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Abstract

For a certain class of configurations of points in space, Eves’ The-
orem gives a ratio of products of distances that is invariant under
projective transformations, generalizing the cross-ratio for four points
on a line. We give a generalization of Eves’ theorem, which applies to
a larger class of configurations and gives an invariant with values in
a weighted projective space. We also show how the complex version
of the invariant can be determined from classically known ratios of
products of determinants, while the real version of the invariant can
distinguish between configurations that the classical invariants cannot.

1 Introduction

Eves’ Theorem ([E]) is a generalization of two basic geometric results:
Ceva’s Theorem for triangles in Euclidean geometry, and the projective in-
variance of the cross-ratio in projective geometry. Both results, and more
generally Eves’ Theorem, assign an invariant ratio of products of distances
to certain types of configurations of points in space.

The example shown in Figure 1, where eleven points lie on five lines,
forming twelve directed segments, gives the general idea of Eves’ Theorem.
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Figure 1: A configuration of 11 points, 5 lines, and 12 directed segments in
the real Euclidean plane, to which Eves’ Theorem applies.

The ratio of Euclidean signed distances

AB · CD · EF ·GH · IJ ·KE

BC ·DE · FG ·HI · JK · EA

is called (by Eves) an “h-expression,” meaning that each point A, . . . , K oc-
curs equally many times in the numerator and denominator (for example,
E occurs twice), and each line determined by one of the twelve segments

also occurs equally many times (for example,
←→
FG =

←→
HI occurs twice in the

numerator and twice in the denominator). The statement of Eves’ Theorem
is that the value of an h-expression is an invariant under projective trans-
formations of the plane. Related identities for products of distances have
been known in projective geometry since at least [P], but it is convenient to
attribute the above formulation to Eves.

The notion of h-expression can also be more visually conveyed in terms
of coloring the configuration — an idea demonstrated at a 2011 talk by Marc
Frantz [F1]. Each point in the configuration of Figure 1 is an endpoint of an
equal number of red and black segments, and, dually, each line contains an
equal number of red and black segments. Then the ratio of the product of
red lengths to the product of black lengths is Eves’ invariant.

Eves’ Theorem, when stated in a purely projective way (using homoge-
neous coordinates, not Euclidean distances, as in Example 9) is itself a special
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case of a family of invariant ratios of products of determinants of homoge-
neous coordinates for points in projective space over a field K. These ratios
were well-known in 19th century Invariant Theory ([B], [C], [Salmon]), but
have been more recently used (and, sometimes, re-discovered) in projective
geometry applied to computational topics such as vision and photogramme-
try, or automated proofs ([BB], [CRG], [F2], [RG]).

Eves’ Theorem can be stated in terms of a function, where the input is a
configuration of points S in projective space KPD, and the output is a ratio,
i.e., an element of the projective line KP 1; the content of the Theorem is that
the ratio is well-defined (independent of certain choices made in specifying the
configuration) and also invariant under projective transformations. Our new
construction, Theorem 32, generalizes the target to a “weighted projective
space”

KP (p) = KP (p0, . . . , pn),

so the projective line is the special case KP (1, 1). In Section 4, we give a
unified treatment of the configurations to which Theorem 32 applies, by a
weighting, coloring, and indexing scheme. A configuration S of points in the
projective space KPD that satisfies a condition (Definition 28), depending on
the weight vector p = (p0, . . . , pn), is assigned an element Ep(S) ∈ KP (p),
an invariant under “morphisms” of the configuration (Definition 26), which
generalize projective transformations. The number of colors is n + 1, so the
classical case is the assignment of Eves’ ratio E(1,1)(S) ∈ KP (1, 1) to some
two-color configurations S, and the new weighted invariants apply to a larger
category of multi-color configurations.

In Section 2 we review the definition and some elementary properties of
weighted projective spaces — these properties are well-known in the complex
case, but the real case is different in some ways we intend to exploit, so we
are careful to present all the necessary details. Section 3 introduces a new
notion of “reconstructibility” for a weighted projective space; the two main
results are that complex weighted projective spaces are all reconstructible,
and that some real weighted projective spaces are not. In Section 5 we
review a connection between real projective and Euclidean geometry, and
state a Euclidean version of Theorem 32. Section 6 applies the notion of
reconstructibility to show that in the complex case, the weighted invariant
Ep of a multi-color configuration can be determined by finding the (classical)
E(1,1) ratios for a finite list of related two-color configurations. However, in
the real case, Examples 13, 14, 15 give pairs of configurations with different
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weighted invariants in RP (p), but which cannot be distinguished by applying
the reconstruction method to the E(1,1) ratios in RP 1.

2 Weighted projective spaces

This Section reviews the definition of weighted projective spaces and some
of their elementary properties. For the complex case, these properties (in
particular, Example 2 and Lemmas 6 and 10), are well-known; we give ele-
mentary proofs with the intent of showing how the complex case is different
from the relatively lesser-known real case. Only the objects’ set-theoretic
properties are of interest here, not their structure as topological or analytic
spaces, algebraic varieties, or orbifolds. The applications in subsequent Sec-
tions use only R and C, but to start in a general way, let K be any field.

2.1 The basic construction

The ingredients are n ∈ N, the vector space Kn+1, and a weight p =
(p0, p1, . . . , pn) ∈ N

n+1. Denote K
n+1
∗ = K

n+1 \ {0}, and for elements
z = (z0, . . . , zn), w = (w0, . . . , wn) ∈ Kn+1

∗ , define a relation ∼p so that
z ∼p w means there exists λ ∈ K1

∗ such that:

w0 = λp0z0, w1 = λp1z1, . . . , wn = λpnzn.

This is an equivalence relation on Kn+1
∗ because K is a field.

Definition 1. Let KP (p) denote the set of equivalence classes for ∼p.

KP (p) = KP (p0, . . . , pn)

is the weighted projective space corresponding to the weight p.

Notation 2. Let πp : Kn+1
∗ → KP (p) denote the canonical quotient map,

defined so that πp(z) is the equivalence class of z. It is convenient to use
the same letter for elements of the weighted projective space, and square
brackets for weighted homogeneous coordinates:

πp(z) = z = [z0 : z1 : . . . : zn]p.

Example 1. For p = (1, 1, . . . , 1), KP (1, 1, . . . , 1) is the usual projective
space, denoted KP n, with homogeneous coordinates π : (z0, . . . , zn) �→ [z0 :
. . . : zn] (omitting the subscripts).
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Example 2. For K = C and p = (p, p, . . . , p), z and w ∈ Cn+1
∗ are

∼p-equivalent if and only if they are related by non-zero complex scalar
multiplication, so the following sets are exactly equal: CP (p, p, . . . , p) =
CP (1, 1, . . . , 1) = CP n.

Example 3. For K = R and p = (2k+1, 2k+1, . . . , 2k+1), z and w ∈ Rn+1
∗

are ∼p-equivalent if and only if they are related by non-zero real scalar multi-
plication, so the following sets are exactly equal: RP (2k+1, 2k+1, . . . , 2k+
1) = RP (1, 1, . . . , 1) = RP n.

Example 4. For K = R and p = (2k, 2k, . . . , 2k), the restriction of πp to
the unit sphere Sn ⊆ Rn+1

∗ is a one-to-one function onto RP (p). It is not
inconvenient to identify the sets: RP (2k, 2k, . . . , 2k) = Sn.

2.2 Mappings

Here we present some properties of rational maps between weighted projec-
tive spaces, in an elementary, set-theoretic way, directly using Definition 1 (in
contrast with an algebraic-geometric approach, as in [Delorme], [Dolgachev]).
The elementary proofs of Lemmas 6 and 10 are provided as preparation for
similar methods to be used in the Proof of Theorem 16.

Let K and F be fields, and let p ∈ Nn+1, q ∈ NN+1 be weights. Consider
any function f : Kn+1

∗ → FN+1. Given z ∈ Kn+1
∗ , suppose f has the following

two properties: first,

f(z) = (w0, w1, . . . , wN) �= 0, (1)

and second, for any λ ∈ K1
∗, there exists μ ∈ F1

∗ so that

f(λp0z0, λ
p1z1, . . . , λ

pnzn) = (μq0w0, μ
q1w1, . . . , μ

qNwN). (2)

Then f also has these two properties at every point z′ ∈ Kn+1
∗ in the same

equivalence class as z, and if z′ ∼p z, then f(z′) ∼q f(z). Let U ⊆ Kn+1
∗ be

the set of points where f has the two properties, and let U = πp(U). Then
we say “f induces a map from KP (p) to FP (q) which is well-defined on the
set U ,” and denote the induced map, which takes πp(z) ∈ U to πq(f(z)), by
f : z �→ f(z). For z /∈ U , f(z) is undefined.

Lemma 3. For f , f , and U as above, and an element w ∈ FP (q), let
w ∈ FN+1

∗ be any representative w ∈ w = πq(w). Then, the inverse image
of w is:

f−1(w) = πp({z ∈ U : f(z) ∼q w}). (3)
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Proof. The inverse image is

f−1(w) = {z ∈ KP (p) : z ∈ πp(U) and f(z) = w}.

The first condition is that ∃x ∈ U : z = πp(x), and the second condition is
that the ∼q-equivalence class of w is the same as the ∼q-equivalence class of
f(z) for some z ∈ z. So,

f−1(w)

= {z : (∃x ∈ U : x ∈ z) and (∃z ∈ z : f(z) ∼q w)} .

From (3), denote the RHS set (depending on w but not the choice of w):

Aw = πp({z ∈ U : f(z) ∼q w})
= {z ∈ KP (p) : ∃z ∈ U : (πp(z) = z and f(z) ∼q w)} .

If z ∈ Aw, letting x = z shows z ∈ f−1(w). Conversely, if z ∈ f−1(w), then
∃x ∈ U : x ∈ z and ∃z ∈ z : f(z) ∼q w. Since x ∈ U has properties (1) and
(2), and z ∼p x ∈ z, z also has the two properties, so z ∈ U, and z ∈ Aw.

Similar reasoning with the above data leads to the following equivalences:

Proposition 4. A map f : KP (p) → FP (q) which is well-defined on the
set U is an onto map if and only if: for every w ∈ FN+1

∗ , there exists z ∈ U
such that f(z) ∼q w.

Proposition 5. A map f : KP (p)→ FP (q) which is well-defined on the set
U is a one-to-one map if and only if: for all z, z′ ∈ U, if f(z) ∼q f(z′), then
z ∼p z′.

