
ADDENDUM TO:

PROPER HOLOMORPHIC MAPS FROM DOMAINS IN C2

WITH TRANSVERSE CIRCLE ACTION

ADAM COFFMAN AND YIFEI PAN

Last update: March 18, 2023.

6. Updates

The article [CP] has been reviewed as noted in the list of references, below.
Our contact information has changed, and our current web pages can be

found at:
http://users.pfw.edu/CoffmanA/

http://users.pfw.edu/Pan/

7. Citations

The article is cited in these papers: [CL], [J].

The following Sections of this Addendum include some details omitted
from the published version of [CP]. In Section 8 we review the definition
of “finite type,” and check an elementary equality in a special case, based
on conversations with Martino Fassina ([FP]). The remaining Sections give
some details on the “general properties of actions of Lie groups” mentioned
in [CP] §2, and also present some detailed notes on elementary results of
point-set topology and smooth manifolds related to constructions in [CP].

8. Finite type conditions

Definition 2.1 of [CP] states, and claims the equivalence of, two definitions
of the notion of “finite type” for points on the three-dimensional boundary
bΩ = {r(�z) = 0} of the smoothly bounded domain Ω = {r < 0} ⊆ C2. Both
definitions are local near any given point p ∈ bΩ, and do not depend on the
local holomorphic coordinate system. To clarify the relation between the
definitions, we consider a simple special case where a real hypersurface in
C2 is in a rigid local normal form, meaning that there is a coordinate system
in which the hypersurface goes through the origin and is defined by {r = 0},
where the smooth function r is of the form:

(8.1) r(z1, z2) = ρ(z1, z̄1)− Im(z2),
1
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for a real valued function ρ depending on z1 only and not on z2, with ρ(�0) =
∂
∂zρ(

�0) = ∂
∂z̄ρ(

�0) = 0. Smooth hypersurfaces with a rigid normal form are
considered in [CP] §4. However, not every smooth hypersurface considered
by [CP] has a rigid local normal form under local biholomorphic equivalence.

Definition 8.1. Given a smooth function f : C → C with f(0) = 0, define
the order of vanishing of f to be:

ν(f) = min

⎧⎨
⎩N : ∃bαβ :

∑
α+β≤N

bαβ
∂α

∂zα
∂β

∂z̄β
f(z)

⎤
⎦
z=0

�= 0

⎫⎬
⎭ .

ν(f) is a positive integer unless there is no such number N — then define
ν(f) = ∞.

We remark that it would be equivalent to find just one lowest degree,
non-zero derivative term instead of a complex linear combination, or to use
x, y derivatives instead of z, z̄, but this formulation will be convenient later
and does not depend too much on the coordinate system.

Theorem 8.2. For a smooth real hypersurface in C2 given by an equation
in the rigid normal form (8.1), the following are equivalent.

(1) ν(Λr) <∞.
(2) ν(ρzz̄) <∞.
(3) Δ1

reg = sup
γ2

ν(r(z, γ2(z))) <∞.

(4) Δ1 = sup
(γ1,γ2)

ν(r(γ1(z), γ2(z)))

min{ν(γ1), ν(γ2)} <∞.

The supremum in items (3) and (4) is over holomorphic functions in a
neighborhood of 0 with γ1(0) = γ2(0) = 0 and γ1 �≡ 0. If any of the four
quantities is finite then this equality holds:

ν(Λr) + 2 = ν(ρzz̄) + 2 = Δ1
reg = Δ1.

Proof. Condition (3) is called “regular finite type,” measuring the high-
est order of contact of the hypersurface with an embedded holomorphic
curve, which must be tangent to the z1 axis, and parametrized in the form
(z1, γ

2(z1)). Condition (4) is “singular finite type,” with any, possibly sin-
gular, holomorphic curve (γ1(z), γ2(z)), so γ1(z) = z is a special case and
(4) =⇒ (3) trivially with Δ1

reg ≤ Δ1.

In general (as in [CP] §2), the Levi determinant Λr : C
2 → R depends on

two variables:

Λr = − det

⎡
⎣ 0 rz̄1 rz̄2
rz1 rz1z̄1 rz1z̄2
rz2 rz2z̄1 rz2z̄2

⎤
⎦ ,

but when r is in the rigid normal form (8.1), Λr is proportional to ρz,z̄. This
is enough for the equivalence (1) ⇐⇒ (2).



ADDENDUM TO: PROPER MAPS FROM DOMAINS WITH CIRCLE ACTION 3

We recall some calculus formulas for (real) differentiable functions

�γ : C2 → C2 : (ζ, α) �→ (γ1(ζ, α), γ2(ζ, α)),

ρ : C2 → C : (z, w) �→ ρ(z, w),

starting with the chain rule:

∂

∂ζ
(ρ ◦ �γ) =

∂ρ

∂z
(�γ(ζ, α))

∂γ1

∂ζ
+
∂ρ

∂w
(�γ(ζ, α))

∂γ2

∂ζ

∂

∂α
(ρ ◦ �γ) =

∂ρ

∂z
(�γ(ζ, α))

∂γ1

∂α
+
∂ρ

∂w
(�γ(ζ, α))

∂γ2

∂α
.

Next, consider the special case where γ1 is holomorphic in ζ and does not
depend on α, and

�γ(ζ, α) =

⎛
⎝ ∞∑

j=1

γjζ
j,

∞∑
j=1

γjα
j

⎞
⎠ ,

so

∂

∂ζ
(ρ ◦ �γ) =

∂ρ

∂z
(�γ(ζ, α))

∂γ1

∂ζ
+
∂ρ

∂w
(�γ(ζ, α)) · 0

∂

∂α
(ρ ◦ �γ) =

∂ρ

∂z
(�γ(ζ, α)) · 0 + ∂ρ

∂w
(�γ(ζ, α))

∂γ2

∂α
.

Restricting to (ζ, α) = (z, z̄) = (z, w) and abbreviating
∂ρ

∂z
= ρz,

∂ρ

∂z̄
= ρz̄,

and
d

dz
γ1(z) = (γ1)′(z),

∂

∂z
(ρ(γ1(z), γ1(z))) = ρz(γ

1(z), γ1(z)) · (γ1)′(z)
∂

∂z̄
(ρ(γ1(z), γ1(z))) = ρz̄(γ

1(z), γ1(z)) · (γ1)′(z).(8.2)

Using the relation ∂
∂z̄ = C ◦ ∂

∂z ◦C, where C is conjugation on C, if ρ happens

to also be real valued, then ρz̄(z, z̄) = C( ∂
∂zρ(z, z̄)) = ρz(z, z̄), and applying

this to the real valued expression ρ(γ1(z), γ1(z)) is consistent with (8.2).
For second derivatives when ρ is twice differentiable (and continuing to

assume γ1 is holomorphic), the product rule is needed:

∂2

∂z2
(ρ(γ1(z), γ1(z))) = ρzz(γ

1, γ1) · ((γ1)′)2 + ρz(γ
1, γ1) · (γ1)′′

∂2

∂z∂z̄
(ρ(γ1(z), γ1(z))) = ρzz̄(γ

1, γ1) · (γ1)′(γ1)′

∂2

∂z̄2
(ρ(γ1(z), γ1(z))) = ρz̄z̄(γ

1, γ1) · ((γ1)′)2 + ρz(γ
1, γ1) · (γ1)′′.

For higher derivatives when ρ is smooth, a special case of the Faà di Bruno
formula is needed. Abbreviating ∂α

∂zα = ∂α, ∂α

∂z̄α = ∂
α
, and dα

dzαγ
1(z) = γ(α),
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the claim is that for nonnegative integers α, β, there exist positive constants
c�m,�n so that

∂α∂
β
(ρ(γ1(z), γ1(z)))

=
∑
�m,�n

c�m,�n(∂
m1+···+mα∂

n1+···+nβρ)(γ1, γ1)

⎛
⎝ α∏

j=1

(γ(j)(z))mj

⎞
⎠
⎛
⎝ β∏

j=1

(γ(j)(z))nj

⎞
⎠,

where the sum is over all ordered lists �m and �n of non-negative integers
satisfying m1 + 2m2 + · · ·+ αmα = α and n1 + 2n2 + · · ·+ βnβ = β. When

α = 0, the convention is to set the empty product

α∏
j=1

= 1 and to have the

only index �m satisfy m1 + · · · + m0 = 0; similarly for β = 0 and �n. The
claimed formula is consistent with the previously stated cases (α, β) = (1, 0),
(0, 1), (2, 0), (1, 1), and (0, 2), so that starts an induction on either α or
β. Assume α ≥ β ≥ 0 and α ≥ 1 (the remaining cases β > α ≥ 0 being
similar). The next derivative, increasing α by 1, has terms with non-negative
coefficients (so there are no cancellations):

∂
(
∂α∂

β
(ρ(γ1(z), γ1(z)))

)

=

⎛
⎝∑

�m,�n

c�m,�n(∂
1+m1+···+mα∂

n1+···+nβρ)(γ1, γ1))·

(
γ(1)(z)

)m1+1

⎛
⎝ α∏

j=2

(γ(j)(z))mj

⎞
⎠
⎛
⎝ β∏

j=1

(γ(j)(z))nj

⎞
⎠
⎞
⎠(8.3)

+

⎛
⎝∑

�m,�n

c�m,�n(∂
m1+···+mα∂

n1+···+nβρ)(γ1, γ1))·
⎛
⎝ α∑

k=1

⎛
⎝∏

j �=k

(γ(j)(z))mj

⎞
⎠mk

(
γ(k)(z)

)mk−1
γ(k+1)(z)

⎞
⎠ ·(8.4)

⎛
⎝ β∏

j=1

(γ(j)(z))nj

⎞
⎠
⎞
⎠ .

