+1f (k)(rζ) = ζ
k2k! lim

r→1

1− r

1 + r
f(rζ).
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Proof. The proof follows the steps similar to the proof of Theorem 1.3 in [2]. First
consider the case f(0) = 1. Since Ref(z) > 0, there exists a unique positive Borel
measure µ such that (ref. [3])

f(z) =
∫

T

1 + ηz

1− ηz
dµ(η), µ(T) = 1.

Direct calculation yields

f (k)(z) = 2k!
∫

T

ηk

(1− ηz)k+1
dµ(η), k ≥ 1.

Consider z = rζ. Since

lim
r→1

1− r

1− rζη
=

{
1, η = ζ;
0, η 6= ζ;

we have∫

T
lim
r→1

1− r

1 + r

1 + rζη

1− rζη
dµ(η) = µ({ζ}),

∫

T
lim
r→1

ηk(1− r)k+1

(1− rζη)k+1
dµ(η) = ζ

k
µ({ζ}), k ≥ 1.

By the Lebesgue’s dominated convergence theorem,

lim
r→1

{
1− r

1 + r
f(rζ)

}
= lim

r→1

{
1− r

1 + r

∫

T

1 + rζη

1− rζη
dµ(η)

}

=
∫

T
lim
r→1

{
1− r

1 + r

1 + rζη

1− rζη

}
dµ(η) = µ({ζ}),

and

lim
r→1

{
(1− r)k+1f (k)(rζ)

}
= lim

r→1

{
(1− r)k+12k!

∫

T

ηk

(1− ηz)k+1
dµ(η)

}

= 2k!
∫

T
lim
r→1

ηk(1− r)k+1

(1− rζη)k+1
dµ(η) = ζ

k
µ({ζ}), k ≥ 1.

Therefore,

lim
r→1

(1− r)k+1f (k)(rζ) = ζ
k2k! lim

r→1

1− r

1 + r
f(rζ).

If f(0) 6= 1, consider

g(z) =
f(z)− i Imf(0)

Ref(0)
,

we have

g(k)(z) =
f (k)(z)
Ref(0)

, g(0) = 1, Re(g(z)) =
Ref(z)
Ref(0)

> 0 for z ∈ D.

Thus

lim
r→1

(1− r)k+1 f
(k)(rζ)

Ref(0)
= ζ

k2k! lim
r→1

{
1− r

1 + r

f(rζ)− i Imf(0)
Ref(0)

}

= ζ
k2k! lim

r→1

{
1− r

1 + r

f(rζ)
Ref(0)

}
.
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Consequently,

lim
r→1

(1− r)k+1f (k)(rζ) = ζ
k2k! lim

r→1

1− r

1 + r
f(rζ).

¤

The following is the proof of Theorem 1.1.

Proof. By considering the analytic function ζϕ(ζz) : D → D, we only need to
prove Theorem 1.1 for the case ζ = 1 without loss of generality. Let

f(z) =
1 + ϕ(z)
1− ϕ(z)

, z ∈ D.

Then

Ref(z) > 0 and ϕ(z) =
f(z)− 1
f(z) + 1

, ∀z ∈ D.
Furthermore,

lim
r→1

1− r

1 + r
f(r) = lim

r→1

1− r

1 + r

1 + ϕ(r)
1− ϕ(r)

= lim
r→1

1− r

1− ϕ(r)
1 + ϕ(r)

1 + r
=

1
ϕ′(1)

.

Subsequently,

lim
r→1

(1− r)(f(r) + 1) =
2

ϕ′(1)
.

By Lemma 2.1,

lim
r→1

(1− r)k+1 f
(k)(r)
k!

=
1
k!

lim
r→1

1− r

1 + r
f(r) =

2
ϕ′(1)

for k ≥ 0.

Let h(z) =
z − 1
z + 1

, then ϕ(z) = h(f(z)). By Faà di Bruno’s formula [4],

ϕ(`)(r) =
d`

dz`
h(f(r)) =

∑ `!
m1! m2! · · ·m`!

h(m1+···+m`)(f(r))
∏

j

(
f (j)(r)
j!

)mj

where the sum is over all `-tuples (m1,m2, · · · ,m`) satisfying

1m1 + 2m2 + · · ·+ `m` = `.