The following Lemma generalizes the well-known equality of sets

CP (q1, . . . , qn) = CP (mq0, . . .mqn).
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Lemma 6. For m ∈ N and two weights:

q = (q0, q1, q2, . . . , qn),

p = (mq0, mq1, mq2, . . . , mqn),

let f be the inclusion

f : K
n+1
∗ → K

n+1

: (z0, z1, z2, . . . , zn) �→ (z0, z1, z2, . . . , zn).

The induced map f : KP (p) → KP (q) is well-defined and onto. In the
following three cases,

• K = C; or

• K = R and m is odd; or

• K = R and all the integers q0, . . . , qn are even,

f is the identity map and the sets KP (p) and KP (q) are equal.

Proof. f clearly satisfies (1) at every point z ∈ Kn+1
∗ , and also (2) with

μ = λm, so U = Kn+1
∗ . The induced map f : KP (p) → KP (q) is well-

defined on U = KP (p), and is an onto map as in Proposition 4. f is also
one-to-one if it satisfies the condition of Proposition 5: for all z, z′ ∈ Kn+1

∗ ,
if (z′0, . . . , z

′
n) = (λq0z0, . . . , λ

qnzn) for some λ ∈ K1
∗, then there exists μ ∈

K1
∗ such that (z′0, . . . , z

′
n) = (μmq0z0, . . . , μ

mqnzn). So, if K and m have the
property that ∀λ �= 0 ∃μ : μm = λ, then f is one-to-one. This happens for
the first two cases: K = C and any m, and also for K = R and odd m.
Another situation in which f is one-to-one is the case where K = R and all
the integers q0, . . . , qn are even: for any λ �= 0, let μ = |λ|1/m, then for
k = 0, . . . , n, μmqk = (|λ|1/m)mqk = |λ|qk = λqk .

Because in each of the three cases, we have z ∼p z′ ⇐⇒ z ∼q z′, the
equivalence classes are the same, f is the identity map, and these sets are
equal: KP (p) = KP (q).
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Theorem 7. For any weight q = (q0, . . . , qn), let

p = (2q0, . . . , 2qn).

Let f : RP (p)→ RP (q) be induced by the inclusion

f : Rn+1
∗ → R

n+1 : z �→ z

as in Lemma 6. If qj is odd, then the restriction of f to the set πp({z : zj �=
0}) is two-to-one.

Proof. f is well-defined and onto by Lemma 6. Take any w ∈ Rn+1
∗ with

wj �= 0, and let w = πq(w). By Lemma 3,

f−1(w) = πp({z ∈ R
n+1
∗ : z ∼q w})

= πp({(μq0w0, . . . , μ
qnwn) : μ ∈ R

1
∗}).

Two points (μq0
1 w0, . . . , μ

qn
1 wn), (μ

q0
2 w0, . . . , μ

qn
2 wn) are ∼p-equivalent if and

only if there exists λ ∈ R1
∗ such that

μq0
1 w0 = λ2q0μq0

2 w0, . . . , μ
qn
1 wn = λ2qnμqn

2 wn. (4)

For wj �= 0 and qj odd, μ
qj
1 wj = λ2qjμ

qj
2 wj ⇐⇒ λ2 = μ1/μ2, which is equiv-

alent to the system of equations (4). So, the two points are ∼p-equivalent
if and only if μ1 and μ2 have the same sign: there are two ∼p-equivalence
classes.

Example 5. If all the qj are odd, then f as in Theorem 7 is globally
two-to-one. An important special case is the map f : RP (2, 2, . . . , 2) →
RP (1, 1, . . . , 1), which is exactly the well-known two-to-one covering Sn →
RP n, the “antipodal identification.” An example with the qj not all odd
is the map f : RP (4, 2) → RP (2, 1). For this f , f−1([1 : z1](2,1)) = {[1 :
z1](4,2), [1 : −z1](4,2)}, a two-element set for z1 �= 0, but a singleton for z1 = 0.

Lemma 8. For m ∈ N and two weights:

q = (q0, q1, q2, . . . , qn),

p = (q0, mq1, mq2, . . . , mqn),

let f be the monomial map

f : K
n+1
∗ → K

n+1

: (z0, z1, z2, . . . , zn) �→ (zm0 , z1, z2, . . . , zn).
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If K = C, or if K = R and m is odd, then the induced map

f : KP (p)→ KP (q)

is well-defined and onto.

Proof. For any K and m, f clearly satisfies (1) at every point z ∈ Kn+1
∗ , and

also (2) with μ = λm, so U = Kn+1
∗ , and the induced map f : KP (p) →

KP (q) is well-defined on U = KP (p). f is an onto map if it satisfies the
condition of Proposition 4: for every w = (w0, . . . , wn) ∈ K

n+1
∗ , there exist z

and λ such that
(w0, . . . , wn) = (λq0zm0 , . . . , λqnzn).

Under the hypothesis that K = C, or K = R and m is odd, then given w,
one can choose λ = 1, any z0 with zm0 = w0, and zk = wk for k = 1, . . . , n.

Lemma 9. For w0 ∈ C1
∗, and N , P ∈ N, suppose

{ζ0, . . . , ζN−1}

are the N distinct complex roots of the equation ζN = w0. Then the number
of distinct elements in the set

{ζP0 , . . . , ζPN−1}

is lcm(P,N)/P .

Proof. In polar form, w0 = ρeiθ for a unique ρ > 0, θ ∈ [0, 2π). By re-labeling
if necessary,

ζPj = ρP/Nei(θ+2πj)P/N

for j = 0, . . . , N − 1. Let j be the smallest integer such that jP/N ∈ N. It
follows that j = lcm(P,N)/P , the elements ζPk are distinct for k = 0, . . . , j−
1, and ζPk = ζPk+j.
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Lemma 10. For m ∈ N and two weights:

q = (q0, q1, q2, . . . , qn),

p = (q0, mq1, mq2, . . . , mqn),

let f be the monomial map

f : C
n+1
∗ → C

n+1

: (z0, z1, z2, . . . , zn) �→ (zm0 , z1, z2, . . . , zn).

If the integers m and q0 are relatively prime, then the induced map f :
CP (p)→ CP (q) is invertible.

Proof. The map f is well-defined and onto by Lemma 8. To establish the
one-to-one property as in Proposition 5, we have to show that for any z,
z′ ∈ Cn+1

∗ , if there exists λ �= 0 such that

(λq0zm0 , λq1z1, . . . , λ
qnzn) = ((z′0)

m, z′1, . . . , z
′
n), (5)

then there exists μ �= 0 so that

(μq0z0, μ
mq1z1, . . . , μ

mqnzn) = (z′0, z
′
1, . . . , z

′
n). (6)

The algebra problem is: given λ, z, z′, find μ. If z′0 = 0, then z0 = 0 and we
can pick any μ satisfying μm = λ. If z′0 �= 0, then z0 �= 0, and there are m
different roots {μk : k = 0, . . . , m − 1} satisfying μm

k = λ. For j = 1, . . . , n,
each μk satisfies μ

mqj
k zj = λqjzj = z′j . Each μk also satisfies

(μq0
k )

m = μmq0
k = λq0 = (z′0)

m/zm0 = (z′0/z0)
m,

so each element of the set R1 = {μq0
0 , . . . , μ

q0
m−1} is also one of the m elements

of the set R2 = {ξ : ξm = (z′0/z0)
m}. One of the elements of R2 is z′0/z0.

Using the assumption that m and q0 are relatively prime and Lemma 9, R1

has m distinct elements, so there is some k such that μq0
k = z′0/z0. This μk is

the μ required in (6), to show f is one-to-one.

For any space of the form CP (q0, mq1, . . . , mqn), if q0 and m are not
already relatively prime, then a common factor can be divided out as in
Case 1 of Lemma 6 without changing the set CP (p), and then Lemma 10
can be applied.
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3 Reconstructibility

This Section introduces a new notion, Definition 14, describing a property
that a weighted projective space may or may not have, in terms of certain
KP 1-valued rational functions onKP (p). This property ofKP (p) is not used
in Section 4 when the generalized Eves expression Ep is defined, but rather
only in Section 6, to understand how the invariant Ep(S) ∈ KP (p) of a
multi-color configuration S is related to the invariants E(1,1) ∈ KP 1 of some
two-color configurations. Whether the Ep invariant is determined by the
E(1,1) invariants turns out to depend on whether KP (p) is “reconstructible,”
an intrinsic property whose definition is motivated by, but does not depend
on, and is not required by, the topic of invariants of configurations.

Given a weight p, and two indices i < j in {0, 1, . . . , n}, consider numbers
aij , bij ∈ N and a mapping cij : K

n+1
∗ → K2 defined by the formula

cij(z0, z1, . . . , zi, . . . , zj , . . . , zn) = (z
aij
i , z

bij
j ).

The function cij satisfies (1) on the complement of the set {z : zi = zj = 0},
and if the products are equal: piaij = pjbij , then it also satisfies (2) for
weights p and q = (1, 1).

Definition 11. For p, aij , bij as above, the function cij induces a map

cij : KP (p) → KP 1 :

[z0 : z1 : . . . : zi : . . . : zj : . . . : zn]p �→
[
z
aij
i : z

bij
j

]
,

which is well-defined on the complement of the set

{[z0 : . . . : zn]p : zi = zj = 0}.
We call such a map an axis projection.

Lemma 12. Given a weight p and indices i, j, let

�ij = lcm(pi, pj).

Then
hij : KP (p)→ KP 1 : z �→ [z

�ij/pi
i : z

�ij/pj
j ] (7)

is an axis projection. For any axis projection cij as in Definition 11, there
exists kij ∈ N such that cij factors as cij = Gij ◦ hij, where the function
Gij : KP 1 → KP 1 is given by the formula

Gij : [w0 : w1] �→ [w
kij
0 : w

kij
1 ].
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Proof. Gij is well-defined on KP 1, by checking (1) and (2). �ij is the least
common multiple of pi and pj. By elementary number theory ([O] Ch. 3),
any other common multiple is divisible by �ij , so there exists kij so that
piaij = pjbij = kij�ij.