To prove the claim, we need to show that for any list �m′ satisfying 1m′
1 +

2m′
2 + · · · + αm′

α + (α + 1)m′
α+1 = α + 1, there is some corresponding

term in the above expression with a positive coefficient. The indices m′
k

can’t all be zero, so there are two cases. If m′
1 > 0 then m′

α+1 = 0; let
m1 = m′

1 − 1 and mk = m′
k for 1 < k ≤ α. Then 1m1 + 2m2 + · · ·+ αmα =

1(m′
1 − 1)+ 2m′

2 + · · ·+αm′
α +(α+1) · 0 = (α+1)− 1 = α. The coefficient

c�m′,�n corresponds to a term in (8.3), so it is positive. If m′
k+1 > 0 for some

1 ≤ k ≤ α, let mk = m′
k + 1, mk+1 = m′

k+1 − 1 (which = 0 for k = α),
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and mj = m′
j for all other j. Then m1 + · · · +mα = m′

1 + · · · +m′
α+1 and

1m1+2m2+ · · ·+αmα = 1m′
1+ · · ·+ k(m′

k +1)+ (k+1)(m′
k+1− 1)+ · · · =

(α + 1) + k − (k + 1) = α. The coefficient c�m′,�n corresponds to a term in
(8.4) with mk > 0, so it is positive.

Returning to the smooth, real valued functions r and ρ as in (8.1), consider

a holomorphic function γ2(z) =

∞∑
k=1

γ2kz
k, the composite r(z, γ2(z)) as in (3),

and its degree N1 Taylor polynomial:

∑
α+β≤N1

1

α!β!

∂α

∂zα
∂β

∂z̄β
(
ρ(z, z̄)− Im(γ2(z))

)]
z=0

zαz̄β(8.5)

=

(
N1∑
α=2

1

α!
∂αρ(0)zα

)
+

1

2i

(
N1∑
α=1

γ2αz
α

)

+

⎛
⎝ ∑

α+β≤N1,α�=0,β �=0

1

α!β!
∂α−1∂

β−1
ρzz̄(0)z

αz̄β

⎞
⎠

+

(
N1∑
α=2

1

α!
∂
α
ρ(0)z̄α

)
− 1

2i

(
N1∑
α=1

γ2αz̄
α

)
.

Assuming (2), let N2 = ν(ρzz̄) ≥ 0, so there exist coefficients bαβ with

∑
α+β≤N2

bαβ∂
α∂

β
ρzz̄(0) �= 0.

Define coefficients b′αβ = 0 for α = 0 or β = 0 and b′αβ = bα−1,β−1 for α > 0

and β > 0. Then, for any γ2, referring to (8.5) shows:

∑
α′+β′≤N2+2

b′α′β′∂α
′
∂
β′ (

r(z, γ2(z))
)]

z=0

=
∑

α′+β′≤N2+2,α′ �=0,β′ �=0

b′α′β′∂α
′−1∂

β′−1
ρzz̄(0)

=
∑

α+β≤N2

b′α+1,β+1∂
α∂

β
ρzz̄(0) �= 0.

This shows (2) =⇒ (3), with Δ1
reg ≤ ν(ρzz̄) + 2.

Now assuming (3), ν being integer valued means that the supremum N3

is attained by some particular function γ2. Considering (8.5) and the as-
sumption that ρ(0) = ρz(0) = ρz̄(0) = 0, if N3 = ν(r(z, γ2(z))) = 1 then γ2

would have a non-zero linear coefficient γ21 , but then it could be replaced by
γ2 − γ21z to get ν ≥ 2, contradicting N3 being the supremum over choices
of γ2. So, N3 ≥ 2 and we can assume γ21 = 0. Considering (8.5) again, by
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definition of N3 = ν(r(z, γ2(z))), there are coefficients bαβ so that

0 �=
(

N3∑
α=2

bα0

(
∂αρ(0) +

α!

2i
γ2α

))

+

⎛
⎝ ∑

α+β≤N3,α�=0,β �=0

bαβ∂
α−1∂

β−1
ρzz̄(0)

⎞
⎠(8.6)

+

(
N3∑
α=2

b0α

(
∂
α
ρ(0)− α!

2i
γ2α

))
.

If we suppose, toward a contradiction, that for any choice of coefficients
b′α′β′ ,

∑
α′+β′≤N3−2

b′α′β′∂α
′
∂
β′
ρzz̄(0) = 0,

then the middle term in (8.6) is 0. Consider the polynomial

γ3(z) = γ3N3+1z
N3+1 +

N3∑
α=2

(
−2i

α!
∂αρ(0)

)
zα.

Replacing γ2 by γ3 in (8.6) changes the total sum to 0 for any choice of

bαβ (recalling that for real ρ, ∂
α
ρ(0) = ∂αρ(0)). Then the highest degree

coefficient can be chosen, γ3N3+1 �= − 2i
(N3+1)!∂

N3+1ρ(0), so that ν(r(z, γ3)) =

N3 + 1, contradicting N3 being the supremum over choices of γ2. The
conclusion is that ν(ρzz̄) ≤ N3 − 2. This shows (3) =⇒ (2), and that
if either number is finite, then Δ1

reg = ν(ρzz̄) + 2.
More generally, consider holomorphic components:

γ1(z) =
∞∑
k=1

γ1kz
k �≡ 0,

γ2(z) =
∞∑
k=1

γ2kz
k,
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the composite r(γ1(z), γ2(z)) as in (4), and its degree N1 Taylor polynomial
using the previously proved FdB formula:

∑
α+β≤N1

1

α!β!

∂α

∂zα
∂β

∂z̄β

(
ρ(γ1(z), γ1(z))− Im(γ2(z))

)]
z=0

zαz̄β(8.7)

=

⎛
⎝ N1∑

α=2

1

α!

⎛
⎝∑

�m

c�m,�0(∂
m1+···+mαρ)(0)

⎛
⎝ α∏

j=1

(γ1j j!)
mj

⎞
⎠
⎞
⎠ zα

⎞
⎠

+
1

2i

(
N1∑
α=1

γ2αz
α

)

+

⎛
⎝ ∑

α+β≤N1,α�=0,β �=0

1

α!β!

⎛
⎝∑

�m,�n

c�m,�n

(
∂m1+···+mα∂

n1+···+nβρ
)
(0) ·

⎛
⎝ α∏

j=1

(γ1j j!)
mj

⎞
⎠
⎛
⎝ β∏

j=1

(γ1j j!)
nj

⎞
⎠
⎞
⎠ zαz̄β

⎞
⎠(8.8)

+

⎛
⎝ N1∑

β=2

1

β!

⎛
⎝∑

�n

c�0,�n

(
∂
n1+···+nβρ

)
(0)

⎛
⎝ β∏

j=1

(γ1j j!)
nj

⎞
⎠
⎞
⎠ z̄β

⎞
⎠

− 1

2i

⎛
⎝ N1∑

β=1

γ2β z̄
β

⎞
⎠ .

There is some q > 0 so that γ1k = 0 for 0 ≤ k < q and γ1q �= 0, so ν(γ1) = q.
Assuming (2), let N2 = ν(ρzz̄) ≥ 0, so there exist coefficients bαβ with

(8.9)
∑

α+β≤N2

bαβ∂
α∂

β
ρzz̄(0) �= 0.

By the minimality of N2,

(8.10) α+ β < N2 =⇒ ∂α∂
β
ρzz̄(0) = 0.