Since

h(k)(z) =
2(−1)k+1k!
(z + 1)k+1

, k ≥ 1,

we have

ϕ(`)(r) =
∑ `!

m1! m2! · · ·m`!
2(−1)(m1+···+m`+1)(m1 + · · ·+m`)!

(f(r) + 1)m1+···+m`+1

∏

j

(
f (j)(r)
j!

)mj

= `!
∑ (−1)(m1+···+m`+1)(m1 + · · ·+m`)!

m1! m2! · · ·m`!
2

f(r) + 1

∏

j

(
f (j)(r)

(f(r) + 1)j!

)mj

.
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Notice that for each term of the sum, 1m1 + 2m2 + · · ·+ `m` = `, therefore

lim
r→1



(1− r)`−1 2

f(r) + 1

∏

j

(
f (j)(r)

(f(r) + 1)j!

)mj





= lim
r→1





2
(1− r)(f(r) + 1)

∏

j

(
(1− r)j+1f (j)(r)/j!
(1− r)(f(r) + 1)

)mj





=
2

2/ϕ′(1)

∏

j

(
2/ϕ′(1)
2/ϕ′(1)

)mj

= ϕ′(1).

Consequently,

lim
r→1

{
(1− r)`−1ϕ(`)(r)

}
= ϕ′(1)`!

∑ (−1)(m1+···+m`+1)(m1 + · · ·+m`)!
m1! m2! · · ·m`!

.

To see that the above sum is zero, consider the function

g(x) = x−1, g(k)(x) = k!(−1)kx−(k+1), g(k)(g(x)) = −k!(−x)k+1, x ∈ (0, 1].

Applying Faà di Bruno’s formula to x = g(g(x)), we have

d`

dx`
(x) =

d`

dr`
g(g(x))

=
∑ `!

m1! m2! · · ·m`!
g(m1+···+m`)(g(r))

∏

j

(
g(j)(r)
j!

)mj

= `!
∑ −(m1 + · · ·+m`)!(−x)m1+···+m`+1

m1! m2! · · ·m`!

∏

j

(
(−1)j

xj+1

)mj

= `!
∑ −(m1 + · · ·+m`)!(−1)m1+···+m`+1x

m1! m2! · · ·m`!
(−1)`

x`

=
(−1
x

)`−1

`!
∑ (−1)m1+···+m`+1(m1 + · · ·+m`)!

m1! m2! · · ·m`!
≡ 0, ∀x ∈ (0, 1], ` ≥ 2.

Hence,

lim
r→1

{
(1− r)`−1ϕ(`)(r)

}
= ϕ′(1)`!

∑ (−1)(m1+···+m`+1)(m1 + · · ·+m`)!
m1! m2! · · ·m`!

= ϕ′(1)(−1)`−1

(
d`

dx`
(x)

∣∣∣∣
x=1

)
≡ 0,

therefore

ϕ(`)(r) = o

(
1

(1− r)`−1

)
as r → 1, ∀` ≥ 2.

¤
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3. Proof of Proposition 1.2

The following lemma is needed for the proof of Proposition 1.2.

Lemma 3.1. Let α ∈ (0, 1),

f1(x) =
∞∑

n=0

a2n+1x
2n+1, a2n+1 =

(
α

2n+ 1

)
=
α(α− 1) · · · (α− 2n)

(2n+ 1)!
,

f2(x) =
∞∑

n=0

b2nx
2n, b2n =

(
α

2n

)
=
α(α− 1) · · · (α− 2n+ 1)

(2n)!
,

h(x) =
f1(x)
f2(x)

=
∞∑

n=0

cnx
n.

Then
c2n = 0, c2n+1 > 0, ∀n ≥ 0.

Proof. By the symmetry of f1 and f2,

h(−x) =
f1(−x)
f2(−x) = −f1(x)

f2(x)
= −h(x) =⇒ c2n = 0, ∀n ≥ 0.

Furthermore,

f1(x) = h(x)f2(x) =⇒ a2n+1 = c2n+1b0 + c2n−1b2 + · · ·+ c1b2n, ∀ n ≥ 0.

Since b0 = 1, we have

c2n+1 = a2n+1 − (c2n−1b2 + · · ·+ c1b2n), ∀n ≥ 0.

For n = 0, 1,

c1 = a1 = α > 0,

c3 = a3 − c1b2 =
α(α− 1)(α− 2)

3!
− α

α(α− 1)
2!

= α(α− 1)
(
−1

3

)
(α+ 1) > 0.