Notation 13. Let I be the set of index pairs {(i, j) : 0 ≤ i < j ≤ n}. Let
Dp ⊆ KP (p) be the set of points where all the coordinates are non-zero:
{z0 �= 0, z1 �= 0, . . . , and zn �= 0}. Given axis projections cij for (i, j) ∈ I,

let
∏

cij denote the map

KP (p) → KP 1 ×KP 1 × · · · ×KP 1

z �→ (c01(z), c02(z), . . . , cij(z), . . . , cn−1,n(z)) .

The target space in the above Notation has one KP 1 factor for each of
the elements of I (#I = n(n + 1)/2), so the output formula assumes some
ordering of I and lists an axis projection for every index pair (i, j). The map∏

cij is well-defined at every point in Dp, and possibly at some points not

in Dp.

Definition 14. A weighted projective space

KP (p) = KP (p0, . . . , pn)

is reconstructible means: there exist axis projections such that the restriction

of the map
∏

cij to the domain Dp is one-to-one.

The idea is to try to use a list of unweighted ratios,

cij(z) ∈ KP 1, (i, j) ∈ I,

as a coordinatization of the space KP (p). A reconstructible space is one
where any point z (with non-zero coordinates) can be uniquely “reconstructed”
from a list of its values under some axis projections. The use of the domain
Dp in the Definition omits consideration of points z with a zero coordinate;
as already seen in Example 5, such points can exhibit exceptional behavior,
and we are interested in properties of generic points.
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Lemma 15. Given p, the following are equivalent.

1. KP (p) is reconstructible;

2. for the axis projections hij from (7), the map
∏

(i,j)∈I
hij is one-to-one on

Dp;

3. there exist a subset J ⊆ I and axis projections cij so that
∏

(i,j)∈J
cij is

one-to-one on Dp;

4. there exists a subset J ⊆ I so that
∏

(i,j)∈J
hij is one-to-one on Dp.

Proof. The implications 2 =⇒ 1 =⇒ 3 and 2 =⇒ 4 =⇒ 3 are logically
trivial. To show 3 =⇒ 2 , given cij for J ⊆ I, pick any axis projections cij
for the remaining indices not in J ; then∏

(i,j)∈J
cij = F ◦

∏
(i,j)∈I

cij ,

where F : (KP 1)#I → (KP 1)#J forgets entries with non-J indices. Then, by
Lemma 12, there exist factorizations cij = Gij ◦ hij , so

∏
(i,j)∈J

cij = F ◦

⎛
⎝ ∏

(i,j)∈I
Gij

⎞
⎠ ◦

⎛
⎝ ∏

(i,j)∈I
hij

⎞
⎠

(where the product map
∏

Gij : (KP 1)#I → (KP 1)#I is defined in the

obvious way for the composition to make sense). If
∏

hij is not one-to-one

on Dp, then
∏

(i,j)∈J
cij is also not one-to-one on Dp.

Example 6. For any field K, the space KP (1, p1, . . . , pn) is reconstructible.
Only n axis projections are needed for a one-to-one product map: let J =
{(0, j) : j = 1, . . . , n}, and consider h0j(z0, z1, . . . , zn) = (z

pj
0 , zj). If

z = πp(z), z′ = πp(z
′) ∈ Dp

satisfy h0j(z) ∼(1,1) h0j(z
′) for j = 1, . . . , n, then there exist λ0j �= 0 such

that (z′0)
pj = λ0jz

pj
0 and z′j = λ0jzj. Let μ = z′0/z0 (using the assumption

that z0 �= 0); then μz0 = z′0 and μpjzj = (z′0/z0)
pjzj = λ0jzj = z′j , so z ∼p z′.
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Theorem 16. For K = C and any weight p, CP (p) is reconstructible.

Proof. Case 1: n = 1.
Any complex weighted projective line CP (q0, q1) is reconstructible; in

fact, a stronger result holds: there is an axis projection which is one-to-one
on the entire space. Let g01 = gcd(q0, q1) and �01 = lcm(q0, q1), so q0 = g01p0,
q1 = g01p1, and �01 = g01p0p1, where p0, p1 are relatively prime. The map

h01 : C
2
∗ → C

2 : (z0, z1) �→ (z
�01/q0
0 , z

�01/q1
1 ) = (zp10 , zp01 )

induces an axis projection h01 as in (7), so that the following diagram is
commutative.

CP (q0, q1)
h01 ��

Id
��

CP 1

CP (p0, p1)
(z

p1
0 ,z1)

�� CP (p0, 1)

(z0,z
p0
1 )

��

The left arrow, labeled Id, represents the identity map as in Case 1 of Lemma
6 with m = g01. The map indicated by the lower arrow is induced by the
polynomial map C2

∗ → C2 : (z0, z1) �→ (zp10 , z1). Both maps, indicated by the
lower and right arrows, are (globally) one-to-one by Lemma 10, so we can
conclude h01 is one-to-one on the entire domain CP (q0, q1).

Case 2: n > 1.
We use a product of axis projections as in statement 2 . from Lemma 15.

For (i, j) ∈ I, recall the notation �ij = lcm(pi, pj), and fix

aij = �ij/pi, bij = �ij/pj, (8)

and gij = gcd(pi, pj). Consider the product map∏
(i,j)∈I

hij : [z0 : . . . : zn]p �→
∏

(i,j)∈I
[z

aij
i : z

bij
j ]. (9)

To show this product map is one-to-one on Dp, suppose we are given z, z′

(with no zero components), and constants λij ∈ C1
∗ such that λij(z

′
i)
aij = z

aij
i

and λij(z
′
j)

bij = z
bij
j . The algebra problem is then to find μ ∈ C1

∗ such that

μpjz′j = zj for j = 0, . . . , n. (10)
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There are p0 distinct elements {μk : k = 0, . . . , p0−1} satisfying μp0
k = z0/z

′
0.

For each k and for any j = 1, . . . , n,

(μ
pj
k z′j)

b0j = μ
pjb0j
k (z′j)

b0j = μ
p0a0j
k (z′j)

b0j

=

(
z0
z′0

)a0j

(z′j)
b0j = λ0j(z

′
j)

b0j = z
b0j
j . (11)

By Lemma 9,

#{μpj
k z′j : k = 0, . . . , p0 − 1}

= #{μpj
k } =

lcm(p0, pj)

pj
=

�0j
pj

= b0j ,

which is equal to the number of roots in {ξ : ξb0j = z
b0j
j }, and so for each

j = 1, . . . , n, there exists some index kj such that μ
pj
kj
z′j = zj . At this point

we note that if all the k1, . . . , kn index values were the same, μ = μkj would
satisfy (10) and we would be done. One case where this happens in a trivial
way is p0 = 1; this was already observed in Example 6.

The rest of the Proof does not attempt to show the kj values are equal to
each other; instead we use their existence to establish the existence of some
other index x such that μx is the required solution of (10).

For i, j = 1, . . . , n with i < j, μki and μkj satisfy:

(μpi
ki
z′i)

aij = μ
�ij
ki
(z′i)

aij = z
aij
i = λij(z

′
i)

aij ,

(μ
pj
kj
z′j)

bij = μ
�ij
kj
(z′j)

bij = z
bij
j = λij(z

′
j)

bij

=⇒ λij = μ
�ij
ki

= μ
�ij
kj
. (12)

By re-labeling the roots if necessary, as in the Proof of Lemma 9, we may
assume μk = r1/p0ei(θ+2πk)/p0 for k = 0, . . . , p0 − 1. Then (12) implies the
congruence

kj�ij ≡ ki�ij mod p0. (13)

We are looking for an index x such that for every j = 1, . . . , n, μ
pj
x = μ

pj
kj
, so

x is an integer solution to the following system of linear congruences, where
pj and kj are known:

xpj ≡ kjpj mod p0 for j = 1, . . . , n. (14)
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Dividing each congruence by gcd(p0, pj) does not change the solution set:

xpj
g0j

≡ kjpj
g0j

mod
p0
g0j

⇐⇒ a0jx ≡ a0jkj mod b0j ,

which is equivalent, since a0j and b0j are relatively prime, to:

x ≡ kj mod b0j . (15)

By (an elementary generalization of) the Chinese Remainder Theorem ([O],
Thm. 10–4), there exists an integer solution x of the system (15) if and only
if for all pairs 1 ≤ i < j ≤ n,

ki ≡ kj mod gcd(b0i, b0j). (16)

Property (16) follows from (13): each congruence (16) is equivalent to

ki�ij ≡ kj�ij mod gcd(b0i, b0j)�ij.

The following equalities are elementary ([O] Chs. 3, 5); one step uses the
property that aij and bij are relatively prime:

gcd(b0i, b0j)�ij = gcd(b0i�ij , b0j�ij)

= gcd(b0ipiaij , b0jpjbij)

= gcd(�0iaij, �0jbij) = gcd(�0i, �0j)

= gcd(lcm(p0, pi), lcm(p0, pj))

= lcm(p0, gcd(pi, pj))

= lcm(p0, gij).

By definition, �ij is a multiple of gij, and by (13), ki�ij − kj�ij is a multiple
of p0. It follows that ki�ij − kj�ij is a common multiple of p0 and gij, and so
a multiple of lcm(p0, gij), which implies (16).

Theorem 17. For K = R, RP (p) is reconstructible if and only if p0, . . . , pn
are not all even.

Proof. To establish reconstructibility, assume, WLOG, p0 is odd. We can
proceed with the same notation as Case 2 of the Proof of Theorem 16, and
use a product of axis projections as in (9), although as in Example 6, only
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Figure 2: The diagram for the Proof of Theorem 17

RP (p) ��

Id

��

∏
(i,j)∈I

RP 1

RP (2q0, 2
e1−e0+1q1, . . . , 2

en−e0+1qn) 2:1
�� RP (q0, 2

e1−e0q1, . . . , 2
en−e0qn)

��

n axis projections, indexed by (i, j) = (0, j), are needed for a one-to-one
product map. Given real z, z′, and λ0j, the algebra problem is to find a
real solution μ of Equation (10). Since p0 is odd and z0 �= 0, the equation
μp0z′0 = z0 has a unique real solution for μ. For each j, b0j = p0/g0j is odd,

and using the unique solution for μ in Equation (11) gives (μpjz′j)
b0j = z

b0j
j ,

which implies μpjz′j = zj , so Equation (10) is satisfied.
For the converse, suppose pj = 2ejqj with ej > 0 and qj odd for j =

0, . . . , n. To show statement 2 . from Lemma 15 is false, we show that the
product of axis projections as in (7), (9) is exactly two-to-one on Dp; let this
map be denoted by the top arrow in the diagram from Figure 2. WLOG,
assume e0 is the smallest of the ej exponents. By Case 3 of Lemma 6,
dividing the weight p by m = 2e0−1 does not change the weighted projective
space; this identity map is shown as the left arrow in the diagram (Figure 2).
The lower arrow is the map from Theorem 7; it is induced by the inclusion
Rn+1

∗ → Rn+1, and is two-to-one on the set {z : z0 �= 0}, which contains Dp.
The upward arrow on the right is defined as in statement 2 . from Lemma
15; this was shown to be one-to-one on D(q0,...,2en−e0qn) in the first part of this
Proof. The diagram is commutative (the top arrow is the composite of the
other arrows) because the axis projections use the same exponents. For the
top arrow,

aij =
lcm(pi, pj)

pi
=

lcm(2eiqi, 2
ejqj)

2eiqi

=
lcm(2ei−e0qi, 2

ej−e0qj)2
e0

2eiqi
.
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For the right arrow, the corresponding exponent is

lcm(2ei−e0qi, 2
ej−e0qj)

2ei−e0qi
,

which is the same, and similarly for the exponents bij .