For indices α′ ≥ 0, β′ ≥ 0 with α′+β′ ≤ q(N2+2), define b′α′β′ = 0 for α′ = 0

or β′ = 0. To show (2) =⇒ (4) by estimating the order of vanishing of
r(γ1(z), γ2(z)), use these b′α′β′ coefficients, the rest of which will be specified
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later, and the mixed derivative terms from (8.8):∑
α′+β′≤q(N2+2)

b′α′β′∂α
′
∂
β′
(r(γ1(z), γ2(z)))

]
z=0

=
∑

α′+β′≤q(N2+2)

b′α′β′

⎛
⎝∑

�m,�n

cα
′β′

�m,�n (∂
m1+···+mα′∂

n1+···+nβ′
ρ)(0) ·

⎛
⎝ α′∏

j=1

(γ1j j!)
mj

⎞
⎠
⎛
⎝ β′∏

j=1

(γ1j j!)
nj

⎞
⎠
⎞
⎠ .(8.11)

The coefficients in the inside sum are labeled to emphasize the dependence on
α′ > 0 and β′ > 0. �m = (m1, . . . ,mα′) satisfies m1+2m2+ · · ·+α′mα′ = α′
and similarly n1 + 2n2 + · · · + β′nβ′ = β′. Any term in (8.11) with mj > 0
or nj > 0 for any j = 1, . . . , q − 1 will be zero because γ1j = 0. So the only

candidates for non-zero terms are of the form �m = (0, . . . , 0,mq, . . . ,mα′) for
α′ ≥ q, and similarly for �n. If there is some mj > 0 or nj > 0 for j ≥ q + 1,
then there is a strict inequality:

m1 +m2 + · · ·+mα′ + n1 + n2 + · · · + nβ′

<
1

q
(qmq + (q + 1)mq+1 + · · ·+ α′mα′ + qnq + (q + 1)nq+1 + · · · + β′nβ′)

=
1

q
(α′ + β′) ≤ 1

q
· q(N2 + 2) = N2 + 2.

As noted in (8.10), terms in (8.11) with such indices will also be zero because
there are not enough derivatives of ρ. So, for each α′, β′, there is at most one
possible non-zero term remaining in (8.11), with �m = (0, . . . , 0,mq, 0, . . . , 0)
and �n = (0, . . . , 0, nq, 0, . . . , 0), satisfying qmq = α′, and qnq = β′. The sum
(8.11) can be simplified to:
(8.12) ∑
α′ + β′ ≤ q(N2 + 2),

α′ = qmq,
β′ = qnq

b′α′β′c
α′β′
(0,...,mq,...0),(0,...,nq,...,0)

(∂mq∂
nq
ρ)(0)(γ1q q!)

mq (γ1q q!)
nq .

Now we can choose, for indices α′ + β′ ≤ q(N2 + 2),

b′α′β′ =
bα′

q
−1,β

′
q
−1

cα
′β′

(0,...,α
′
q
,...0),(0,...,β

′
q
,...,0)

(γ1q q!)
α′
q (γ1q q!)

β′
q

,

when α′ and β′ are positive multiples of q, and bα′β′ = 0 otherwise. This is
the key step, using the previously checked property that the FdB coefficients
c are non-zero. Then, re-indexing the sum (8.12) with α′ = q(α+ 1) = qmq

and β′ = q(β + 1) = qnq gives exactly the sum (8.9), which is non-zero by
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hypothesis. The conclusion so far is that for any γ2, ν(r(γ1(z), γ2(z))) ≤
q(N2 + 2).

Finally, for a fixed γ1, if γ2 satisfies ν(γ2) < ν(γ1) = q, then inspecting the
Taylor polynomial (8.8) shows that ν(r(γ1(z), γ2(z))) = ν(γ2) — the only
non-zero terms are from γ2 because all the derivatives of γ1 in degree < q

are zero. There are two cases: if ν(γ2) < ν(γ1), then
ν(r(γ1(z), γ2(z)))

min{ν(γ1), ν(γ2)} = 1,

and otherwise
ν(r(γ1(z), γ2(z)))

min{ν(γ1), ν(γ2)} ≤ q(N2 + 2)

q
= N2 + 2. This upper bound

does not depend on γ1 so we can conclude that

Δ1 = sup
(γ1,γ2)

ν(r(γ1(z), γ2(z)))

min{ν(γ1), ν(γ2)} ≤ N2 + 2 = Δ1
reg.

9. Definition of T-action

Let Ω be a bounded open subset of C2. Denote its boundary by bΩ,
so that the closure of Ω in C2 is Ω = Ω ∪ bΩ. Assume bΩ is a smoothly
embedded real submanifold of C2. Let Aut(Ω) denote the set of holomorphic
automorphisms of Ω, with identity element e.

Proposition 9.1. Aut(Ω) has a Lie group structure so that the evaluation
map

A : Aut(Ω)×Ω → Ω : (g, z) �→ g(z)

is real analytic.

Remark. This result of H. Cartan is proved in [N].

Let S1 denote the unit circle with its standard Lie group structure, and
let

φ : S1 → Aut(Ω) : t �→ φt

be a homomorphism: φst = φs ◦ φt.
Theorem 9.2. If φ is continuous, then φ is real analytic.

Proof. This follows from [P] Theorem 2.3.1.

Denote the image of φ by φ(S1) = T ⊆ Aut(Ω).

Theorem 9.3. If φ is continuous, then T, with the induced subspace topol-
ogy, is a Lie group.

Proof. It follows from the continuity of φ, the compactness of S1, and the
Hausdorff property of Aut(Ω) that T = φ(S1) is a closed subset of Aut(Ω)
([M] Theorems 26.5, 26.3). By elementary group theory, the image of any
homomorphism is a subgroup. Since T is a closed subgroup of the Lie group
Aut(Ω), it follows from [P] Theorem 3.3.1 (or [W] Theorem 3.42) that T has
a unique real analytic (or smooth) manifold structure so that its inclusion,
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as a map from T with this manifold structure to T with its induced subspace
topology from Aut(Ω), is a homeomorphism — T is a “regular submanifold”
in the sense of [20] §III.5, III.6.

Theorem 9.4. If φ is continuous then either φ is constant, so T is the
trivial group {e}, or φ is an immersion, and T is isomorphic as a Lie group
to S1.

Proof. If φ is not a constant map, then, since S1 is connected, and φ is
smooth by Theorem 9.2, there must be some point t ∈ S1 so that dφ :
TtS

1 → TφtAut(Ω) is not the zero map ([W] Theorem 1.24), so it has rank 1,
the maximum possible. By [20] Theorem III.6.14, the rank of dφ is constant
on S1. This means φ is an immersion.

T is an example of a “one-parameter subgroup” of Aut(Ω) ([20] Def.
IV.5.9, [P] Def. 2.2.2, [W] Def. 3.29), in the sense that it is the image of
a smooth homomorphism φ ◦ c : R1 → Aut(Ω), where c : R1 → S1 is the
immersion x → e2πix. The statement that T is isomorphic as a Lie group
(that is, both diffeomorphic and algebraically isomorphic) to S1 follows from
[20] Exercise IV.5.6.

Theorem 9.5. If φ is continuous and one-to-one then φ : S1 → T is an
isomorphism of Lie groups.

Proof. If φ is one-to-one, then it is not constant, so by the previous Theorem,
φ is a one-to-one immersion. Using the compactness of S1, it follows either
from [W] Theorem 3.21 or [20] Theorem III.5.7 that φ is an embedding into
Aut(Ω), meaning φ : S1 → T is a homeomorphism, and an embedding is a
diffeomorphism onto its image.

Given a continuous homomorphism φ, the evaluation map A from Propo-
sition 9.1 restricts to a real analytic map which is onto and continuous with
respect to the subspace topology on T× Ω ⊆ Aut(Ω)× Ω ⊆ Aut(Ω)× C2.

Aφ : T× Ω → Ω : (φt, z) �→ φt(z),(9.1)

called a T-action on Ω. The T-action is trivial means: φ is the constant
map to the identity in Aut(Ω) (the first case from Theorem 9.4).
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10. Continuous extension

Theorem 10.1. For any subspace D of any topological space X, with closure
D in X, and any topological space Y , if g : D → Y is continuous and
h : D → Y is continuous with g(x) = h(x) for all x ∈ D, then the image

h(D) is contained in g(D), the closure of the image g(D) in Y . If, further,
Y is Hausdorff and h′ : D → Y is also continuous with g(x) = h′(x) for all
x ∈ D, then h = h′.

Proof. The closure of D in D is D ([M] Theorem 17.4), and the image of the
closure of D in D is contained in the closure of the image g(D) = h(D) in
Y , by the continuity of h ([M] Theorem 18.1). The equality h = h′ is ([M]
Ex. 18.13).

Theorem 10.2. Let X and Y be topological spaces with X Hausdorff, and
let Ω be an open set in X. Suppose g : Ω → Y is continuous and the
restriction g|Ω : Ω → g(Ω) is a homeomorphism, with g(Ω) open in Y . If
p ∈ bΩ then g(p) ∈ b(g(Ω)).

Proof. By [M] Ex. 17.19.c., bΩ = Ω \ Ω, and b(g(Ω)) = g(Ω) \ g(Ω). By the

previous Theorem, g(Ω) ⊆ g(Ω), so it remains only to show that if p ∈ Ω\Ω,
then g(p) /∈ g(Ω).

Suppose, toward a contradiction, that g(p) ∈ g(Ω), so g(p) = g(x) for
some x ∈ Ω. Since X is Hausdorff, there exist open sets U , W in X so that
x ∈ U , p ∈W , and U ∩W = Ø. Let U1 = U ∩Ω, so x ∈ U1, U1 is open in Ω,
and g(U1) = (g|Ω)(U1) is open in g(Ω) (because g|Ω is a homeomorphism).
Since g(Ω) is open in Y , g(U1) is open in Y ([M] Lemma 16.2), so g−1(g(U1))
is open in Ω. Since g(p) = g(x) ∈ g(U1), p ∈ g−1(g(U1)), and W ∩Ω is open
in Ω, so p ∈ (W ∩Ω)∩ g−1(g(U1)), which is an open set in Ω, equal to V ∩Ω
for some open set V in Y . Since p ∈ V ∩ Ω, there is some point v in V ∩ Ω
([M] Theorem 17.5.a.).