Now assume c2j−1 > 0 for j = 1, · · · , k for some k ≥ 1. Notice that for α ∈ (0, 1),

a2k+1 > 0, ∀k ≥ 0 and b2k < 0, ∀k ≥ 1.

Therefore
c2k+1 = a2k+1 − c2k−1b2 − · · · − c1b2k > 0,

because every term is positive. By induction, c2n+1 > 0, ∀n ≥ 0. ¤

The following is the proof of Proposition 1.2.

Proof. We prove (2) in Proposition 1.2 by constructing a function ψ such that ψ
(or its rotation) satisfies (2). First consider

ϕ(z) =
1− z

1 + z
, Reϕ(z) =

1− |z|2
|1 + z|2 > 0, z ∈ D.
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ϕ is its own inverse:

ϕ−1 = ϕ : ϕ(ϕ(z)) =
1− 1− z

1 + z

1 +
1− z

1 + z

= z.

For α ∈ (0, 1), let g(z) = zα, and define

f = ϕ−1 ◦ g ◦ ϕ =
1−

(
1− z

1 + z

)α

1 +
(

1− z

1 + z

)α , D→ H→ D.

Then
f(0) = 0, f(1) = 1, f ′(z) 6= 0.

Therefore f : D→ D is univalent and z = 1 is a fixed point of f . Considering the
Taylor expansions

(1 + z)α =
∞∑

n=0

(
α

n

)
zn, (1− z)α =

∞∑

n=0

(−1)n

(
α

n

)
zn,

we have

f(z) =
(1 + z)α − (1− z)α

(1 + z)α + (1− z)α
=

∞∑

n=0

(
α

2n+ 1

)
z2n+1

∞∑

n=0

(
α

2n

)
z2n

=
∞∑

n=0

cnz
n =

∞∑

n=0

c2n+1z
2n+1.

Define

F (z) =
∫ z

0
f(w)dw =

∫ z

0

∞∑

n=0

c2n+1w
2n+1dw =

∞∑

n=0

c2n+1

2n+ 2
z2n+2, z ∈ D.

By Lemma 3.1, c2n+1 > 0 for n ≥ 0. Therefore |F (z)| achieves its maximum on
the boundary at z = 1:

|F (z)| ≤
∞∑

n=0

c2n+1

2n+ 2
|z|2n+2 ≤

∞∑

n=0

c2n+1

2n+ 1
|z|2n+1 ≤

∞∑

n=0

c2n+1

2n+ 1
= F (1) = max

|z|≤1
|F (z)|.

By the maximal principle, the function

ψ(z) =
F (z)
F (1)

, z ∈ D

maps D into D. Furthermore, z = 1 is a fixed point of ψ,

ψ(1) = 1, ψ′(1) =
F ′(1)
F (1)

=
f(1)
F (1)

6= ∞, ψ′′(1) =
f ′(1)
F (1)

= ∞,

and

ψ(k)(r) =
f (k−1)(r)
F (1)

, k ≥ 2.
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Notice that

d

dz

(
1− z

1 + z

)α

= α

(
1− z

1 + z

)α−1 −2
(1 + z)2

= α

(
1− z

1 + z

)α−1

ϕ′(z),

and

d2

dz2

(
1− z

1 + z

)α

= α(α− 1)
(

1− z

1 + z

)α−2 (
ϕ′(z)

)2 + α

(
1− z

1 + z

)α−1

ϕ′′(z),

etc. Using the big O notation for z near 1, we may write

dk

dzk

(
1− z

1 + z

)α

= k!
(
α

k

)(
1− z

1 + z

)α−k (
ϕ′(z)

)k +O
(
(1− z)α−k+1

)
.

Applying the little o notation, we have

dk

dzk
g(ϕ(r)) =

dk

dzk

(
1− z

1 + z

)α ∣∣∣
z=r

= k!
(
α

k

)(
1− r

1 + r

)α−k ( −2
(1 + r)2

)k

+O
(
(1− r)α−k+1

)

= k!
(
α

k

)
(1− r)α−k(−1)k 2k

(1 + r)α+k
+ o

(
(1− r)α−k

)

By Faà di Bruno’s formula [4],

f (`)(r)=
d`

dz`
ϕ(g(ϕ(r))) =

∑ `!
m1! m2! · · ·m`!