4 Generalizing Eves’ Theorem

Eves’ Theorem, as described in the Introduction, refers to a collection of
segments lying on lines in a projective space. Our generalization requires
some technical indexing, but we start by informally introducing the notation
for the original case as in Figure 1. The dimension of the projective space
is D. There are � lines (possibly repeated; in Figure 1, � = 6). On each
line, with index K = 1, . . . , �, there is one segment of each color, indexed by
c = 0, 1: one black segment −→s K

0 and one red segment, −→s K
1 . Each segment

−→s K
c has a pair of endpoints, (sK,1

c , sK,2
c ), with sK,e

c indexed by e = 1, 2.
Let Sc be the set (possibly with repeats) of � segments of color c. The pair
S = (S0,S1) will be denoted (in Definition 22) a ((1, 1), 2, �, D)-configuration.

The generalization allows multiple (n + 1 ≥ 2) colors, indexed by c =
0, 1, . . . , n. The two endpoints of a segment generalize to r points in an
ordered r-tuple:

−→s K
c = (sK,1

c , . . . , sK,e
c , . . . , sK,r

c ).

The � lines generalize to (r − 1)-dimensional subspaces of KPD, and for
each subspace there is not just one, but a fixed number, pc, of generalized
segments (r-tuples) of color c. So, the number of r-tuples with color c is
�pc, forming a collection Sc. Definition 22 will precisely arrange all this data,
up to immaterial re-indexings, into a set S called a ((p0, . . . , pn), r, �, D)-
configuration.

4.1 Configurations in projective space

Some combinatorial notation is needed to keep track of various indices.

Notation 18. Two ordered N -tuples

(x1, . . . , xN ), (y1, . . . , yN)
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are equivalent up to re-ordering if there exists a permutation σ of the index
set {1, . . . , N} such that yi = xσ(i) for i = 1, . . . , N . This is an equivalence
relation; we denote the equivalence class of (x1, . . . , xN) with square brackets,

[x1, . . . , xN ],

and call it an unordered list.

When it is necessary to index the entries in an unordered list, it is con-
venient to first pick an ordered representative. Using the following notation,
we describe some configurations of points in (non-weighted) projective space.

Definition 19. Given D, r ∈ N, and points

α1, . . . , αe, . . . , αr ∈ KPD,

denote an ordered r-tuple of points

−→s = (α1, . . . , αe, . . . , αr).

Such an ordered r-tuple is an independent r-tuple means: there exist repre-
sentatives for the points, α1, . . . ,αe, . . . ,αr, which form a linearly indepen-
dent set of r vectors in KD+1 (so r ≤ D + 1).

Notation 20. In the case r = 2, we call the ordered, independent pair
−→s = (α1, α2) a directed segment, and the two points its endpoints. In the
case r = 3, ordered, independent triples are triangles −→s = �(α1α2α3) with
three vertices.

Definition 21. Given an independent r-tuple−→s , there is a unique r-dimensional
subspace L of KD+1 that is spanned by any independent set of representa-
tives for the points in −→s . The image π(L \ {0}) = L is a (r− 1)-dimensional
projective subspace of KPD, which we call the span of −→s .

It is convenient to also refer to the K-linear subspace L as π−1(L), and
to L = π(L), even though π is not defined at 0.

Definition 22. Given a weight p = (p0, . . . , pn) as in Section 2 and some
other numbers D, �, r ∈ N with r ≤ D + 1, a (p, r, �, D)-configuration (or,
just “configuration” when the p, r, �, and D are understood) is an ordered
(n+ 1)-tuple S,

S = (S0, . . . ,Sc, . . . ,Sn), (17)
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where each Sc is an unordered list (possibly with repeats) of � · pc ordered,
independent r-tuples of points in KPD:

Sc = [−→s 1
c , . . . ,

−→s �pc
c ].

We remark that it is possible for some S to be both a (p, r, �, D)-configuration
and a (p′, r, �′, D)-configuration with p �= p′ and � �= �′, although if p is given,
then � is determined by the length of the lists Sc.

As an aid to visualization and drawing, the indices c = 0, . . . , n can
correspond to colors: c = 0 = black, c = 1 = red, c = 2 = green, etc. So, for
r = 2, S0 is a list of �p0 black segments, S1 is a list of �p1 red segments, etc.

Notation 23. Given a (p, r, �, D)-configuration S, define the following sets:

• P(S) is the set of points z ∈ KPD such that z is one of the r components
of some −→s K

c in Sc, for some c = 0, . . . , n;

• L(S) is the set of (r − 1)-dimensional projective subspaces which are
the spans of the r-tuples −→s K

c ;

• U(S) is the following union of r-dimensional subspaces in KD+1:

U(S) =
⋃

L∈L(S)
π−1(L).

All three of the above sets depend only on the set of r-tuples in S, not
on the ordering in (17), nor on p and �.

For example, when r = 2, any directed segment lies on a unique projective
line, so L(S) is a (finite) set of projective lines in KPD. Since the same point
may appear in several different r-tuples, it is possible for the size of P(S) to
be small compared to the number of r-tuples.

Definition 24. Given a (p, r, �, D)-configuration S, for c = 0, . . . , n, choose
an ordered representative

Sc = (−→s 1
c , . . . ,

−→s K
c , . . . ,

−→s �pc
c ) (18)

of the equivalence class Sc. Define the c-degree of a point z ∈ KPD to be

degc(z) =

#{K : z is one of the r points of the r-tuple −→s K
c in Sc}.
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According to the color scheme indexed by c, every point in the configura-
tion has a black degree, a red degree, etc. Definition 24 is stated in a way so
that possibly repeated r-tuples are counted with multiplicity. The assump-
tion that each r-tuple is independent implies that z appears at most once in
an r-tuple. The number degc(z) does not depend on the choice of ordered
representative Sc for Sc, nor on p and � if S admits another description as
a (p′, r, �′, D)-configuration. For all but finitely many points in KPD, the
c-degree is zero.

The following Definition is dual to Definition 24.

Definition 25. For S and Sc as in Definition 24, define the c-degree of a

projective (r − 1)-subspace L of KPD to be

degc(L) =

#{K : all r points of the r-tuple −→s K
c in Sc lie on L}.

The following Definition of a morphism of a configuration was motivated
by, but is different from, a notion of isomorphic plane configurations consid-
ered by [Shephard].

Definition 26. Given a (p, r, �, D)-configuration

S = (S0, . . . ,Sn),

and a (p, r, �, D′)-configuration

T = (T0, . . . , Tn),

A is a morphism from S to T means A is a function P(S) → P(T ) such
that:

1. For indexing purposes, for any ordered representative for each Sc, c =
0, . . . , n,

(−→s 1
c , . . . ,

−→s K
c , . . . ,

−→s �pc
c ), (19)

there is an ordered representative for Tc,

(
−→
t 1

c , . . . ,
−→
t K

c , . . . ,
−→
t �pc

c ); (20)

and,
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2. There exists a function A : U(S) → KD′+1 such that the restriction of
A to each of the subspaces L = π−1(L) for L ∈ L(S) is one-to-one and
K-linear, and induces a map AL : L→ KPD′

which satisfies, for every
−→s K

c that spans L:

AL(
−→s K

c )

= AL

((
sK,1
c , . . . , sK,e

c , . . . , sK,r
c

))
=

(
AL(s

K,1
c ), . . . , AL(s

K,e
c ), . . . , AL(s

K,r
c )
)

=
(
A(sK,1

c ), . . . ,A(sK,e
c ), . . . ,A(sK,r

c )
)

(21)

=
(
tK,1
c , . . . , tK,e

c , . . . , tK,r
c

)
=
−→
t K

c .

As a consequence of the Definition, a morphism defines a one-to-one corre-
spondence between the lists (19) and (20) of r-tuples of color c, c = 0, . . . , n.
A morphism A is necessarily an onto map on the sets of points, P(S) →
P(T ), but is not necessarily one-to-one, and the number #L(T ) may also
be less than #L(S). Our notion of morphism is a little stronger than just
an incidence-preserving collection of projective linear mappings AL of the
projective subspaces in L(S); the maps must all be induced by the same A.

Proposition 27. Given K, p, r, �, the D = r−1, . . . ,∞ union of the sets of
(p, r, �, D)-configurations, together with the above notion of morphism, forms
a category.

Proof (sketch). There is an identity morphism from any S to itself. It is
straightforward to check that the usual composition of maps of sets A :
P(S) → P(T ) and A : U(S) → U(T ) defines an associative composition of
morphisms.

Example 7. The classical notion of projective equivalence is an important
special case of morphism, as follows. Let D′ = D, and let A be an invertible
K-linear map KD+1 → KD+1. The induced map

A : KPD → KPD

is a projective transformation and a configuration S is projectively equivalent
to its image A(S). The restriction of A to P(S) is a morphism A from
S to A(S) as in Definition 26. First, for any ordered representative of Sc,
c = 0, . . . , n, index the r-tuples in A(Sc) = Tc by setting

−→
t K

c = A(−→s K
c ). The
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Figure 3: The projection from left to right defines a morphism from a con-
figuration of 7 points, 3 lines, and 4 segments in three dimensions to a con-
figuration of 6 points, 2 lines, and 4 segments in two dimensions.
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map A : U(S)→ KD+1 from the Definition is just the restriction of the given
linear map to U(S), and restricts further to L = π−1(L) for L ∈ L(S), so A|L
is one-to-one and linear, satisfying (1) and (2), so it induces AL : L→ KPD.
For each independent r-tuple −→s K

c with span L, the induced map AL takes
−→s K

c to an independent r-tuple AL(
−→s K

c ) =
−→
t K

c .