(g|Ω)(v) = g(v) ∈ g(W ∩Ω ∩ g−1(g(U1)))

⊆ g(g−1(g(U1))) ⊆ g(U1) = (g|Ω)(U1),

so v ∈ U1 ⊆ U and v ∈ V ∩ Ω ⊆ V ∩ Ω = (W ∩ Ω) ∩ g−1(g(U1)) ⊆ W ,
contradicting U ∩W = Ø.

Definition 10.3. For φ, Ω ⊆ C2 as in Section 9, the T-action Aφ from (9.1)

extends continuously to Ω means: there is a continuous map AE
φ : T×Ω →

C2 so that AE
φ (φt, z) = Aφ(φt, z) for all (φt, z) ∈ T× Ω.

Corollary 10.4. If Aφ extends continuously to Ω, then AE
φ (T × Ω) ⊆ Ω

and AE
φ is unique and takes boundary points to boundary points: for any

φt ∈ T, if p ∈ bΩ, then AE
φ (φt, p) ∈ bΩ. The restriction to the boundary is

continuous.

Proof. Theorem 10.1 applies with D = T × Ω, X = T × C2, Y = C2. The
closure of T× Ω in T× C2 is D = T× Ω ([M] Ex. 17.9), so the conclusion
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from Theorem 10.1 that the image of the extension AE
φ is contained in Ω

and AE
φ is uniquely defined by φ. Given φt ∈ T, the composite map

Ω → T× Ω → C2 : z �→ (φt, z) �→ AE
φ (φt, z)

satisfies the hypothesis for g in Theorem 10.2, since it is a composite of con-
tinuous maps and its restriction to Ω is the automorphism z �→ AE

φ (φt, z) =

Aφ(φt, z) = φt(z) ∈ Ω. The conclusion from Theorem 10.2 is that if z ∈ bΩ,
then AE

φ (φt, z) ∈ bΩ. The restriction of AE
φ to the boundary can be denoted

(10.1) Ab
φ : T× (bΩ) → bΩ

and it is continuous by ([M] Theorem 18.2).

Corollary 10.5. If Aφ extends continuously to Ω, then AE
φ defines a group

action on Ω.

Proof. First, the identity automorphism e extends to the identity map on
Ω by the uniqueness from Theorem 10.1: for any z ∈ Ω, AE

φ (e, z) = z. The
main claim is that for φt, φs ∈ T,

AE
φ (φt, A

E
φ (φs, z)) = AE

φ (φt ◦ φs, z).
Equivalently, the following diagram is commutative, where m is the contin-
uous group operation T×T → T.

T×T× Ω

IdT×AE
φ

��

m×IdΩ �� T× Ω

AE
φ

��
T× Ω

AE
φ �� Ω

The uniqueness from Theorem 10.1 applies in the same way as in the Proof
of Corollary 10.4 — the closure of T ×T× Ω in T×T× C2 is T×T × Ω
and the two paths in the diagram are both continuous extensions of the
equal maps on the interior, so they are equal on the closure. It follows
that each automorphism φt of Ω extends to a homeomorphism of Ω, where
z �→ AE

φ (φt, z) has continuous inverse z �→ AE
φ (φ

−1
t , z).

Similarly, the restriction to the boundary, Ab
φ from (10.1), defines a group

action on bΩ. For a particular φt ∈ T, the composite

bΩ → T× (bΩ) → bΩ : z �→ (φt, z) �→ Ab
φ(φt, z) = AE

φ (φt, z)(10.2)

is continuous and can be denoted φbt : bΩ → bΩ. It is a homeomorphism
because it has a continuous inverse:

(10.3) (φbt ◦ φbt−1)(z0) = Ab
φ(φt, A

e
φ(φt−1 , z0)) = Ab

φ(φt ◦ φt−1 , z0) = z0.

Similarly, for each z0 ∈ bΩ, the composite

(10.4) T → T× (bΩ) → bΩ : φt �→ (φt, z0) �→ Ab
φ(φt, z0) = AE

φ (φt, z0)
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is continuous and can be denoted ψz0 : T → bΩ. The image of ψz0 is the
orbit of z0 in bΩ.

11. Smooth extension

Remark 11.1. The notion of “smooth up to the boundary” is well-known
in analysis for subsets of Rn. In this Section, we go into some detail about
the global existence and construction of smooth extensions of functions on
open subsets of smooth manifolds. This generalization is needed in [CP] to
describe smooth extensions of group actions.

Recall that a smooth manifold M is covered by an atlas of charts: open
sets Uj ⊆M and continuous, one-to-one maps ϕj : Uj → Rn so that ϕj(Uj)

is open in Rn, ϕj : Uj → ϕj(Uj) is a homeomorphism, and ϕk ◦ ϕ−1
j :

ϕj(Uj) → ϕk(Uk) is smooth on the open subset ϕj(Uj ∩Uk) ⊆ ϕj(Uj) where
it is defined — all derivatives are continuous with respect to coordinates on
ϕj(Uj) ⊆ Rn.

Definition 11.2. For an open subset D ⊆ M , a function f : D → Rm

is smooth on D means that for each point p ∈ D, there is some chart ϕj

around p so that f ◦ ϕ−1
j : ϕj(Uj) → Rm is smooth on some neighborhood

of ϕj(p) in ϕj(Uj) ⊆ Rn.

Note that if ϕk is some other chart around p, then f ◦ϕ−1
k : ϕk(Uk) → Rm

is equal to a composite of smooth functions, f ◦ ϕ−1
j ◦ ϕj ◦ ϕ−1

k , on some

neighborhood of ϕk(p). So (by construction) smoothness does not depend
on the coordinate chart. Although smoothness of f is a local property, the
following Lemma checks that on any particular chart, the derivatives can be
calculated everywhere in the intersection of that chart with the domain of
f , with respect to that chart’s one coordinate system.

Lemma 11.3. For a smooth manifold M and an open subset D ⊆ M ,
suppose p is a point in D, the closure of D in M , and ϕj is a chart around p.

If f : D → Rm is smooth on D then any derivative ∂/∂xa11 . . . ∂xann of f ◦ϕ−1
j

exists at every point of the non-empty open set ϕj(D ∩ Uj) ⊆ ϕ(Uj) ⊆ Rn.

Proof. The open set Uj has a non-empty intersection with D ([M] Theorem
17.5), so ϕj(D∩Uj) is a non-empty open set in ϕj(Uj). Let �x ∈ ϕj(D∩Uj),

so that ϕ−1
j (�x) ∈ D. Then by Definition 11.2, there is some chart ϕk around

ϕ−1
j (�x) so that f ◦ ϕ−1

k is smooth on some neighborhood of ϕk(ϕ
−1
j (�x)).

f ◦ ϕ−1
j = f ◦ ϕ−1

k ◦ ϕk ◦ ϕ−1
j is then the composite of smooth functions on

some neighborhood of �x, so it is smooth and the derivative in the x1, . . . , xn
coordinates is well-defined, not depending on k.

The next Lemma 11.4, used as a technical step in Lemma 11.5 and The-
orem 11.7, does not refer to smoothness, it only checks that the topological
closure and boundary of a domain D in M are well-defined when viewed in
any local coordinate neighborhood. The subsequent Lemma 11.5 shows that
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if a smooth function f on D and all its derivatives continuously extend lo-
cally to the boundary in one coordinate chart, then in any overlapping chart,
f and the derivatives in the new coordinates also extend to the boundary.

Lemma 11.4. For a topological manifold M , an open subset D ⊆ M , and
any chart ϕj : Uj → Rn, the closure of ϕj(D ∩ Uj) in ϕj(Uj) is equal to

ϕj(D ∩ Uj).

Proof. Temporarily denote Dc the closure of ϕj(D ∩ Uj) in ϕj(Uj). The

intersection D ∩ Uj is closed in Uj (in the subspace topology), and ϕj :

Uj → ϕj(Uj) is a homeomorphism, so ϕj(D ∩ Uj) is closed in ϕj(Uj) and

contains ϕj(D∩Uj) — this shows Dc ⊆ ϕj(D∩Uj). By ([M] Theorem 17.4),

the closure of D ∩ Uj in Uj is D ∩ Uj, and by ([M] Theorem 18.1) and the

continuity of ϕj , ϕj(D ∩ Uj) ⊆ Dc.

Lemma 11.5. For a smooth manifold M , an open subset D ⊆M , a smooth
function f : D → Rm, and a point p ∈ D, the following are equivalent.

(1) There is some chart around p, ϕj : Uj → Rn, so that every derivative

∂/∂xa11 . . . ∂xann of f ◦ ϕ−1
j extends continuously to ϕj(D ∩ Uj).