ϕ(m1+···+m`) (g(ϕ(r))
∏

j




dk

dzk
g(ϕ(r))

j!




mj

where the sum is over all `-tuples (m1,m2, · · · ,m`) satisfying

1m1 + 2m2 + · · ·+ `m` = `.

Notice that

ϕ(k)(z) = 2(−1)kk!(1+z)−(k+1), ϕ(k)(g(ϕ(r)) = 2(−1)kk!
(

1 +
(

1− r

1 + r

)α)−(k+1)

,

and

∏

j




dk

dzk
g(ϕ(r))

j!




mj

=
∏

j

{(
α

j

)
(1− r)α−j(−1)j 2j

(1 + r)α+j
+ o

(
(1− r)α−j

)}mj

= (−1)m1+···+m`(1− r)α−`

(
2

1 + r

)` ∏

j

{(
α

j

)
(−1)j−1

(1 + r)α

}

+ o
(
(1− r)α−`

)
,
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where each term in the product

(
α

j

)
(−1)j−1

(1 + r)α
=
α(α− 1) · · · (α− j + 1)(−1)j−1

j! (1 + r)α
=
α(1− α) · · · (j − 1− α)

j! (1 + r)α
> 0

for α ∈ (0, 1), and the little o term is obtained by the fact that

lim
r→1

∏
j(1− r)α−j

(1− r)α−`
= lim

r→1

(1− r)(m1+···+m`)α−`

(1− r)α−`
= lim

r→1
(1− r)(m1+···+m`−1)α = 0.

Since for given α ∈ (0, 1) and ` ≥ 1,

∑ `! 2(m1 + · · ·+m`)!
m1! m2! · · ·m`!

(
1 +

(
1− r

1 + r

)α)−(m1+···+m`+1)

is bounded and > 0 as r → 1, we have

f (`)(r)=
∑ `!2(m1 + · · ·+m`)!

m1! m2! · · ·m`!

(
1 +

(
1− r

1 + r

)α)−(m1+···+m`+1)

(1− r)α−`

(
2

1 + r

)` ∏

j

(
α

j

)
(−1)j−1

(1 + r)α

+ o
(
(1− r)α−`

)
.

Consequently

lim
r→1

(1− r)`−αf (`)(r) =
∑ `! 2(m1 + · · ·+m`)!

m1! m2! · · ·m`!

∏

j

(
α

j

)
(−1)j−1

2α
= C`,α > 0,

where C`,α is a constant for any given α ∈ (0, 1) and ` ≥ 1. Therefore we have

lim
r→1

(1− r)n−1−αψ(n)(r) = lim
r→1

(1− r)n−1−α f
(n−1)(r)
F (1)

=
Cn−1,α

F (1)
> 0, ∀n ≥ 2.

We have shown that (2) in Proposition 1.2 holds for ψ with ζ = 1. For an arbitrary
ζ ∈ T, (2) is satisfied by ζ̄ψ(ζz).

To prove (3), we show that for any m ≥ 1, there exists a function ψm such that
ψm (or its rotation) satisfies the conditions in (3). Let

ψm(z) =
Fm(z)
Fm(1)

, Fj(z) =
∫ z

0

Fj−1(w)
Fj−1(1)

dw, 1 ≤ j ≤ m,

where

F1 = F, F0 = f, ψ1 = ψ



10

are the functions used in the above proof of (2). By the construction,

F1(z) =
∞∑

n=0

c2n+1

2n+ 2
z2n+2

|F1(z)| =
∞∑

n=0

c2n+1

2n+ 2
|z|2n+2 ≤

∞∑

n=0

c2n+1

2n+ 2
= F1(1),

F2(z) =
∫ z

0

F1(w)
F1(1)

dw =
1

F1(1)

∞∑

n=0

c2n+1

(2n+ 2)(2n+ 3)
z2n+3,

|F2(z)| =
1

F1(1)

∞∑

n=0

c2n+1

(2n+ 2)(2n+ 3)
|z|2n+3

≤ 1
F1(1)

∞∑

n=0

c2n+1

(2n+ 2)(2n+ 3)
= F2(1),

etc. For j = 1, 2, · · · ,m,

Fj(z) =
∫ z

0

Fj−1(w)
Fj−1(1)

dw =
1

Fj−1(1)

∞∑

n=0

c2n+1

(2n+ 2)(2n+ 3) · · · (2n+ 1 + j)
z2n+1+j ,

|Fj(z)| =
1

Fj−1(1)

∞∑

n=0

c2n+1

(2n+ 2)(2n+ 3) · · · (2n+ 1 + j)
|z|2n+1+j

≤ 1
Fj−1(1)

∞∑

n=0

c2n+1

(2n+ 2)(2n+ 3) · · · (2n+ 1 + j)
= Fj(1).