Example 8. In Example 7, checking Definition 26 did not require that D′ =
D, nor that A was invertible. The same argument applies to any K-linear
A : KD+1 → KD′+1, which is not necessarily one-to-one or onto, but which
is one-to-one when restricted to subspaces L = π−1(L) for L ∈ L(S). As
shown in Figure 3, the induced map A could be a projection from a subset
of a higher-dimensional projective space to a lower-dimensional space, and
would define a morphism A from a configuration S to A(S) as long as the
image of every (r−1)-dimensional projective subspace in L(S) is still (r−1)-
dimensional.

Eves’ notion of “h-expression,” as described in the Introduction, ap-
plies to two-color configurations where the red degree of points (and du-
ally, lines) matches the black degree; the following Definition generalizes the
h-expression’s degree condition by allowing multiple colors and weights.

Definition 28. A (p, r, �, D)-configuration

S = (S0, . . . ,Sn)

is a weight p h-configuration means:

1. At every point z ∈ KPD, these numbers are integers and are equal to
each other:

deg0(z)

p0
= · · · = degc(z)

pc
= · · · = degn(z)

pn
; (22)

2. For every projective (r − 1)-subspace L ⊆ KPD, these numbers are
integers and are equal to each other:

deg0(L)

p0
= · · · = degc(L)

pc
= · · · = degn(L)

pn
. (23)
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See Figure 7 in Section 6 for an example of a weight (2, 2, 4) h-configuration
with n+ 1 = 3 colors and � = 3 lines in the D = 2, K = R plane.

For a weight p h-configuration S, we have the following geometric inter-
pretation of the parameter �: if a (r − 1)-dimensional projective subspace L
in L(S) has degc(L) = mLpc, then by (23), mL does not depend on c. There
is an unordered �-tuple of subspaces, [L1, . . . , Lk, . . . , L�], where each Lk is
incident with exactly pc r-tuples with color c, and Lk occurs in the unordered
list with multiplicity mLk

.

Lemma 29. If S is a weight p h-configuration and

A : S → T

is a morphism, then T is a weight p h-configuration.

Proof. Let the ordered �pc-tuple Sc be an ordered representative for Sc; then
let Tc be the corresponding ordered representative of Tc as in (20). The r

points in
−→
t K

c are indexed, using (21),

tK,e
c = A(sK,e

c ), (24)

for K = 1, . . . , �pc and e = 1, . . . , r.
To check part 1. of Definition 28, suppose z ∈ KPD′

. If z /∈ P(T ), then
degc(z) = 0 for all c. If z ∈ P(T ), then A−1(z) is a finite set of points in
P(S). There is no r-tuple −→s K

c that contains more than one point of A−1(z),

since A(−→s K
c ) is the independent r-tuple

−→
t K

c . An r-tuple
−→
t K

c has z as one
of its r points if and only if the corresponding r-tuple −→s K

c has some element
of A−1(z) as one of its r points. For each c, the cardinality of the disjoint
union of indices K is:

degc(z) =
∑

w∈A−1(z)

degc(w).

The equalities in (22) for z follow from the assumed equalities for all the
points w.

Dually, projective (r − 1)-subspaces not in L(T ) have degc = 0 for all c.
By (21), every projective (r − 1)-subspace in L(T ) is of the form AL′(L′),
and if L′ is the span of −→s K ′

c , then all r points tK
′,e

c lie on AL′(L′). The set
L′ = {L ∈ L(S) : AL(L) = AL′(L′)} is finite, and there is no r-tuple −→s K

c

lying on more than one of these subspaces L. An r-tuple
−→
t K

c lies on AL′(L′)
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if and only if the corresponding r-tuple −→s K
c lies on one of the subspaces

L ∈ L′. For each c, the cardinality of the disjoint union of indices K is:

degc(AL′(L′)) =
∑
L∈L′

degc(L).

The equalities in (23) for AL′(L′) follow from the assumed equalities for all
L ∈ L′.

4.2 The Invariant

Definition 30. Given an (r−1)-dimensional projective subspace L in KPD,
let L be the r-dimensional subspace of KD+1 such that L = π(L), and let B
be any ordered basis B = (b0, . . . ,br−1) for L. Given a linearly independent
set of vectors se ∈ L, e = 1, . . . , r, with π(se) = se on L, let −→s be the ordered
r-tuple (s1, . . . , se, . . . , sr), and define the Peano bracket of −→s ,

�−→s �B ∈ K
1
∗,

by the following procedure. The vectors have coordinates in the B basis:

se = se,0b0 + . . .+ se,r−1br−1 (25)

=⇒ [se]B =

⎡
⎢⎣

se,0

...
se,r−1

⎤
⎥⎦
B

∈ K
r
∗.

By stacking columns into a square matrix, denote

�−→s �B = det
([

[s1]B · · · [se]B · · · [sr]B
]
r×r

)
. (26)

For example, in the r = 2 case,

�−→s �B = s1,0s2,1 − s2,0s1,1. (27)

The r-dimensional vector space L, together with the extra structure in the
RHS of (26), is called a Peano space by [BBR]. The Peano bracket of −→s as
we have defined it in (26) depends on the choices of basis and representative
points, and also on the ordering of points in −→s . Note that picking a different
representative λ ·se for the point se and λ �= 0 transforms �−→s �B to λ · �−→s �B.
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Definition 31. Given a (p, r, �, D)-configuration S, for each c = 0, . . . , n,
choose an ordered representative Sc of Sc as in (18). For each point z in the set
of points P(S) = {sK,e

c }, choose one representative vector z = sK,e
c . For each

projective (r−1)-subspace L in the set L(S), choose one ordered basis BL for
the r-subspace L = π−1(L), and if the span of −→s K

c is L, denote Bc,K = BL.
Then we call the following element of KP (p) a generalized Eves expression.

Ep(S) =[
�p0∏
K=1

�−→s K
0 �B0,K

: . . . :

�pc∏
K=1

�−→s K
c �Bc,K

: . . . :

�pn∏
K=1

�−→s K
n �Bn,K

]
p

.

Theorem 32. Let S be a (p, r, �, D)-configuration. If S is a weight p h-
configuration, then the generalized Eves expression Ep(S) ∈ KP (p) is well-
defined, depending only on S and p, and not on any of the choices made in
the construction of Definition 31. Further, if T is a (p, r, �, D′)-configuration
and A : S → T is a morphism, then

Ep(S) = Ep(T ).

Proof. The choice of ordering Sc as in (18) is used only for well-defined
indexing; the first thing to prove is that the Ep expression does not depend
on this choice. The second part of the Proof is to show the expression does
not depend on the choices made in computing the bracket (26). The third
part of the Proof is verifying the invariance under morphism.

First, for each ordered r-tuple −→s K
c in Sc, formula (26) shows that the

quantity �−→s K
c �Bc,K

∈ K1
∗ depends on a choice of basis Bc,K and a choice of

representative vectors for the r points. By the independence property, the
r points of each −→s K

c span a unique projective (r − 1)-subspace L, for which
a unique basis BL was chosen, by the construction of Definition 31. So, the
basis used to compute �−→s K

c �Bc,K
depends only on the r points of −→s K

c in KPD.
Each of the points sK,e

c has a representative in KD+1
∗ that does not depend

on the color index c or the assignment of K index to the r-tuple −→s K
c . The

construction of Definition 31 requires picking the same representative vector
z when a point appears more than once in the S configuration, in r-tuples
with different indices or colors: if z = sK,e

c = sK
′,e′

c′ then z = sK,e
c = sK

′,e′
c′ . We

can conclude that �−→s K
c �Bc,K

is computed using representative vectors of the
points and a basis, both depending only on the r-tuple of points and not on
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the index K coming from Sc. By commutativity, the product

�·pc∏
K=1

�−→s K
c �Bc,K

does not depend on the choice of ordered representative Sc for Sc, nor on p,
since � · pc is uniquely determined by S. The element[

�p0∏
K=1

�−→s K
0 �B0,K

: . . . :

�pn∏
K=1

�−→s K
n �Bn,K

]
p

∈ KP (p)

may depend on p, as in Theorem 7. We can conclude so far that the above
expression depends only on S and p, not on any of the choices of Sc.

By the independence property, the quantities �−→s K
c �Bc,K

are all non-zero,
so each of the n+1 components in the Ep expression is non-zero: Ep(S) ∈ Dp.

For the second part of the Proof, as previously mentioned, for each point
z occurring with any multiplicity in the S configuration, the construction of
Definition 31 requires choosing a fixed representative z. Changing the choice
of representative for that point, λ · z instead of z, changes each �−→s K

c �Bc,K

quantity to λ · �−→s K
c �Bc,K

, as remarked after Definition 30, for every −→s K
c

that has z as one of its r points (and only one, by independence). In each
expression

�·pc∏
K=1

�−→s K
c �Bc,K

(with color index c), there are degc(z) (possibly repeated) r-tuples −→s K
c with

z as one of its r points, so changing z to λ · z changes the product expression
by a factor of λdegc(z). By part 1. of Definition 28, there is some integer yz
depending on z but not c, so that degc(z) = yz · pc. Since for each c, the
product changes by a factor of (λyz)pc , the ∼p-equivalence class of the Ep

expression does not depend on the choice of λ or z.
For a projective (r−1)-subspace L, the value of the bracket �−→s K

c �Bc,K
de-

pends on the choice of ordered basis Bc,K = BL = (b0, . . . ,br−1) in the follow-
ing way: let B′

L be another ordered basis of the same r-dimensional space L.
Then there exists a r×r invertible matrix Q which changes BL-coordinates to
B′
L-coordinates, via matrix multiplication: if the BL-coordinate column vec-

tor of sK,e
c is as in (25), then the B′

L-coordinate column vector is [sK,e
c ]B′

L
=

Q[sK,e
c ]BL

. Applying the Q coordinate change matrix to each column in the
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determinant (26) transforms the bracket by the well-known formula

�−→s K
c �B′

L
= det

([
(Q[sK,1

c ]BL
) · · · (Q[sK,r

c ]BL
)
]
r×r

)
= det(Q) det

([
[sK,1

c ]BL
· · · [sK,r

c ]BL

]
r×r

)
= det(Q)�−→s K

c �BL
.