(2) For any chart around p, ϕk : Uk → Rn, there is some neighborhood
p ∈ V ⊆ Uk so that every derivative ∂/∂x̃a11 . . . ∂x̃ann of f ◦ (ϕk|V )−1

extends continuously from (ϕk|V )(D∩V ) → Rm to (ϕk|V )(D∩V ) →
Rm.

Proof. The easy direction is (2) =⇒ (1); choose any chart ϕk : Uk → M ,
then for the corresponding neighborhood V , let Uj = V , ϕj = ϕk|V , and
the x coordinates are the restriction of the x̃ coordinates to V , so that
f◦(ϕk|V )−1 = f◦ϕ−1

j extends continuously from (ϕk|V )(D∩V ) = ϕj(D∩Uj)

to (ϕk|V )(D ∩ V ) = ϕj(D ∩ Uj).

The set ϕj(D∩Uj) is the domain of f◦ϕ−1
j as in Lemma 11.3, where all the

derivatives of f ◦ϕ−1
j are defined in the x coordinate system on ϕj(Uj) ⊆ Rn.

Assuming (1), for any ϕk define V = Uj ∩ Uk, so that ϕk|V : V → Rn is a
chart around p with image ϕk(Uj ∩ Uk) ⊆ ϕk(Uk), and V has x̃ coordinates
from Uk. The composite f ◦ (ϕk|V )−1 is defined, and all its derivatives with
respect to x̃ exist, on the set (ϕk|V )(D∩V ) = ϕk(D∩Uj ∩Uk), as in Lemma
11.3. We want to show that f ◦ (ϕk|V )−1 and all its x̃ derivatives extend to
(ϕk|V )(D ∩ V ), the closure of (ϕk|V )(D ∩ V ) in (ϕk|V )(V ) by Lemma 11.4,
so to show (2), it will be enough to find some continuous extension to any
closed set in (ϕk|V )(V ) containing (ϕk|V )(D ∩ V ).

Because (ϕ−1
j ◦ ϕj)(q) = q for all q in V , we can expand and then re-

arrange:

f ◦ (ϕk|V )−1 = f ◦ ((ϕ−1
j ◦ ϕj) ◦ (ϕk|V )−1)

= (f ◦ ϕ−1
j ) ◦ (ϕj ◦ (ϕk|V )−1),(11.1)
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where the composite in (11.1) has the same domain

(11.2) (ϕj ◦ (ϕk|V )−1)−1(ϕj(D ∩ Uj)) = (ϕk|V )(D ∩ V ).

However, the factor (ϕj ◦ (ϕk|V )−1) is smooth on all of (ϕk|V )(V ) (from the
definition of smooth manifold, it is a transition function for the two charts
ϕj and ϕk|V , with V ⊆ Uj), and the factor (f ◦ϕ−1

j ) and all of its derivatives

with respect to x extend continuously to ϕj(D ∩ Uj) by the hypothesis (1).
To calculate a derivative of f ◦ (ϕk|V )−1 with respect to x̃ on the set

(ϕk|V )(D ∩ V ), and then show it coincides with a function that is continu-
ous a larger closed set, the Faà di Bruno formula applies to the composite
(11.1). The result is a multi-indexed linear combinations of derivatives of
f ◦ϕ−1

j multiplied by products of derivatives of ϕj◦(ϕk|V )−1, of the following
abbreviated form with constant coefficients cIJ:

∂

∂x̃J
(
f ◦ (ϕk|V )−1

)
=

∑
I

(
cIJ

[
∂

∂x
(f ◦ ϕ−1

j )

]
x=(ϕj◦(ϕk|V )−1)(x̃)

·
∏ ∂

∂x̃
(ϕj ◦ (ϕk|V )−1)

)
.(11.3)

In (11.3), the derivatives of (ϕj ◦ (ϕk|V )−1) in the second factor are contin-
uous on all of (ϕk|V )(V ). The expressions in the first factor, as functions
of x̃ extend continuously as follows: the derivatives of f ◦ ϕ−1

j with re-

spect to x extend continuously to ϕj(D ∩ Uj) and are then evaluated at
x = (ϕj ◦ (ϕk|V )−1)(x̃), so the expressions are continuous in x̃ on the inverse

image (ϕj ◦ (ϕk|V )−1)−1(ϕj(D ∩ Uj)), which is a closed set in (ϕk|V )(V ),

containing (ϕk|V )(D ∩ V ) as in (11.2).

In the following Lemma, let a > 0, let B = (−a, a)n ⊆ Rn be an
open box neighborhood of the origin, and denote the upper half-box B+ =
(−a, a)n−1 × (0, a) and lower half-box B− = (−a, a)n−1 × (−a, 0).
Lemma 11.6. For the open box B, if f : B → Rm is continuous on B, and
every first partial derivative ∂f

∂xj
exists on B+∪B− and extends continuously

to B, and there is a function F : B → Rm such that F has continuous first
partial derivatives on B and F (�x) = f(�x) for all x ∈ B+, then every first

partial derivative ∂f
∂xj

is continuous on B.

Proof. For k = 1, . . . n, denote the continuous extension of ∂f
∂xk

to B by

gk : B → Rm.

At a point �x0 = (x1, . . . , xn−1, 0) ∈ B, the last derivative ∂f
∂xn

(�x0) exists
and is continuous, without assuming anything about F . By an elementary
property of a derivative with respect to one variable ([C]) that follows from
the Mean Value Theorem, if f is continuous at �x0 and

lim
t→0+

(
∂f

∂xn

∣∣∣∣
(x1,...,xn−1,t)

)
= gn(�x0),
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then

lim
h→0+

f(x1, . . . , xn−1, h)− f(x1, . . . , xn−1, 0)

h
= gn(�x0),

and similarly the h → 0− limit is also gn(�x0), so the two-sided derivative
exists at �x0:

∂f

∂xn

∣∣∣∣
(x1,...,xn−1,0)

= gn(�x0).

The conclusion is that for any point in B, ∂f
∂xn

coincides with gn, so it is
continuous on B.

At the same point �x0 = (x1, . . . , xn−1, 0) ∈ B, for j = 1, . . . , n − 1 we
can calculate the ∂

∂xj
derivatives of f by noting that F is continuous on

B (in fact, differentiable, as a consequence of its partial derivatives being

continuous), so F (�x) = f(�x) on the closure B+ = {xn ≥ 0}, by Theorem
10.1.

∂f

∂xj

∣∣∣∣
�x0

= lim
h→0

f(x1, . . . , xj + h, . . . , xn−1, 0)− f(x1, . . . , xj, . . . , xn−1, 0)

h

= lim
h→0

F (x1, . . . , xj + h, . . . , xn−1, 0) − F (x1, . . . , xj , . . . , xn−1, 0)

h

=
∂F

∂xj

∣∣∣∣
�x0

,

so this derivative exists. So, for any point in B+, ∂f
∂xj

coincides with the

continuous function ∂F
∂xj

, and by the uniqueness from Theorem 10.1 again,

must also coincide with gj on B+ and therefore on all of B.

Theorem 11.7. Given an open set D of a smooth manifold M such that
the boundary of D in M is a smooth embedded submanifold bD in M , and
a smooth function f : D → Rm, the following are equivalent:

(1) For every point p ∈ bD, there is some chart around p, ϕj : Uj → Rn,

so that every derivative ∂/∂xa11 . . . ∂xann of f ◦ ϕ−1
j extends continu-

ously from ϕj(D ∩ Uj) to ϕj(D ∩ Uj).

(2) There exists an open set U ⊆ M containing D and an extension of
f to a smooth function U → Rm.

Proof. Assuming (2), let F : U → Rm be an extension of f . For any
p ∈ bD ⊆ U , by Definition 11.2 there is some chart ϕk : Uk → Rn so that
F ◦ ϕ−1

k : ϕk(Uk) → Rm is smooth on some neighborhood U ′
j of ϕk(p) in

ϕk(Uk) ⊆ Rn, with U ′
j ⊆ ϕk(U ∩ Uk). Let Uj = ϕ−1

k (U ′
j) and ϕj = ϕk|Uj , so

ϕj is a chart around p, and the x coordinates in Uk restrict to x coordinates

on Uj. For �x ∈ ϕj(D ∩ Uj), (F ◦ ϕ−1
j )(�x) = (f ◦ ϕ−1

j )(�x). By Lemma 11.3,

every derivative with respect to �x of F ◦ ϕ−1
j is continuous on ϕj(Uj), and

every derivative with respect to �x of f ◦ ϕ−1
j exists on ϕj(D ∩ Uj) and is

equal to the derivative of F ◦ϕ−1
j , so the derivative of F ◦ϕ−1

j is a continuous
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extension (not necessarily unique) and the conclusion is that (1) holds. Each
derivative extends uniquely to ϕj(D∩Uj) by Theorem 10.1 and Lemma 11.4.