By the maximal principle, the functions

ψm(z) =
Fm(z)
Fm(1)

, ψm(1) = 1

map D into D. Furthermore,

ψ(k)
m (1) =

F
(k)
m (1)
Fm(1)

=
F

(k−1)
m−1 (1)

Fm(1)Fm−1(1)
=

F
(k−2)
m−2 (1)

Fm(1)Fm−1(1)Fm−2(1)

=
Fm−k(1)∏k

j=0 Fm−j(1)
<∞, k = 1, 2, · · · ,m,

especially,

ψ(m)
m (1) =

f(1)∏m
j=1 Fj(1)

<∞.

Notice that

ψ(m)
m (z) =

ψ(z)∏m
j=1 Fj(1)

<∞.
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Consequently the proven result (2) implies (3) for ζ = 1. For an arbitrary ζ ∈ T,
(3) is satisfied by ζ̄ψm(ζz).

This completes the proof of Proposition 1.2. ¤

4. Proof of Theorem 1.3

We need several lemmas to prove Theorem 1.3.

Lemma 4.1. If ϕ(x) = x2 + ax+ b, then for any m ≥ 0,

(6)
d`

dx`
h(ϕ(x)) =





m∑

j=0

(2m)!
(2j)!(m− j)!

h(m+j)(ϕ)(ϕ′)2j , ` = 2m;

m∑

j=0

(2m+ 1)!
(2j + 1)!(m− j)!

h(m+j+1)(ϕ)(ϕ′)2j+1, ` = 2m+ 1.

Proof. Again by Faà di Bruno’s formula [4],

d`

dx`
h(ϕ(x)) =

∑ `!
m1! m2! · · ·m`!

h(m1+···+m`)(ϕ(x))
∏

j

(
ϕ(j)(x)
j!

)mj

where the sum is over all `-tuples (m1,m2, · · · ,m`) satisfying

1m1 + 2m2 + · · ·+ `m` = `.

Since ϕ′′ ≡ 2, ϕ(j) = 0 for j ≥ 3, the product in Faà di Bruno’s formula simplifies
to

∏

j

(
ϕ(j)(x)
j!

)mj

= ϕ′(x)m1 (with 00 = 1),

which implies

(7)
d`

dx`
h(ϕ(x)) =

∑

m1+2m2=`

`!
m1! m2!

h(m1+m2)(ϕ)(ϕ′)m1 ,

where

m2 =

{
m− m1

2 , ` = 2m;
m− m1−1

2 , ` = 2m+ 1.

Relabeling the summation index by j,

j =

{
m1
2 , ` = 2m;

m1−1
2 , ` = 2m+ 1,

then m1 +m2 =

{
m+ j, ` = 2m;
m+ j + 1, ` = 2m+ 1.

Replacing m1 and m2 by j and m, (7) becomes (6).
¤
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Lemma 4.2. Let f(r) =
1

|rζ − η|n , r ∈ [0, 1), ζ, η ∈ Sn−1, n ≥ 2. Let θr ∈ [0, π]

denote the angle between the n-vectors ζ and rζ − η for any r ∈ [0, 1]. Then

f (`)(r) =





1
|rζ − η|n+`

m∑

j=0

(cos θr)2j(2m)!
(2j)!(m− j)!

(−1)m+j n(n+ 2) · · · (n+ 2m+ 2j − 2)
2m−j

, ` = 2m;

r − ζ · η
|rζ − η|n+`+1

m∑

j=0

(cos θr)2j(2m+ 1)!
(2j + 1)!(m− j)!

(−1)m+j+1 n(n+ 2) · · · (n+ 2m+ 2j)
2m−j

, ` = 2m+ 1.

Proof. Let h(x) = x−n/2, ϕ(r) = |rζ − η|2. Then

ϕ′(r) =
d

dr

n∑

j=1

(rζj − ηj)2 = 2(r − ζ · η), ϕ′′(r) = 2, ϕ(j)(r) = 0 for j ≥ 3,

h(α)(x) =
(
−n

2

)(
−n

2
− 1

)
· · ·

(
−n

2
− (α− 1)

)
x−

n
2
−α

= (−1)αn(n+ 2) · · · (n+ 2(α− 1))
2α

1
x(n+2α)/2

.

