ADDENDUM TO: WEIGHTED PROJECTIVE SPACES AND A GENERALIZATION OF EVES' THEOREM

ADAM COFFMAN

Last update: March 4, 2022.
MSC 2010: Primary 51N15; Secondary 05B30, 14E05, 14N05, 51A20, 51M25, 51N05, 51N35, 68T45

7. Updates

A version of the Remainder Theorem used in the Proof of Theorem 16, Section 3 , is more specifically attributed to Sun Zi , as in [LA].

There are reviews in MR and Zbl for this article: [C].
An older version of [C] is on the arXiv: arxiv.org:1204.1686
My contact information has changed; my current home page can be found at:
http://users.pfw.edu/CoffmanA/

8. More Examples for Section 2.2

Example 16. The monomial map $\mathbf{f}: \mathbb{R}_{*}^{2} \rightarrow \mathbb{R}^{2}:\left(z_{0}, z_{1}\right) \mapsto\left(z_{0}^{2}, z_{1}\right)$ induces a well-defined map $f: \mathbb{R} P(2,2) \rightarrow \mathbb{R} P(2,1)$ as in Lemma 8 , but the induced map is not onto. The point $[-1: 1]_{\mathbf{q}}$ is not in the image of f; there is no $\left(z_{0}, z_{1}\right) \in \mathbb{R}_{*}^{2}$ such that $\left(z_{0}^{2}, z_{1}\right) \sim_{\mathbf{q}}(-1,1)$.
Example 17. For $m \in \mathbb{N}$ and two weights:

$$
\begin{aligned}
\mathbf{q} & =\left(q_{0}, q_{1}, q_{2}, \ldots, q_{n}\right) \\
\mathbf{p} & =\left(q_{0}, m q_{1}, m q_{2}, \ldots, m q_{n}\right)
\end{aligned}
$$

another situation in which the map

$$
\begin{aligned}
\mathbf{f} & : \mathbb{K}_{*}^{n+1} \rightarrow \mathbb{K}^{n+1} \\
& :\left(z_{0}, z_{1}, z_{2}, \ldots, z_{n}\right) \mapsto\left(z_{0}^{m}, z_{1}, z_{2}, \ldots, z_{n}\right)
\end{aligned}
$$

as in Lemma 8 , defines an onto map $f: \mathbb{K} P\left(q_{0}, m q_{1}, \ldots, m q_{n}\right) \rightarrow \mathbb{K} P\left(q_{0}, \ldots, q_{n}\right)$ is the case where $\mathbb{K}=\mathbb{R}$ and q_{0} is odd. For $w_{0} \geq 0$, make the same choices mentioned in the Proof of Lemma 8, and for $w_{0}<0$, choose $\lambda=-1$, any z_{0} with $z_{0}^{m}=(-1)^{q_{0}} w_{0}=\left|w_{0}\right|$, and $z_{k}=w_{k} /(-1)^{q_{k}}$ for $k=1, \ldots, n$.
Example 18. Let $\mathbb{K}=\mathbb{R}$, and consider the weights \mathbf{p} and \mathbf{q} as in Lemmas 8 and 10 and Example 17. Here we assume m is odd but make no assumption on q_{0}. Then the map

$$
\mathbf{f}\left(z_{0}, z_{1}, z_{2}, \ldots, z_{n}\right)=\left(z_{0}^{m}, z_{1}, z_{2}, \ldots, z_{n}\right)
$$

from Lemma 8 induces a well-defined, onto map

$$
f: \mathbb{R} P(\mathbf{p}) \rightarrow \mathbb{R} P(\mathbf{q})
$$

It is also one-to-one: the algebra problem is to solve the same equations (5), (6) from the Proof of Lemma 10, for a real μ in terms of real $\mathbf{z}, \mathbf{z}^{\prime}, \lambda$. Given $\lambda \neq 0$, let μ be the unique real solution of $\mu^{m}=\lambda$. Then, for $j=1, \ldots, n, \mu^{m q_{j}} z_{j}=\lambda^{q_{j}} z_{j}=z_{j}^{\prime}$, and $\left(\mu^{q_{0}} z_{0}\right)^{m}=\lambda^{q_{0}} z_{0}^{m}=\left(z_{0}^{\prime}\right)^{m} \Longrightarrow \mu^{q_{0}} z_{0}=z_{0}^{\prime}$.
Example 19. Let $\mathbb{K}=\mathbb{R}$, and consider the weights \mathbf{p} and \mathbf{q} as in Lemmas 8 and 10 and Example 17. Here we assume m is even, q_{0} is odd, and all q_{1}, \ldots, q_{n} are even. Then the map

$$
\mathbf{f}\left(z_{0}, z_{1}, z_{2}, \ldots, z_{n}\right)=\left(z_{0}^{m}, z_{1}, z_{2}, \ldots, z_{n}\right)
$$

from Lemma 8 induces a well-defined, onto map

$$
f: \mathbb{R} P(\mathbf{p}) \rightarrow \mathbb{R} P(\mathbf{q})
$$

It is also one-to-one: the algebra problem is to solve (5), (6), for a real μ in terms of real $\mathbf{z}, \mathbf{z}^{\prime}, \lambda$. Given $\lambda \neq 0$, the equation $\mu^{m}=|\lambda|$ has exactly two real solutions, $\left\{\mu_{1}=|\lambda|^{1 / m}, \mu_{2}=-|\lambda|^{1 / m}\right\}$. Then, for $k=1,2, j=1, \ldots, n$,

$$
\mu_{k}^{m q_{j}} z_{j}=|\lambda|^{q_{j}} z_{j}=\lambda^{q_{j}} z_{j}=z_{j}^{\prime}
$$