Now assume (1), where for any p ∈ bD there is a corresponding chart ϕj .
For the same point p, from the hypothesis about the boundary bD being
a smoothly embedded submanifold of M , it follows from ([20] Chapter 3)
that there is another chart ϕk : Uk → Rn with ϕ(Uk) = (−1, 1)n ⊆ Rn,

ϕk(p) = �0, and ϕk(bD ∩ Uk) = {xn = 0}. ϕk(D ∩ Uk) is a non-empty open
subset of ϕk(Uk) with closure ϕk(D ∩Uk) in ϕk(Uk) as in Lemma 11.4, and
by elementary properties of the topological boundary in ϕk(Uk) ([M] §2.17)
(and using the one-to-one property of ϕk),

b(ϕk(D ∩ Uk)) = ϕk(D ∩ Uk) \ ϕk(D ∩ Uk) = ϕk(D ∩ Uk) \ ϕk(D ∩ Uk)

= ϕk((D ∩ Uk) \ (D ∩ Uk)) = ϕk((D \D) ∩ Uk)

= ϕk((bD) ∩ Uk) = {xn = 0}.
These are disjoint unions:

Uk = (D ∩ Uk) ∪ (bD ∩ Uk) ∪ (Uk \D),

ϕk(Uk) = ϕk(D ∩ Uk) ∪ {xn = 0} ∪ ϕk(Uk \D)

= ϕk(D ∩ Uk) ∪ {xn = 0} ∪ (ϕk(Uk) \ ϕk(D ∩ Uk)).

The upper half-cube B+ = {�x ∈ ϕk(Uk) = (−1, 1)n : xn > 0} is equal to the
union of these disjoint open sets:

B+ = (B+ ∩ ϕk(D ∩ Uk)) ∪ (B+ \ ϕk(D ∩ Uk)),

but because B+ is a connected set, it must equal exactly one of those open
sets. In particular, if there is any point �x ∈ B+ with ϕ−1

k (�x) ∈ D, then
B+ ⊆ ϕk(D ∩ Uk). Similarly, if there is any such point in the lower half-
cube B− = {�x ∈ Uk : xn < 0}, then B− ⊆ ϕk(D ∩ Uk). The conclusion is
that the non-empty open subset ϕk(D∩Uk) ⊆ B+∪B− must be either B+,
B−, or B+ ∪ B−. At this point we assume B+ ⊆ ϕk(D ∩ Uk), the B

− case
being analogous.

By the (1) =⇒ (2) direction of Lemma 11.5 applied to Uj and Uk, there
is some neighborhood V of p in Uk so that every derivative ∂/∂x̃a11 . . . ∂x̃ann
of f ◦ (ϕk|V )−1 extends continuously to (ϕk|V )(D ∩ V ) ⊆ ϕk(V ) ⊆ ϕk(Uk).
Just to avoid any problems along the boundary of V , consider two small
open cubes around the origin, �0 ∈ Bp � B′

p � ϕk(V ) and let χ(�x) be a

smooth bump function Rn → R with χ(x) ≡ 1 on Bp, χ(x) ≡ 0 on Rn \B′
p.

The product χ(�x) · (f ◦ (ϕk|V )−1)(�x) coincides with f ◦ (ϕk|V )−1 on the
upper half-cube B+

p , it extends in the obvious way to a smooth function
on the open upper half-space {�x ∈ Rn : xn > 0}, and every derivative
extends continuously to {xn ≥ 0}. By a version of Whitney’s Extension
Theorem (see [S]), this smooth function extends to a smooth function on
Rn. In particular, there is a smooth function Fp : Rn → Rm coinciding
with f ◦ (ϕk|V )−1 on B+

p . The composite Fp ◦ (ϕk|V ) : V → Rm is smooth
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(as in Definition 11.2) and coincides with the smooth function f on the set
(ϕk|V )−1(B+

p ) ⊆ D.

In the special case where ϕk(D∩Uk) = B+∪B− and f◦(ϕk|V )−1 is smooth
on both B+

p and B−
p , Lemma 11.6 applies to every derivative of f ◦ (ϕk|V )−1

and Fp; the conclusion is that the continuous extension of f ◦ (ϕk|V )−1 from
Bp \ {xn = 0} to Bp is itself smooth on Bp. (These are the boundary points

of D contained in the interior of D.)
Having found a local smooth extension of f in a neighborhood of each

boundary point p, let {D}∪{(ϕk |V )−1(Bp) : p ∈ bD} be an open cover of D
in M , and let U be the union of all these open sets. There exists a smooth
partition of unity {α∗}∪{αp : p ∈ bD} with respect to this open cover ([W]),
so that each αp is compactly supported in (ϕk|V )−1(Bp). The sum

α∗ · f +
∑
p∈bD

αp · (Fp ◦ (ϕk|V ))

has a finite number of non-zero terms in some neighborhood of each point
in D, so it is smooth on U . For y ∈ D,

α∗(y)·f(y)+
∑
p∈bD

αp(y)·(Fp((ϕk|V )(y))) =
(
α(y) +

∑
b∈bD

αp(y)

)
·f(y) = f(y).

Such a smooth extension to U is uniquely defined on D but obviously not
necessarily unique away from D.

Remark 11.8. In general, defining smooth functions on closed sets as ex-
tensions or restrictions of smooth functions on open sets is the subject of
Whitney’s Extension Theorem, considered by Whitney for closed sets in Rn.
The one-dimensional case of an interval in R is sketched in [D], and the two-
dimensional case of smoothly bounded open sets in C is considered in [BG]
§4.8. For a more general approach to smooth (and Cr) extension problems
in Rn, see [BB] Chapter 2. For a description of a global “collar” for bD in
M , see [H] Chapter 4 or [KM] Chapter 5.

Given M , D and f , f has a smooth extension to D means that either of
the properties from Theorem 11.7 holds. The following Definition applies
this to the constructions from Section 9.

Definition 11.9. Given Ω ⊆ C2 such that its boundary bΩ is a smooth
embedded submanifold, and a continuous homomorphism φ, a T-action
extends smoothly to the boundary means that the map Aφ from (9.1) ex-
tends to a smooth map

Ae
φ : T× Ω → C2.

More precisely, let U be some open set as in Theorem 11.7, T × Ω ⊆ U ⊆
T×C2, so that Ae

φ is smooth on U .

Any such extension Ae
φ restricts to the unique continuous extension AE

φ

as in Definition 10.3. The boundary of T×Ω in T×C2 is T× (bΩ), which



ADDENDUM TO: PROPER MAPS FROM DOMAINS WITH CIRCLE ACTION 19

is smoothly embedded in U , so Ae
φ restricts to the unique continuous map

Ab
φ : T× (bΩ) → bΩ from (10.1). The restriction Ab

φ is a smooth map ([W]

Theorem 1.32), and is a group action. For each φt ∈ T, the restriction of
Ae

φ : U → C2 to ({φt} × C2) ∩ U → C2 is smooth, so the automorphism

φt : Ω → Ω has a smooth extension to an open neighborhood (depending on
t) of the closure:

Ω ↪→ ({φt} × C2) ∩ U → C2.

Using the compactness of T and Ω, by ([M] Exercise 3.26.9) there is a
neighborhood U0 of Ω in C2 so that

T× Ω ⊆ T× U0 ⊆ U ⊆ T× C2,

which means that all the automorphisms φt : Ω → Ω extend smoothly to
the same domain U0 → C2, not depending on t.

The composite φbt : bΩ → bΩ from (10.2),

bΩ → T× (bΩ) → bΩ : z �→ (φt, z) �→ Ab
φ(φt, z) = Ae

φ(φt, z)

is a smooth map. It is a diffeomorphism because it has a smooth inverse as
in (10.3).

Similarly, for each z0 ∈ bΩ, the composite ψz0 : T → bΩ from (10.4),

T → T× (bΩ) → bΩ : φt �→ (φt, z0) �→ Ab
φ(φt, z0) = Ae

φ(φt, z0)

is a smooth map.

Theorem 11.10. The orbit of z0 (the image of ψz0) is a connected embedded
submanifold of bΩ, of dimension 0 or 1.

Proof. Given z0, let Hz0 denote the subgroup of T that fixes z0. It is proved
in ([GG] Appendix A) that Hz0 is a closed Lie subgroup, that T/Hz0 is a
smooth manifold with dimension ≤ dim(T) ≤ 1 (by Theorem 9.4), and that
ψz0 induces a one-to-one immersion T/Hz0 → bΩ whose image is the orbit
of z0. Since S1 is compact and connected, so are T and T/Hz0 , and the
immersion is an embedding ([20] Theorem III.5.7).

The orbit could be the singleton {z0}, if T fixes z0.

12. Transverse action

The boundary bΩ is a smooth 3-manifold embedded in C2, so at each
point z0 ∈ bΩ, the tangent space Tz0bΩ contains exactly one complex line
through z0, T

h
z0bΩ = Tz0bΩ ∩ Jz0Tz0bΩ, where Jz0 is the complex structure

operator on Tz0C
2.

Definition 12.1. Given a T-action on Ω which extends smoothly to the
boundary as in Definition 11.9, and a point z0 ∈ bΩ, theT-action is transverse at z0
means that the differential map d(ψz0) : TeT → Tz0bΩ has image not con-
tained in T h

z0bΩ.