Denote ζ = (ζ1, · · · , ζn), η = (η1, · · · , ηn) and ζ · η =
∑

j ζjηj the Euclidean inner
product of ζ and η. Notice that

(r − ζ · η)2 = |rζ · ζ − ζ · η|2 = |ζ · (rζ − η)|2 = |rζ − η|2 cos2 θr,

therefore

h(m+j)(ϕ(r))(ϕ′(r))2j = (−1)m+j n(n+ 2) · · · (n+ 2(m+ j − 1))
2m+j

22j(r − ζ · η)2j

|rζ − η|n+2m+2j

=
(cos θr)2j

|rζ − η|n+2m
(−1)m+j n(n+ 2) · · · (n+ 2m+ 2j − 2)

2m−j
,

and

h(m+j+1)(ϕ(r))(ϕ′(r))2j+1 = (−1)m+j+1n(n+ 2) · · · (n+ 2(m+ j))
2m+j+1

22j+1(r − ζ · η)2j+1

|rζ − η|n+2m+2j+2

=
(rζ − η)(cos θr)2j

|rζ − η|n+2m+2
(−1)m+j+1n(n+ 2) · · · (n+ 2m+ 2j)

2m−j
.

Applying Lemma 4.1 to f(r) = h(ϕ(r)), the result of Lemma 4.2 follows. ¤

Notation. Denote

Cn,k = (−1)k2 (C(n, k) + kC(n, k − 1)) for k ≥ 1, n ≥ 2,

where

(8) C(n, `)=





m∑

j=0

(2m)!
(2j)!(m− j)!

(−1)m+jn(n+ 2) · · · (n+ 2m+ 2j − 2)
2m−j

, `=2m;

m∑

j=0

(2m+ 1)!
(2j + 1)!(m− j)!

(−1)m+j+1n(n+ 2) · · · (n+ 2m+ 2j)
2m−j

, `=2m+1;
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for m ≥ 0, with C(n, 0) = 1.

Lemma 4.3. Let ζ, η ∈ Sn−1, n ≥ 2. Then for k ≥ 1,

lim
r→1

{
(1− r)n+k−1 d

k

drk

(
1− r2

|rζ − η|n
)}

=

{
0, ζ 6= η;
Cn,k, ζ = η.

Proof. Let g(r) = 1− r2, f(r) = |rζ − η|−n. Then

g′(r) = −2r, g′′(r) = −2 and g(j)(r) ≡ 0, j ≥ 3.

For k ≥ 1,

dk

drk

(
1− r2

|rζ − η|n
)

=
dk

drk
(f(r)g(r)) =

k∑

j=0

(
k

j

)
f (k−j)(r)g(j)(r)

=
(
k

0

)
f (k)(r)g(r) +

(
k

1

)
f (k−1)(r)g′(r) +

(
k

2

)
f (k−2)(r)g′′(r)

= (1− r2)f (k)(r)− 2rkf (k−1)(r)− k(k − 1)f (k−2)(r)

with the convention that f (α)(r) = g(α)(r) ≡ 0 for α < 0. Let

C(n, `, θ)=





m∑

j=0

(cos θ)2j(2m)!
(2j)!(m− j)!

(−1)m+jn(n+ 2) · · · (n+ 2m+ 2j − 2)
2m−j

, `=2m;

m∑

j=0

(cos θ)2j(2m+ 1)!
(2j + 1)!(m− j)!

(−1)m+j+1n(n+ 2) · · · (n+ 2m+ 2j)
2m−j

, `=2m+1;

Then
C(n, `) = C(n, `, 0), ` ≥ 1, n ≥ 2.

From Lemma 4.2,

f (`)(r) =
A(`, r, ζ, η)
|rζ − η|n+`

C(n, `, θr), where A(`, r, ζ, η) =





1, ` even;
r − ζ · η
|rζ − η| , ` odd.