We can conclude that for any L, changing the choice of ordered basis BL
to a new basis B′

L, and using this new basis for every bracket expression
for an r-tuple on L, results in changing each expression with color index

c,

�pc∏
K=1

�−→s K
c �Bc,K

, by a factor of (det(Q))degc(L), where degc(L) = mLpc, and

mL does not depend on c, by part 2. of Definition 28. Since for each c, the
product changes by a factor of (det(Q)mL)pc , the ∼p-equivalence class of Ep

is unchanged. This shows that Ep does not depend on the choices made as
in Definition 31, which are required to compute the brackets �−→s K

c �BL
.

Thirdly, by Lemma 29, if there is a morphism A : S → T , then T is also
a weight p h-configuration, and so the expression Ep(T ) is well-defined by
the previous part of this Proof. As in the Proof of Lemma 29, an ordering
for Sc corresponds to one for Tc, giving an indexing as in (24).

For each projective (r − 1)-subspace AL(L) in the set L(T ), pick an
ordered basis C for the linear r-subspace A|L(L), as in Definition 31 applied
to L(T ). For any L′ with AL′(L′) = AL(L), A|L′ is linear and one-to-one,
so (A|L′)−1 (C) is an ordered basis for L′, and setting BL′ = (A|L′)−1 (C)
satisfies the uniqueness property of Definition 31 applied to L(S). Dually,
for each point w = tK,e

c in the set P(T ), pick a representative w = tK,e
c

in KD′+1
∗ as in Definition 31. For an index (c,K, e), the point sK,e

c lies on
a (r − 1)-subspace Lc,K spanned by −→s K

c , and satisfies ALc,K
(sK,e

c ) = tK,e
c ,

and has a representative vector (A|Lc,K
)−1(tK,e

c ) in KD+1
∗ . To show that this

representative vector depends only on the point and not on the index, suppose
(c′, K ′, e′) is any other index with sK,e

c = sK
′,e′

c′ ; then the point is on both
projective (r−1)-subspaces Lc,K and Lc′,K ′, and A|Lc,K

and A|Lc′,K′ agree on
the intersection Lc,K∩Lc′,K ′ because they are restrictions of the same mapA.

Since tK,e
c = tK

′,e′
c′ , we can conclude (A|Lc,K

)−1(tK,e
c ) = (A|Lc′,K′ )

−1(tK
′,e′

c′ ),

and denote this representative vector sK,e
c .

Now, fix an index pair (c,K) and consider corresponding r-tuples −→s K
c

and
−→
t K

c , lying on subspaces Lc,K and ALc,K
(Lc,K) as above. The coordi-

nate vector of tK,e
c with respect to the ordered basis C = (c0, . . . , cr−1) of
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A|Lc,K
(Lc,K) is related to the coordinate vector of sK,e

c with respect to the

ordered basis Bc,K =
(
A|Lc,K

)−1
(C) of Lc,K , by the linearity of A|Lc,K

:

(sK,e
c )

=
(
A|Lc,K

)−1
(tK,e

c )

=
(
A|Lc,K

)−1
(tK,e,0

c c0 + . . .+ tK,e,r−1
c cr−1)

= tK,e,0
c

(
A|Lc,K

)−1
(c0) + . . .+ tK,e,r−1

c

(
A|Lc,K

)−1
(cr−1)

= tK,e,0
c bc,K,0 + . . .+ tK,e,r−1

c bc,K,r−1,

i.e., the Bc,K-coordinates of sK,e
c are the same as the C-coordinates of tK,e

c ,
and

�−→s K
c �Bc,K

= det
([

[sK,1
c ]Bc,K

· · · [sK,r
c ]Bc,K

]
r×r

)
= det

([
[tK,1

c ]C · · · [tK,r
c ]C

]
r×r

)
= �
−→
t K

c �C.

Using these brackets to compute the products in the Ep(S) expression, and
the previously established fact that Ep(S) does not depend on the indexing
Sc, or the choices of BL or representative vectors, the claimed equality

Ep(S) = Ep(T )

is proved.

Example 9. For p = (1, 1), n = 1 and there are two colors. E(1,1)(S) is
a ratio of products of � determinants of size r × r, which, as stated in the
Introduction, would have been recognizable before Eves’ time. The case p =
(1, 1), r = 2, of Theorem 32 can be called a purely projective, or algebraic,
version of Eves’ Theorem, in comparison to the Euclidean, or metric, version,
Theorem 6.2.2 of [E]. The connection between the determinantal expression
and Eves’ formula involving Euclidean signed lengths in RD is discussed in
Section 5.

For r = 2, in a ((1, 1), 2, �, D)-configuration S, S0 is a list of � black
directed segments in KPD, and S1 is a list of � red segments. If S is
a weight p h-configuration (which in this p = (1, 1), r = 2 case we just
call an h-configuration), then there are � (counting with multiplicity) lines
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[L1, . . . , L�] with one black segment −→s K
0 and one red segment −→s K

1 on each
line, and at each point, the black degree equals the red degree. The following
element of KP 1, where each expression �−→s K

c �Bc,K
is calculated as in Defi-

nition 31, is well-defined and invariant under projective transformations of
KPD:

E(1,1)(S) =
[

�∏
K=1

�−→s K
0 �B0,K

:
�∏

K=1

�−→s K
1 �B1,K

]
.

Eves calls the ratio
�∏

K=1

�−→s K
1 �B1,K

�∏
K=1

�−→s K
0 �B0,K

an “h-expression”: each line LK occurs equally often (multiplicity mLK
) in

the numerator and denominator, and each point in P(S) occurs equally often
in the numerator (red degree) and denominator (black degree).

Example 10. Consider four distinct points α, β, γ, δ on the projective line
KP 1. These can be organized into an h-configuration S, with p = (1, 1)
and r = 2 as in Example 9, dimension D = 1, and � = 2. Let S0 =
[(δ, α), (γ, β)] be a list of black segments, and let S1 = [(γ, α), (δ, β)] be
a list of red segments, as shown in Figure 4. Then L(S) is the singleton
set {L = KP 1}; we could, as mentioned after Definition 28, consider the
line occurring with multiplicity two in the unordered list [L1, L2] with L =
L1 = L2. Choose the standard ordered basis BL = ((1, 0), (0, 1)) of K2, so
α has homogeneous coordinates [α0 : α1], vector representative α0b0 +α1b1,

and BL-coordinate vector

[
α0

α1

]
BL

, and similarly for the other points. Let

S0 = (−→s 1
0 = (δ, α),−→s 2

0 = (γ, β)) be an ordered representative of S0 and let
S1 = (−→s 1

1 = (γ, α),−→s 2
1 = (δ, β)) be an ordered representative of S1. Each

endpoint has black degree and red degree both equal to 1, and the line L
satisfies Part 2. of Definition 28, with deg0(L) = deg1(L) = 2. Alternatively,
we could assign one of the black segments and one of the red segments to L1 =
L, and the remaining segments to L2 = L; there are various choices of such
assignments, which would not affect the expression (28). The generalized
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a              b               g               da              b               g               d

Figure 4: A configuration of 4 points, 1 line, and 4 ordered pairs, as indicated
by the red and black arrows drawn offset from the line.

Eves expression is:

E(1,1)(S)
=

[
�−→s 1

0�BL
�−→s 2

0 �BL
: �−→s 1

1�BL
�−→s 2

1 �BL

]
(28)

= [(α1δ0 − α0δ1)(β1γ0 − β0γ1) : (α1γ0 − α0γ1)(β1δ0 − β0δ1)] ,

which is exactly the well-known cross-ratio of the ordered quadruple (α, β, γ, δ).

In classical Invariant Theory, the fundamental property of projective in-
variance of the cross-ratio was often proved using determinants and alge-
braic methods similar to our Proof of Theorem 32 (e.g., [C]; [Salmon] Arts.
XIII.136, 137, XVII.195). In projective geometry, the general idea that pro-
jective transformations introduce canceling factors in certain product expres-
sions already appears in ([P] §20).

5 Metric versions

Eves’ Theorem as stated in [E] is about ratios of signed lengths of directed
segments, in the real Euclidean plane extended to include points at infin-
ity. The earlier identities of [P], and interesting applications of Eves’ Theo-
rem, including Ceva’s Theorem and others appearing in ([E] §6.2), [F2], and
[Shephard], also involve Euclidean distance between pairs of points. The
constructions in Section 4 were developed in terms of linear algebra and
projective geometry, avoiding any notion of distance. However, there are
connections between projective geometry and Euclidean geometry — a con-
temporary treatment is given by [RG], relating Cartesian coordinates in affine
neighborhoods, Peano bracket operations, and Euclidean notions of distance,
area, volume, angles, etc.
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We review some of these connections between projective and Euclidean
geometry here, with two purposes: first, to show how the choices from Def-
initions 30 and 31 are related to Euclidean properties such as the choice of
a unit of distance; and, second, to arrive at a generalized, but easy to use,
statement of Eves’ Theorem for directed segment lengths in RD in Corollary
33. We start by incorporating a notion of distance as a bit of extra structure
added to the projective coordinate system.

Consider, as in Example 1, RD+1 with coordinates x = (x0, x1, . . . , xD),
the projection π : RD+1

∗ → RPD, and homogeneous coordinates x = [x0 : x1 :
. . . : xD] for RP

D. The restriction of π to the hyperplane {(1, x1, x2, . . . , xD)}
is one-to-one onto the image {x : x0 �= 0} in RPD. We can refer to this affine
neighborhood as RD, where a point in RD has both homogeneous and affine
coordinates: x = [1 : x1 : . . . : xD] = (x1, . . . , xD), and also is the image of a
representative vector: x = π(x) = π(1, x1, . . . , xD).

The extra structure we initially assign to the affine neighborhood RD is
that of a normed vector space, where the vector space structure is the usual
one from the affine coordinate system (x1, . . . , xD), and ‖ . ‖ is any norm
function. Then there is a distance function on RD: d(x, y) = ‖y − x‖.