For example, a trivial T-action is not transverse at any point.
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Theorem 12.2. If a T-action is transverse at z0, then the orbit of z0 is a
smoothly embedded curve in bΩ.

Proof. It follows from Theorem 11.10 that the orbit must be either an em-
bedded curve in bΩ, or a point, in which case ψz0 is the constant map and
d(ψz0) is the 0 map, so the T-action is not transverse.

Definition 12.3. The domain Ω admits a transverse T-action means: there
exists a continuous homomorphism φ : S1 → Aut(Ω) so that the correspond-
ing T-action is transverse at each point of bΩ.

Proposition 12.4. If Ω is a bounded open subset of C2 with smooth bound-
ary, and Ω admits a transverse T-action, then Ω satisfies “Condition R.”

Remark. This was proved more generally (for higher-dimensional domains
and groups) by [1].

Proposition 12.5. If Ω1 and Ω2 are bounded open subsets of C2 with smooth
boundaries, and both satisfy Condition R, then every biholomorphic map
F : Ω1 → Ω2 extends smoothly to Ω1, so that the restriction bΩ1 → bΩ2 is a
diffeomorphism.

Remark. This is proved in [10], Theorem VII.8.10, Ex. VII.8.6, and stated
as [5] Corollary 7.1.

In particular, if Ω admits a transverse T-action, then every automorphism
extends to a diffeomorphism of the closure — this was already shown for
automorphisms in T. A stronger result is:

Proposition 12.6. If Ω is a bounded open subset of C2 with smooth bound-
ary that satisfies Condition R, then the action A : Aut(Ω)×Ω → Ω extends
smoothly to Aut(Ω)× Ω → Ω.

Remark. This is proved in [6].

13. Orbits of curves

In this Section we forget about C2 — we want to consider the local ge-
ometry of a one-parameter group action on a smooth arc in a real three-
dimensional manifold, so it will be enough to work with neighborhoods in
Euclidean spaces. Consider the Lie group R with operation + and co-
ordinate function θ. Let M be an open subset of R3, with coordinate
functions (x, y, z), and let G : R × M → M be a smooth map which
is a group action. For m ∈ M , the map has components G(θ,m) =
(g1(θ,m), g2(θ,m), g3(θ,m)) ∈ M , and G has the properties: G(0,m) = m
(the action of the identity element is the identity transformation), and
G(θ + φ,m) = G(θ,G(φ,m)) (composition of transformations respects the
group operation). It follows that for each fixed θ0 ∈ R, the map

Δθ0 :M →M : Δθ0(m) = G(θ0,m)
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is a diffeomorphism, since it is the restriction of a smooth map and has a
smooth inverse, Δ−θ0 . Also for each fixed θ0, define the inclusion

ιθ0 :M → R×M : ιθ0(m) = (θ0,m),

so that Δθ0 = G ◦ ιθ0 . The Jacobian matrix at point m ∈ M of the dif-
feomorphism Δθ0 is denoted: dΔθ0 |m, and it has rank 3. By the Chain
rule,

dΔθ0 |m = d(G ◦ ιθ0)|m = dG|(θ0,m) · dιθ0 |m,
so we can conclude that the Jacobian of G at (θ0,m) has rank 3. Specifically,
in coordinates (θ, x, y, z) of R×M ,

dιθ0 |m =

⎡
⎢⎢⎣

0 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦

dG|(θ0,m) =

⎡
⎢⎣

dg1
dθ

dg1
dx

dg1
dy

dg1
dz

dg2
dθ

dg2
dx

dg2
dy

dg2
dz

dg3
dθ

dg3
dx

dg3
dy

dg3
dz

⎤
⎥⎦

dΔθ0 |m =

⎡
⎢⎣

dg1
dx

dg1
dy

dg1
dz

dg2
dx

dg2
dy

dg2
dz

dg3
dx

dg3
dy

dg3
dz

⎤
⎥⎦ .

For each point m0 ∈M , define a map

ψm0 : R →M : ψm0(θ) = G(θ,m0).

The “orbit” of m0 is defined to be the image of the map ψm0 . Since ψm0

is a path, its Jacobian at θ is the velocity column vector dψm0 |θ. Denote
another inclusion

ιm0 : R → R×M : ιm0(θ) = (θ,m0),

so ψm0 = G ◦ ιm0 , and by the chain rule,

dψm0 |θ=θ0 = dG|(θ0,m0)·dιm0 |θ=θ0 =

⎡
⎢⎣

dg1
dθ

dg1
dx

dg1
dy

dg1
dz

dg2
dθ

dg2
dx

dg2
dy

dg2
dz

dg3
dθ

dg3
dx

dg3
dy

dg3
dz

⎤
⎥⎦·
⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ =

⎡
⎣

dg1
dθ
dg2
dθ
dg3
dθ

⎤
⎦ .

This is the tangent vector to the orbit ψm0 at the point ψm0(θ0) = G(θ0,m0).
It depends only on G and the point G(θ0,m0), in the following sense: let

ψG(θ0,m0)(θ) = G(θ,G(θ0,m0)) = G(θ + θ0,m0),

so ψG(θ0,m0)(θ−θ0) = ψm0(θ). By the chain rule, dψG(θ0,m0)|θ=0 = dψm0 |θ=θ0 ,
so the velocity vector at G(θ0,m0) is the same if we start at any point on
the orbit.
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Now, fix m0 ∈ M , and let I = (−ε, ε) be an open interval in R, and let
γ : I →M be any smooth map, γ(t) = (γ1(t), γ2(t), γ3(t)), with γ(0) = m0.
Define a map

Pγ : R× I →M : Pγ(θ, t) = G(θ, γ(t)).

The image of Pγ is a union of orbits of the points γ(t), so we could call it
the orbit of the image of γ, and we are interested in the behavior of Pγ near
points on the orbit ψm0(R). Pγ is a composite of the form G ◦ (Id × γ),
where (Id× γ)(θ, t) = (θ, γ(t)), and by the chain rule, at the point (θ0, 0),

dPγ |(θ0,0) = dG|(θ0,m0) · d(Id× γ)|(θ0,0)

=

⎡
⎢⎣

dg1
dθ

dg1
dx

dg1
dy

dg1
dz

dg2
dθ

dg2
dx

dg2
dy

dg2
dz

dg3
dθ

dg3
dx

dg3
dy

dg3
dz

⎤
⎥⎦ ·

⎡
⎢⎢⎣

1 0

0 dγ1
dt

0 dγ2
dt

0 dγ3
dt

⎤
⎥⎥⎦

=

⎡
⎢⎣
⎡
⎣

dg1
dθ
dg2
dθ
dg3
dθ

⎤
⎦

⎡
⎢⎣
⎡
⎢⎣

dg1
dx

dg1
dy

dg1
dz

dg2
dx

dg2
dy

dg2
dz

dg3
dx

dg3
dy

dg3
dz

⎤
⎥⎦ ·

⎡
⎣

dγ1
dt
dγ2
dt
dγ3
dt

⎤
⎦
⎤
⎥⎦
⎤
⎥⎦
3×2

.

The left column is the tangent vector to the orbit ψm0 at the pointG(θ0,m0).
The right column is the product dΔθ0 |m0 · dγ|0 = d(Δθ0 ◦ γ)|0, the tangent
vector of the path Δθ0 ◦ γ : I →M at the point G(θ0,m0).

We can conclude that dPγ |(θ0,0) has rank 2 if the vectors

d

dθ
ψm0 |θ=θ0 =

d

dθ
(G(θ,m0))|θ=θ0

and

d

dt
(Δθ0 ◦ γ)|t=0 =

d

dt
(G(θ0, γ(t)))|t=0

are linearly independent. The first vector depends only on G and the point
G(θ0,m0) ∈ M , and not on the path γ. In the special case θ0 = 0, the
second vector is just the velocity vector of γ at m0. This rank condition
at the one point implies, by continuity of the derivatives, the rank of the
Jacobian of Pγ is 2 in some neighborhood of that point, so Pγ is an immersion
of that neighborhood, and there is some (possibly smaller) neighborhood of
(θ0, 0) where Pγ is a homeomorphism onto its image in M , so the image
is a two-dimensional ([20] Ch. III) surface containing G(θ0,m0). The two-
dimensionality can fail at singular points — if the image of the path and
the orbit have velocity vectors in the same direction, or if one of the two
velocities is zero.
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14. Miscellaneous topological facts

Lemma 14.1. Given a topological space X and W ⊆ Ω ⊆ X, denote the
closure of Ω in X by Ω̄. Then the closure of W in Ω̄ equals the closure of
W in X.

Proof. By [M] Theorem 17.4, the closure of W in Ω̄ equals the intersection
of Ω̄ with the closure of W in X, which is contained in the closure of W in
X.

Since the closure of W in Ω̄ is closed in Ω̄, and Ω̄ is closed in X, we
can conclude the closure of W in Ω̄ is closed in X ([M] Theorem 17.3), and
contains W , so the closure of W in X is contained in the closure of W in
Ω̄.