Thus

lim
r→1

{
(1− r)n+k−1 d

k

drk

(
1− r2

|rζ − η|n
)}

= lim
r→1

{
(1− r)n+k−1

[
(1− r2)f (k)(r)− 2rkf (k−1)(r)− k(k − 1)f (k−2)(r)

]}

= lim
r→1

{
(1− r2)(1− r)n+k−1A(k, r, ζ, η)

|rζ − η|n+k
C(n, k, θr)

− 2rk(1− r)n+k−1A(k − 1, r, ζ, η)
|rζ − η|n+k−1

C(n, k − 1, θr)

− k(k − 1)(1− r)n+k−1A(k − 2, r, ζ, η)
|rζ − η|n+k−2

C(n, k − 2, θr)
}
.
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Notice that |A(k, r, ζ, η)| ≤ 1 is bounded, θr → 0 as r → 1, and C(n, `, 0) is
bounded, hence the last term → 0 as r → 1. In addition,

lim
r→1

1− r

|rζ − η| =

{
0, ζ 6= η;
1, ζ = η;

and lim
r→1

(1− r)A(k, r, ζ, η)
|rζ − η| =

{
0, ζ 6= η;
(−1)k, ζ = η;

so we have

lim
r→1

{
(1− r)n+k−1 d

k

drk

(
1− r2

|rζ − η|n
)}

= lim
r→1

{
(1 + r)(1− r)n+kA(k, r, ζ, η)

|rζ − η|n+k
C(n, k, θr)

− 2rk(1− r)n+k−1A(k − 1, r, ζ, η)
|rζ − η|n+k−1

C(n, k − 1, θr)
}

=

{
0, ζ 6= η;
2(−1)kC(n, k, 0)− 2(−1)k−1kC(n, k − 1, 0), ζ = η;

=

{
0, ζ 6= η;
2(−1)kC(n, k)− 2(−1)k−1kC(n, k − 1) = Cn,k, ζ = η.

¤

Lemma 4.4. Cn,k = 2
(n+ k − 2)!

(n− 2)!
for k ≥ 1, n ≥ 2.

We postpone the proof of Lemma 4.4 until after the proof of Theorem 1.3.

Now we prove Theorem 1.3.

Proof. For any x ∈ Bn, x = rζ, ζ ∈ Sn−1, n ≥ 2, we may write

u(rζ) =
∫

Sn−1

1− r2

|rζ − η|ndµ(η).

By Lemma 4.3, for any k ≥ 1,

∫

Sn−1

lim
r→1

{
(1− r)n+k−1 d

k

drk

(
1− r2

|rζ − η|n
)}

dµ(η) =

{
0, µ({ζ}) = 0;
Cn,k µ({ζ}), µ({ζ}) > 0.

By the interchangeability of differentiation and integration when the integral of
the derivative converges and the Lebesgue’s dominated convergence theorem, we
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have

lim
r→1

{
(1− r)n+k−1 d

k

drk
u(rζ)

}
= lim

r→1

{
(1− r)n+k−1 d

k

drk

∫

Sn−1

1− r2

|rζ − η|ndµ(η)
}

= lim
r→1

{
(1− r)n+k−1

∫

Sn−1

dk

drk

(
1− r2

|rζ − η|n
)
dµ(η)

}

=
∫

Sn−1

lim
r→1

{
(1− r)n+k−1 d

k

drk

(
1− r2

|rζ − η|n
)}

dµ(η)

= Cn,k µ({ζ}).
By Theorem 1.1 in [5] (or by going through the proof of Lemma 4.3 with k = 0),

lim
r→1

{
(1− r)n−1u(rζ)

}
= 2µ({ζ}).

Thus

lim
r→1

{
(1− r)n−1

1 + r
u(rζ)

}
= µ({ζ})

and

lim
r→1

{
(1− r)n+k−1 d

k

drk
u(rζ)

}
= Cn,k lim

r→1

{
(1− r)n−1

1 + r
u(rζ)

}
.

So (4) holds by Lemma 4.4. Consequently (5) holds because each positive harmonic
function in the unit ball corresponds to a positive measure on the sphere (ref. [1]),
and that the set of non-zero point mass of the measure is countable.

This completes the proof of Theorem 1.3. ¤

The following is the proof of Lemma 4.4.

Proof. Lemma 4.4 is proved by induction. By the definition,

C(n, 0) = 1,

C(n, 1) =
(−1)1 n

20
= −n,

C(n, 2) =
2! (−1)1 n

21
+

2! (−1)2n(n+ 2)
2! 20

= −n+ n(n+ 2) = n(n+ 1).

For k = 1 and 2,

Cn,1 = (−1)1 2(C(n, 1) + C(n, 0)) = −2(−n+ 1) = 2
(n+ 1− 2)!