For $k=1,2,\left(\mu_{k}^{q_{0}} z_{0}\right)^{m}=|\lambda|^{q_{0}} z_{0}^{m}=\left|\lambda^{q_{0}} z_{0}^{m}\right|=\left(z_{0}^{\prime}\right)^{m}$, so the set

$$
\left\{\mu_{1}^{q_{0}} z_{0}, \mu_{2}^{q_{0}} z_{0}=-\mu_{1}^{q_{0}} z_{0}\right\}
$$

is contained in the set $\left\{z_{0}^{\prime},-z_{0}^{\prime}\right\}$, and one of the two roots is the required μ satisfying $\mu^{q_{0}} z_{0}=z_{0}^{\prime}$.

Example 20. For an even number p_{1}, the function

$$
\mathbf{f}\left(z_{0}, z_{1}\right)=\left(z_{0}^{p_{1}}, z_{1}\right)
$$

induces a well-defined, onto map

$$
f: \mathbb{R} P\left(1, p_{1}\right) \rightarrow \mathbb{R} P(1,1)
$$

as in Lemma 8. The induced map is not one-to-one:

$$
\mathbf{f}(0,1)=(0,1) \sim_{\mathbf{q}} \mathbf{f}(0,-1)=(0,-1)
$$

but $(0,1) \not \chi_{\mathbf{p}}(0,-1)$.

9. More Examples for Section 3

Example 21. Example 6 shows that the space $\mathbb{R} P\left(1, p_{1}\right)$ is reconstructible. Even though the map $h_{01}\left(\left[z_{0}: z_{1}\right]_{\mathbf{p}}\right)=\left[z_{0}^{p_{1}}: z_{1}\right]$ is not globally one-to-one when p_{1} is even, as shown in Example 20, it is one-to-one when restricted to $D_{\mathbf{p}}$.

The following two examples are special cases of Theorem 17, on real weighted projective spaces.
Example 22. If one of the numbers p_{0}, p_{1} is odd, then the space $\mathbb{R} P\left(p_{0}, p_{1}\right)$ is reconstructible. WLOG, let p_{0} be odd. For the axis projection $c_{01}\left(\left[z_{0}: z_{1}\right]_{\mathbf{p}}\right)=$ $\left[z_{0}^{p_{1}}: z_{1}^{p_{0}}\right]$, the following diagram is commutative. The label on the left arrow means that the indicated map is induced by the polynomial map $\mathbb{R}_{*}^{2} \rightarrow \mathbb{R}^{2}:\left(z_{0}, z_{1}\right) \mapsto$ $\left(z_{0}, z_{1}^{p_{0}}\right)$.

The map on the left is globally one-to-one as in Example 18, and takes $D_{\left(p_{0}, p_{1}\right)}$ to $D_{\left(1, p_{1}\right)}$. The lower right map is one-to-one on $D_{\left(1, p_{1}\right)}$: either by Example 18 for odd p_{1}, or by Example 21 for even p_{1}.
Example 23. If both p_{0} and p_{1} are even, then $\mathbb{R} P\left(p_{0}, p_{1}\right)$ is not reconstructible. Consider an axis projection induced by $\mathbf{c}_{01}\left(z_{0}, z_{1}\right)=\left(z_{0}^{a}, z_{1}^{b}\right)$. By Lemma 15 we may assume that a and b are not both even. If a and b are both odd, then

$$
\mathbf{c}_{01}(1,1)=(1,1) \sim_{(1,1)} \mathbf{c}_{01}(-1,-1)=(-1,-1)
$$

but $(1,1) \not \chi_{\mathbf{p}}(-1,-1)$, so c_{01} is not one-to-one. If a is even and b is odd (the remaining case being similar), then

$$
\mathbf{c}_{01}(1,-1)=(1,-1) \sim_{(1,1)} \mathbf{c}_{01}(-1,-1)=(1,-1)
$$

but $(1,-1) \not_{\mathbf{p}}(-1,-1)$, so again c_{01} is not one-to-one.

References

[C] A. Coffman, Weighted projective spaces and a generalization of Eves' Theorem, Journal of Mathematical Imaging and Vision (3) 48 (2014), 432-450; together with a 2-page online-only version of this addendum. MR 3171423, Zbl 06316454.
[LA] L. Y. Lam and T. S. Ang, Fleeting Footsteps. Tracing the Conception of Arithmetic and Algebra in Ancient China. Revised ed. World Scientific Publishing Co., Inc., River Edge, NJ, 2004. MR2092881 (2005d:01005), Zbl 1062.01005.

Department of Mathematical Sciences, Purdue University Fort Wayne, 2101 E. Coliseum Blvd., Fort Wayne, IN 46805-1499

Email address: CoffmanA@pfw.edu