As an application of the above Lemma, the notation W is unambiguous
for the closure of W in either Ω̄ or X. As another application, if B is any
set in X, then the set W ∩B has the same closure in W , Ω̄, and X, and can
be denoted W ∩B.

Theorem 14.2. Given W ⊆ Ω ⊆ X and B ⊆ X, assume W is closed in Ω
and let E =W ∩ bΩ. Then,

W ∩B ⊆ (W ∩B) ∪ (B̄ ∩ E) ∪ (bB ∩W ).

Proof. W equals its own closure in Ω, which equals W ∩Ω by [M] Theorem
17.4 again.

W ∩B ⊆ W ∩ B̄
= (W ∩ (Ω ∪ bΩ)) ∩ B̄
= ((W ∩Ω) ∪ (W ∩ bΩ)) ∩ B̄
= (W ∪ E) ∩ B̄
= (W ∩ B̄) ∪ (E ∩ B̄)

= (W ∩B) ∪ (W ∩ bB) ∪ (E ∩ B̄).

The above Theorem 14.2 applies to the set W of [CP] §3, an analytic
set which is closed in Ω ⊆ C2. The following Theorem 14.3 is used in the
Proof of [CP] Lemma 3.1. The notation B(q, ε) refers to the ball with center
q ∈ Rn and radius ε > 0 as in [CP] §2.

Theorem 14.3. Let D be an open ball in Rn. Given a subset C closed in
D, let bC denote the boundary of C in D, and denote the set:

K = {p ∈ C : ∃ε > 0, q ∈ D \ C : B(q, ε) ∩ C = {p}}.
Then K is a dense subset of bC.

Proof. The Theorem is vacuous if C = D. If p is an interior point of C, then
p ∈ B(p, η) ⊆ C for some η > 0, so B(q, ε) ∩ C contains B(q, ε) ∩ B(p, η),
which has infinitely many elements if it contains p. This shows K ⊆ bC.
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Consider any p ∈ bC. We want to show that for any open neighborhood
U of p in D, U ∩ (K ∩ bC) �= Ø. For some δ > 0, B(p, δ) ⊆ U , and since p
is a boundary point, there is some q ∈ B(p, δ/2) ∩ (U \ C), an open set, so
the set

{ε > 0 : B(q, ε) ∩ C = Ø}
is non-empty, and bounded above by δ/2. Let ε0 be the least upper bound

of this set, so ε ≤ δ/2 and B(q, ε0) ⊆ B(p, δ) ⊆ U . The claim is that the
boundary of B(q, ε0) meets C somewhere in U ∩ bC. Suppose first that

B(q, ε0) ∩ C = Ø. However, contradicting the upper bound property, we
can pick ε > ε0, so a larger ball B(q, ε) also has empty intersection with C,

as follows: since D is normal, B(q, ε0) and C can be separated by disjoint

open sets in D; then since the boundary sphere of B(q, ε0) is compact, it
can be covered by finitely many balls centered on the boundary which are
contained in the separating neighborhood, and the larger sphere centered at
q will fit inside these finitely many balls.

Alternatively, suppose the open ball B(q, ε0) meets C at some point x at
distance ε < ε0 from q. Then B(q, ε) is a smaller upper bound than the least
upper bound, another contradiction. The only remaining possibility is that
B(q, ε0) meets C, and only at points on the boundary sphere.

Such points may not be unique, but by the geometry of the ball, if it meets
C at any point, then the ball B(q, ε0) contains a smaller ball with a different
center, whose boundary meets C at only that point. The conclusion is that
such a point is in the set K and also in the set U ∩C.

Theorem 14.4. Given topological spaces X, B, with B compact, and a
continuous function F : X ×B → R, let G : X → R be defined by

G(a) = max{F (a, b) : b ∈ B}.
Then G is continuous.

Proof. Given any a ∈ X, ε > 0, we need to find a neighborhood Ua,ε of a so
that x ∈ Ua,ε =⇒ |G(x) −G(a)| < ε.

For any (a, b) ∈ {a} ×B, there is some product neighborhood Ub × Vb of
(a, b) in X × B so that (x, y) ∈ Ub × Vb =⇒ |F (x, y) − F (a, b)| < ε

2 . The
compact set {a} × B can be covered by finitely many such neighborhoods,

Ub1 × Vb1 , . . . , Ubn × Vbn . The claim is that defining Ua,ε =

n⋂
k=1

Ubk is the

required neighborhood of a.
G(a) = F (a, c1) for some c1 ∈ B, so (a, c1) ∈ Ubk × Vbk for some k. For

any x ∈ Ua,ε, x ∈ Ub,k =⇒ (x, c1) ∈ Ubk × Vbk , so

|F (x, c1)− F (a, c1)| = |F (x, c1)− F (a, bk) + F (a, bk)− F (a, c1)|
≤ |F (x, c1)− F (a, bk)|+ |F (a, bk)− F (a, c1)|
<

ε

2
+
ε

2
= ε

=⇒ G(a) − ε = F (a, c1)− ε < F (x, c1) ≤ G(x).
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For the same x, G(x) = F (x, c2) for some c2 ∈ B, so (a, c2) ∈ Ubj × Vbj for
some j, and x ∈ Ua,ε ⊆ Ubj =⇒ (x, c2) ∈ Ubj × Vbj , so

|F (x, c2)− F (a, c2)| = |F (x, c2)− F (a, bj) + F (a, bj)− F (a, c2)|
≤ |F (x, c2)− F (a, bj)|+ |F (a, bj)− F (a, c2)|
<

ε

2
+
ε

2
= ε

=⇒ G(x) = F (x, c2) < F (a, c2) + ε ≤ G(a) + ε.

Theorem 14.5. For any continuous action of a compact group Γ on a
compact metric space X without a fixed point, there is an orbit with a positive
minimum diameter.

Proof. Denote the distance function on X by d, and the action of Γ on X by
A : Γ×X → X. At any point x ∈ X, the diameter of the orbit containing
x is

D(x) = max{d(A(g1, x), A(g2, x)) : (g1, g2) ∈ Γ× Γ}.
Since the function

F : X × (Γ× Γ) → R : F (x, (g1, g2)) = d(A(g1, x), A(g2, x))

is continuous, and Γ× Γ is compact, Theorem 14.4 applies, and D : X → R

is continuous. Since D achieves its minimum value in [0,∞) on the compact
space X, and there is no x with D(x) = 0 (since there is no fixed point), D
must achieve a positive minimum at some point x, so the orbit through x
has the minimum diameter.

For example, a transverse T-action on Ω as in Definition 12.3 has no
fixed point in bΩ, and bΩ is compact with metric induced from the standard
metric on R4, so the circles that are orbits of the action have a positive
minimum diameter.
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[D] J. Dieudonné, Foundations of Modern Analysis (Vol. I of Treatise on Analysis),
Pure and Applied Mathematics 10, Academic Press, New York, 1969. MR0349288
(50 #1782)

[FP] M. Fassina and Y. Pan, Some remarks on the global distribution of the points of
finite D’Angelo type, seminar talk for CR Geometry and Dynamics 2020, University
Center Obergurgl.
https://complex.univie.ac.at/fileadmin/user upload/p complex analysis/obergurgl2020/talk fassina.pdf

[GG] M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities,
GTM 14, Springer, New York, 1973, MR 0341518 (49 #6269), Zbl 0294.58004

[H] M. Hirsch, Differential Topology, GTM 33, Springer, New York, 1994. MR1336822
(96c:57001)

[J] J. Janardhanan, Proper holomorphic mappings of balanced domains in Cn, Math.
Z. (1–2) 280 (2015), 257—268. MR3343906

[KM] A. Kriegl and P. Michor, The Convenient Setting of Global Analysis, Mathemat-
ical Surveys and Monographs 53, AMS, Providence, 1997. MR1471480 (98i:58015)

[M] J. Munkres, Topology, second ed., Prentice Hall, New Jersey, 2000. MR0464128
(57 #4063)

[N] R. Narasimhan, Several Complex Variables, Chicago Lectures in Mathematics,
1971. MR0342725 (49 #7470)

[P] J. Price, Lie Groups and Compact Groups, LMS Lec. Note Ser. 25, Cambridge,
1977. MR0450449 (56 #8743)

[10] R. M. Range, Holomorphic Functions and Integral Representations in Several
Complex Variables, GTM 108, Springer, New York, 1986. MR0847923 (87i:32001)

[S] R. Seeley, Extension of C∞ functions defined in a half space, Proc. Amer. Math.
Soc. (4) 15 (1964), 625–626. MR0165392 (29 #2676) Addendum: Proc. Amer.
Math. Soc. (2) 37 (1973), 622. MR0310618 (46 #9716)

[W] F. Warner, Foundations of Differentiable Manifolds and Lie Groups, GTM 94,
Springer, New York, 1983. MR0722297 (84k:58001)

Department of Mathematical Sciences, Purdue University Fort Wayne, Fort

Wayne, IN 46805-1499