(n− 2)!
,

Cn,2 = (−1)2 2(C(n, 2) + 2C(n, 1)) = 2(n(n+ 1)− 2n) = 2
(n+ 2− 2)!

(n− 2)!
.

For any k, assuming

Cn,k = (−1)k2 (C(n, k) + kC(n, k − 1)) = 2
(n+ k − 2)!

(n− 2)!
,
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we will prove

Cn,k+1 = (−1)k+12 (C(n, k + 1) + (k + 1)C(n, k)) = 2
(n+ k − 1)!

(n− 2)!
.

Using the induction assumption, the above equation can be written as

(−1)k+1 (C(n, k + 1) + (k + 1)C(n, k)) =
(n+ k − 1)(n+ k − 2)!

(n− 2)!
= (n+ k − 1)Cn,k

= (n+ k − 1)(−1)k (C(n, k) + kC(n, k − 1)) ,

so it is sufficient to show

(9) − (C(n, k + 1) + (k + 1)C(n, k)) = (n+ k − 1) (C(n, k) + kC(n, k − 1))

Write

C(n, k) =
∑

j

C(n, k, j).

Notice that

C(n, 2m+ 2, j) =
(m+ 1)(2j + 1)
m+ 1− j

C(n, 2m+ 1, j), 0 ≤ j ≤ m;

C(n, 2m+ 2, j + 1) = −(m+ 1)(n+ 2m+ 2j + 2)
j + 1

C(n, 2m+ 1, j), 0 ≤ j ≤ m.

Therefore,

C(n, 2m+ 2) =
m+1∑

j=0

(
m+ 1− j

m+ 1
+

j

m+ 1

)
C(n, 2m+ 2, j)

=
m∑

j=0

m+ 1− j

m+ 1
C(n, 2m+ 2, j) +

m+1∑

j=1

j

m+ 1
C(n, 2m+ 2, j)

=
m∑

j=0

m+ 1− j

m+ 1
C(n, 2m+ 2, j) +

m∑

j=0

j + 1
m+ 1

C(n, 2m+ 2, j + 1)

=
m∑

j=0

(2j + 1)C(n, 2m+ 1, j)−
m∑

j=0

(n+ 2m+ 2j + 2)C(n, 2m+ 1, j)

= −
m∑

j=0

(n+ 2m+ 1)C(n, 2m+ 1, j)

= −(n+ 2m+ 1)C(n, 2m+ 1) for m ≥ 0.
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Similarly,

C(n, 2m+ 1, j) = −(2m+ 1)(n+ 2m+ 2j)
2j + 1

C(n, 2m, j), 0 ≤ j ≤ m;

C(n, 2m+ 1, j) =
(2m+ 1)(2j + 2)

2m− 2j
C(n, 2m, j + 1), 0 ≤ j ≤ m− 1.

Consequently,

C(n, 2m+ 1) =
m∑

j=0

2j + 1
2m+ 1

C(n, 2m+ 1, j) +
m−1∑

j=0

2m− 2j
2m+ 1

C(n, 2m+ 1, j)

= −
m∑

j=0

(n+ 2m+ 2j)C(n, 2m, j) +
m−1∑

j=0

(2j + 2)C(n, 2m, j + 1)

= −
m∑

j=0

(n+ 2m+ 2j)C(n, 2m, j) +
m∑

j=0

(2j)C(n, 2m, j)

= −
m∑

j=0

(n+ 2m)C(n, 2m, j)

= −(n+ 2m)C(n, 2m) for m ≥ 0.

The above relations between the adjacent C(n, `)’s can be summarized as

C(n, `) = −(n+ `− 1)C(n, `− 1) for ` ≥ 1.

Applying the above equation repeatedly, for any k ≥ 1 we have

L.H.S. of (9) = −C(n, k + 1)− (k + 1)C(n, k)
= (n+ k)C(n, k)− (k + 1)C(n, k) = (n− 1)C(n, k),

and

R.H.S. of (9) = (n+ k − 1) (C(n, k) + kC(n, k − 1))
= (n+ k − 1)C(n, k) + k(n+ k − 1)C(n, k − 1)
= (n+ k − 1)C(n, k)− kC(n, k) = (n− 1)C(n, k).

Therefore (9) holds for all k ≥ 1. This completes the proof of Lemma 4.4. ¤
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