In the r = 2 case, we are interested in directed segments on lines. Given a
line L in RD (meaning, a non-empty intersection of a projective line L = π(L)
with the {x : x0 �= 0} neighborhood), it can be parametrized by choosing a
start point b0 and a non-zero direction vector v, so L = {b0 + tv : t ∈ R}.
The choice of v also determines a direction for the line: an ordered pair
of distinct points (b0 + t1v, b0 + t2v) is a positively (or negatively) directed
segment depending on the sign of t2 − t1. There exists a unique t value
so that t > 0 and the point b1 = b0 + tv satisfies d(b0, b1) = 1. Choose
these representative vectors in RD+1

∗ for b0 and b1: b0 = (1, b10, . . . , b
D
0 ) and

b1 = (1, b11, . . . , b
D
1 ). So, choosing a start point and a direction for the affine

line L determines (and is determined by) an ordered basis B = (b0,b1) (with
both points in {x0 = 1}) for the plane L.

Consider two distinct points α, β on the line L in RD ⊆ RPD. If we
re-parametrize L using b1 − b0 as a direction vector,

α = (b10 + t1(b
1
1 − b10), . . . , b

D
0 + t1(b

D
1 − bD0 )),

β = (b10 + t2(b
1
1 − b10), . . . , b

D
0 + t2(b

D
1 − bD0 )).

The distance from α to β does not depend on the choice of start point b0 nor
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the direction; it satisfies:

d(α, β) = ‖β − α‖ = ‖(t2 − t1)(b1 − b0)‖
= |t2 − t1|‖b1 − b0‖ = |t2 − t1|. (29)

The signed length of the directed segment (α, β) =
−→
αβ is t2 − t1, which

depends on the direction but not the start point. Choosing the representative
vectors

α = (1, b10 + t1(b
1
1 − b10), . . . , b

D
0 + t1(b

D
1 − bD0 ))

= (1− t1)b0 + t1b1, (30)

β = (1, b10 + t2(b
1
1 − b10), . . . , b

D
0 + t2(b

D
1 − bD0 ))

= (1− t2)b0 + t2b1,

the signed length is exactly the same as the bracket formula (27):

�
−→
αβ�B = t2(1− t1)− (1− t2)t1 = t2 − t1.

For directed segments
−→
αβ appearing in an h-configuration and the brackets

�
−→
αβ�B in a generalized Eves expression, Theorem 32 states that Ep(S) does
not depend on the choice of representative vectors α, β as long as represen-
tatives are chosen consistently (as in (30)), nor on the choice of B as long
as that ordered basis is used for all directed segments on that line through
α and β. Since the construction of Definition 31 requires that each line L
is assigned a unique ordered basis BL, each line can have its own choice of
direction determined by BL, and a unit of length depending on a norm ‖ . ‖L.
So, it was not necessary at the start to pick one norm ‖ ‖ for the whole space
RD to use for all the lines L; all that is needed is a distance function on
each line such that (29) is valid. A metric version for the r = 2 (directed
segments) case of Theorem 32 can be stated as follows.

Corollary 33. Given a (p, 2, �, D)-configuration S of segments in RD, choose
ordered representatives Sc as in (18), and for each line L in the set L(S),
choose a direction and unit of length, and denote by �

−→
αβ� the signed length

of a directed segment on that line. If S is a weight p h-configuration, then
the following element of RP (p) does not depend on the choices of ordered
representatives, directions, or unit lengths.

Ep(S) =
[

�p0∏
K=1

�−→s K
0 � : . . . :

�pc∏
K=1

�−→s K
c � : . . . :

�pn∏
K=1

�−→s K
n �

]
p

.
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Further, Ep(S) is invariant under a morphism that maps the points in S into
an affine neighborhood RD′

.

The Peano bracket also admits a Euclidean interpretation in the above
coordinate system for configurations with r = 3 and D = 2 (see [BB],
[CRG], in addition to the previously mentioned [RG]). However, in order
for the bracket to define a Euclidean area in R2, we must use the Euclidean
magnitude ‖ . ‖, defined by the standard dot product in the affine coordi-
nate system (x1, x2). Let L be the entire real projective plane L = RP 2,
and let L = R3. Pick the standard ordered basis B, so that three points
α = (α1, α2), β = (β1, β2), γ = (γ1, γ2) in R2 ⊆ RP 2 have representatives

with B-coordinates α =

⎡
⎣ 1

α1

α2

⎤
⎦
B

, etc. Then,

�(α, β, γ)�B = det

⎛
⎝
⎡
⎣
⎡
⎣ 1

α1

α2

⎤
⎦

B

⎡
⎣ 1

β1

β2

⎤
⎦
B

⎡
⎣ 1

γ1
γ2

⎤
⎦

B

⎤
⎦
3×3

⎞
⎠

= 2Area�(αβγ),

twice the signed area of the triangle ([E] §2.1), which depends on the ordering
of the three vertices and the (previously chosen) standard Euclidean structure
on R2. The points with affine coordinates (0, 0), (1, 0), (0, 1), in that order,
form a counter-clockwise triangle with positive area 1

2
.

The following Example of ratios of areas was described by Clifford ([C])
as a “graphometric” quantity: a Euclidean measurement invariant under
projective transformations.

Example 11. Consider six points, labeled 1, 2, 3, 4, 5, 6, in the plane R
2 ⊆

RP 2. They can be organized into a ((1, 1), 3, 2, 2)-configuration S = (S0,S1),
where

S0 = [�(124),�(356)]

is a list of two black triangles, and

S1 = [�(123),�(456)]

is a list of two red triangles (assuming non-collinearity of the indicated
triples), as in Figure 5. Then L(S) = {L = RP 2}, and we choose the
standard basis B as above. As in Example 10, deg0(L) = deg1(L) = 2, or
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we could consider a list [L1, L2] with L1 = L2 = L, and one black triangle
and one red triangle is assigned to each of L1 and L2. Each of the six points
in P(S) is a vertex of one black triangle and one red triangle, so the black
degree equals the red degree and S is a weight (1, 1) h-configuration. The
generalized Eves expression is analogous to (28):

E(1,1)(S)
=

[
�−→s 1

0�B�−→s 2
0 �B : �−→s 1

1�B�−→s 2
1 �B

]
= [��(124)�B��(356)�B : ��(123)�B��(456)�B] .

We can conclude that the ratio of signed areas

(Area�(123))(Area�(456))

(Area�(124))(Area�(356))

is an invariant of the configuration S under projective transformations (that
do not send any of the six points to infinity).

We remark that the property

E(1,1)(S(0,1)) = [1 : 1],

or equivalently

��(124)�B��(356)�B − ��(123)�B��(456)�B = 0,

admits a projective (not necessarily Euclidean) interpretation as the concur-
rence of the lines through {1, 2}, {3, 4}, {5, 6} ([CRG], [RG] Ch. 6).

Example 12. In the configuration from Example 11, it is possible for S to
be a weight (1, 1) h-configuration even if points 1 and 6 coincide, as in Figure
5. This gives another well-known E(1,1) projective invariant for five points in
the (projective or Euclidean) plane ([RG] §10.2),

��(123)�B��(451)�B
��(124)�B��(351)�B

=
(Area�(123))(Area�(451))

(Area�(124))(Area�(351))
.
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Figure 5: Left: A configuration of 6 points and 4 triangles in the real plane,
from Example 11. Right: The points 1 and 6 coincide, as in Example 12.

6 Reconstruction

In this Section, we give some more examples of weight p h-configurations
and their Ep invariants. If, for a configuration S, we pick two out of the
n + 1 colors and look at only the segments or triangles with those colors,
then the two-color configuration is still weighted. However, the classical,
unweighted (meaning, weight (1, 1)) invariant can be computed if some of
the −→s K

i are counted with enough multiplicity to balance the weights. The
notion of reconstructibility, from Section 3, explains whether, and how, these
unweighted invariants, considered for some or all color pairs, determine (re-
construct) the Ep invariant for the multi-color, weighted configuration S.

Let
S = (S0, . . . ,Sn)

be a (p, r, �, D)-configuration in KPD, and pick a pair of colors (i, j) ∈ I.
The ordered pair (Si,Sj) is a ((pi, pj), r, �, D)-configuration. If S is a weight
p h-configuration, then (Si,Sj) is a weight (pi, pj) h-configuration. For a
weight p h-configuration S, the following are equivalent:

1. (Si,Sj) is a ((1, 1), r, �·pi, D)-configuration and a weight (1, 1) h-configuration;

2. pi = pj.

The goal of the following construction is to modify a ((pi, pj), r, �, D)-configuration
(Si,Sj) into a new ((1, 1), r, �′, D)-configuration S(i,j) in a way such that if
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pi = pj , then the configuration does not change:

S(i,j) = (Si,Sj),

and if (Si,Sj) is a weight (pi, pj) h-configuration, then S(i,j) is a weight (1, 1)
h-configuration.

Recall �ij = lcm(pi, pj), and let aij = �ij/pi, bij = �ij/pj as in (8).

Notation 34. Given a ((pi, pj), r, �, D)-configuration (Si,Sj), define a new
ordered pair

S(i,j) = (S(i,j)
i ,S(i,j)

j ),

where as in (17), each entry is an unordered list of r-tuples of points, one

list with color i, the other with color j. Let S(i,j)
i be the concatenation of aij

copies of the list Si, so each of its � ·pi entries is repeated aij times. Similarly,

let S(i,j)
j be the concatenation of bij copies of Sj.

The new configuration could be (but is not) descriptively denoted (aijSi, bijSj).
So far, S(i,j) is a ((1, 1), r, � · �ij , D)-configuration, since both S(i,j)

i and S(i,j)
j

have � ·�ij entries, and the independence property of each r-tuple is inherited.

Lemma 35. If (Si,Sj) as above is a weight (pi, pj) h-configuration, then
S(i,j) is a weight (1, 1) h-configuration.

Proof. Part 1. of Definition 28 is satisfied, with weight (1, 1): By construc-
tion, the i-degree of any point z in the S(i,j) configuration is aij times degi(z),
the i-degree of the same point in the S configuration, and similarly for j, so:

degi(z) · aij
1

=
degj(z) · bij

1
⇐⇒ degi(z)

pi
=

degj(z)

pj
.

Dually, part 2. of Definition 28 is also satisfied, by the same calculation.

The following identity applies Theorem 32 to S(i,j). Recall

hij : KP (p)→ KP 1 : z �→ [z
�ij/pi
i : z

�ij/pj
j ]

is the axis projection (7) from Lemma 12.

Corollary 36. If S is a weight p h-configuration, then

E(1,1)(S(i,j)) = hij (Ep(S)) .
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Proof. Suppose the points and projective (r − 1)-subspaces in the weight p
h-configuration S have been assigned vector representatives z and bases BL
as in Definition 31. In the weight (1, 1) h-configuration S(i,j), we can use the
same representatives and bases, and then choose some ordered representative

S
(i,j)
i =

(−→s (i,j)
i,1 , . . . ,−→s (i,j)

i,K , . . . ,−→s (i,j)
i,�·�ij

)
for S(i,j)

i and similarly S
(i,j)
j for S(i,j)

j . By the weight (1, 1) case of Theorem
32, the following E(1,1) ratio in KP 1 is well-defined, and invariant under
morphisms. The products can be expanded using the multiplicity of the
r-tuples.

E(1,1)(S(i,j))

=

⎡
⎣ �·�ij∏
K=1

�−→s (i,j)
i,K �Bi,K

:

�·�ij∏
K=1

�−→s (i,j)
j,K �Bj,K

⎤
⎦

=

⎡
⎢⎣
(

�pi∏
K ′=1

�−→s K ′
i �Bi,K′

)aij

:

⎛
⎝ �pj∏

K ′=1

�−→s K ′
j �Bj,K′

⎞
⎠

bij
⎤
⎥⎦

= hij (Ep(S)) .

The analogue of the above construction in classical Invariant Theory is
the formation of an absolute invariant as a ratio of powers of differently
weighted relative invariants, as in ([Salmon] Art. XII.122).

Suppose p and K have the property that KP (p) is reconstructible. By
Lemma 15, Ep(S) is uniquely determined by the set of ratios hij (Ep(S)),
for (i, j) ∈ I. Corollary 36 shows that the weight p invariant Ep(S) can
be uniquely reconstructed by finding the weight (1, 1) invariant for all (or
possibly fewer) of the weight (1, 1) h-configurations S(i,j). So, the Ep in-
variant has no more power to distinguish projectively inequivalent weight p
h-configurations S than does the E(1,1) invariant, applied at most n(n+1)/2
times, two colors at a time, via the above construction.

However, if KP (p) is not reconstructible, then there may be weight p
h-configurations with different Ep invariants, but which cannot be distin-
guished using only E(1,1) and the reconstruction process described in the pre-
vious paragraph. The following two Examples show this can happen when
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a              b             a              b             a              b             a              b             

Figure 6: Configurations of 2 points and 4 segments on 1 real line, from
Example 13. Left: configuration S; Right: configuration T .

K = R, r = 2, and Eves’ Theorem is applied to signed distances in RD as in
Corollary 33.

Example 13. The simplest example of a non-reconstructible weighted pro-
jective space is RP (2, 2), where there is only one axis projection in the prod-
uct from Definition 14: let h0,1 : RP (2, 2)→ RP (1, 1) be the two-to-one map
induced by the inclusion h0,1(z0, z1) = (z0, z1) as in Theorem 7 and Example
5. The simplest example of a weight (2, 2) h-configuration has r = 2, D = 1
and � = 1: one line L = RP 1. Let α and β be distinct points on R1 ⊆ RP 1,
and consider the configuration with the directed segment (α, β) appearing
with multiplicity 4: two black segments and two red segments. The indexing
as in (17) is S = (S0,S1), and S0 = S1 = [(α, β), (α, β)]. If we pick any unit

of length in either direction, in order to define �
−→
αβ� as the signed length of

the directed segment (α, β), then the weighted invariant from Corollary 33 is

E(2,2)(S) =
[
�
−→
αβ�2 : �

−→
αβ�2

]
(2,2)

= [1 : 1](2,2).

The modification of S into a weight (1, 1) h-configuration S(0,1) is only a
change in point of view from a ((2, 2), 2, 1, 1)-configuration to a ((1, 1), 2, 2, 1)-
configuration; there is no change in the lists of segments:

S(0,1) = (S(0,1)
0 ,S(0,1)

1 ) = (S0,S1) = S,

or the set of lines, {L}. By Corollary 36, the (1, 1) invariant of this h-
configuration is:

E(1,1)(S(0,1)) = h0,1(E(2,2)(S))

=
[
�
−→
αβ�2 : �

−→
αβ�2

]
(1,1)

= [1 : 1].
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Now, let T be a new weight (2, 2) h-configuration: the same line L and
points α, β as S, but with two black segments in opposite directions, and
two red segments also in opposite directions. The indexing as in (17) is

T = (T0, T1),
T0 = T1 = [(α, β), (β, α)].

There is obviously no morphism S → T , and the weighted invariant is a
different element of RP (2, 2):

E(2,2)(T ) =
[
�
−→
αβ��

−→
βα� : �

−→
αβ��

−→
βα�

]
(2,2)

= [−1 : −1](2,2).

T is also a weight (1, 1) h-configuration, with (1, 1) invariant:

E(1,1)(T (0,1)) = h0,1(E(2,2)(T ))

=
[
�
−→
αβ��

−→
βα� : �

−→
αβ��

−→
βα�

]
(1,1)

(31)

= [−1 : −1] = [1 : 1].

The conclusion is that the E(1,1) invariant cannot distinguish between S(0,1) =
S and T (0,1) = T .

Example 14. Let α, β, γ be the vertices of a triangle in the Euclidean plane
R

2, and let α′, β ′, γ ′ be the midpoints on opposite sides. The following
configuration

S = (S0,S1,S2)
is a ((2, 2, 4), 2, 3, 2)-configuration and a weight (2, 2, 4) h-configuration.

S0 = [(β, α′), (β, α′), (γ, β ′), (γ, β ′), (α, γ ′), (α, γ ′)]

S1 = [(α′, γ), (α′, γ), (β ′, α), (β ′, α), (γ ′, β), (γ ′, β)]

S2 = [(β, α′), (β, α′), (α′, γ), (α′, γ), (γ, β ′), (γ, β ′),

(β ′, α), (β ′, α), (α, γ ′), (α, γ ′), (γ ′, β), (γ ′, β)].

It is possible to pick a direction and unit of length for each of the three
lines so all the directed segments have signed length +1. The invariant from
Corollary 33 is:

Ep(S) = [1 : 1 : 1](2,2,4).

41



a

g ‘                                        b’

b                                     a’                                         g

Figure 7: The configuration S from Example 14, of 6 points, 3 lines, and 24
directed segments in the real plane.

If we ignore the green segments and look only at the black and red seg-
ments,

S(0,1) = (S0,S1)
is an h-configuration with E(1,1)(S(0,1)) = [1 : 1]. However, the other color
pairs (S0,S2) and (S1,S2) are not h-configurations. The modification of
(S0,S2) into S(0,2) is to duplicate all the black segments, so each line has four
black segments and four green segments. Then

E(1,1)(S(0,2)) = [1 : 1]

as in Corollary 36, and similarly E(1,1)(S(1,2)) = [1 : 1].
By Theorems 7 and 17, the product of axis projections,∏

hij : RP (2, 2, 4) → RP 1 × RP 1 × RP 1 :

z �→ (h01(z), h02(z), h12(z)),

[z0 : z1 : z2](2,2,4) �→ ([z0 : z1], [z
2
0 : z2], [z

2
1 : z2]),

is two-to-one on Dp. In particular, [1 : 1 : 1](2,2,4) �→ ([1 : 1], [1 : 1], [1 : 1]),
and the other point with that image is [−1 : −1 : 1](2,2,4).

So, as in Example 13, it is possible to find projectively inequivalent weight
(2, 2, 4) h-configurations S and T with different E(2,2,4) invariants, but which
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a

g ‘                                        b’

b                                     a’                                         g

Figure 8: The configuration T from Example 14.

have the same E(1,1) invariants from applying Eves’ Theorem to their three
h-configurations S(i,j) and T (i,j). We can reverse some of the red and black
directed segments from S to get a new configuration T = (T0, T1, T2),

T0 = [(β, α′), (α′, β), (γ, β ′), (β ′, γ), (α, γ ′), (γ ′, α)]

T1 = [(α′, γ), (γ, α′), (β ′, α), (α, β ′), (γ ′, β), (β, γ ′)]

T2 = S2.

So, Ep(T ) = [−1 : −1 : 1](2,2,4), and all three (i, j) color pairs have
E(1,1)(T (i,j)) = [1 : 1].

The next Example is a configuration considered by [B]; all six points are
in the Euclidean plane, as in Examples 11, 12, but the configuration can be
seen to have an octahedral pattern.

Example 15. Let 1, 2, 3, 4, 5, 6, be six points in the Euclidean plane as in
Example 11. Let S = (S0,S1) be a configuration of four black triangles and
four red triangles:

S0 = [�(465),�(423),�(512),�(136)],

S1 = [�(123),�(165),�(245),�(346)].
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1 5

6
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Figure 9: A configuration of 6 points in the real plane, showing the 4 red
triangles from Example 15.

Each of the six points has black degree and red degree equal to 2, so, unlike
Example 11, S can be viewed as either a ((2, 2), 3, 2, 2)-configuration or a
((1, 1), 3, 4, 2)-configuration. S is both a weight (2, 2) h-configuration and a
weight (1, 1) h-configuration, equal to S(0,1). In the plane coordinate system
from Section 5, the (2, 2) invariant is:

E(2,2)(S)
= [��(465)�B��(423)�B��(512)�B��(136)�B :

��(123)�B��(165)�B��(245)�B��(346)�B](2,2)
= [z0 : z1](2,2).

The (1, 1) invariant of the same configuration is:

E(1,1)(S(0,1)) = [z0 : z1](1,1),

so z1
z0

can be interpreted as the ratio of signed areas:

(Area�(123))(Area�(165))(Area�(245))(Area�(346))

(Area�(465))(Area�(423))(Area�(512))(Area�(136))
.

We remark that the property E(1,1)(S(0,1)) = [1 : 1] is equivalent to the
projective property that six points lie on a conic ([CRG], [RG]).
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Let T = (T0, T1) be a new configuration — the same six points, but
changing the order of vertices in one of the black triangles and one of the red
triangles to get the opposite signed areas:

T0 = [�(456),�(423),�(512),�(136)],

T1 = [�(132),�(165),�(245),�(346)].

Then T has the same E(1,1) invariant, and in the ratio of signed areas, the
sign changes cancel, giving the same ratio as S. The two configurations have
different (2, 2) invariants, so they are projectively inequivalent:

E(2,2)(T ) = [−z0 : −z1](2,2) �= [z0 : z1](2,2) = E(2,2)(S).
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