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6. UPDATES

The article and its Reference [5] have been reviewed as noted in bibliographic
items [Cs], [C2], below. Reference [4] has also been indexed in MR: [Cq]. Reference
[6] has appeared as [Cy], and the web address printed in this entry is now obsolete.

My contact information has changed, and my current web page can be found at:

http://users.pfw.edu/CoffmanA/

7. CITATIONS

The article is cited in these papers: [Bi], [Ba].

The following Sections of this addendum include some calculations which are
lower-degree special cases of some of the comparisons of coefficients that appear in

[Cs].

8. ADDENDUM TO: SECTION 3, HIGHER-ORDER TERMS IN THE
NON-DEGENERATE CASE

The following Subsections could be read in [C3] at the beginning of Section 3, as
the construction of a solution p in terms of € in the case when € has cubic terms.
This is a special case of the calculation that appears in Section 3.

8.1. Stabilizer of the non-degenerate normal form.
We consider M satisfying the first non-degeneracy condition, and in a normal
form:

(8.1) Y = E2(21,51,$2) = 0(3)
z3 = 7z +es(21,21,22)
Z4 = (21 + 6%2)21 + 64(21, 21, {EQ).

with ¢ either 1 or 0, corresponding to whether M satisfies the second non-degeneracy
condition (type (I)) or not (type (II)). To see what transformations will be available
to normalize some higher degree terms, we will find the group of transformations
which leaves (8.1) invariant.
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We start with transformations that have some effect on the quadratic terms, and
whose linear part is as in (2.7):

(82) Z1 = c1z21 + 220
Zo = T9zo +p2(21,22,23724)
Z3 = 323+ caza + p3(21, 22,23, 24)
Zy = c523+ ceza + pal21, 22,23, 24),

where po has only weight 2 terms and p3 and ps have only quadratic weight 2
terms. Any terms of higher weight, or any further terms in the Z; expression,
would contribute only terms of degree 3 or higher in the new defining equations.
The transformation corresponding to Lemma 2.3 is given by z; = %21 — CfiQ o +
$1(Z1, 21, 8a), T9 = =T + 321, 21, T2).

Let pa(z1, 22, 23,24) = pi°22 + pilz1z0 + p222. A stabilizing transformation
should leave no quadratic terms in the following expression:

Z3— 5
—
= 323t C424 +Pp3 — ((312:1 + CQZQ)
c3(27 + e3) + cal(21 + €x2) 71 + €4) + p3(z1, w2 + iHa, h3, hy)

— 9
—(c121 + c229)

= (c3 —@12)Z2 + (cae — 261C2) 212 + caz1 21 — Cowh + p3(21,12,0,0) + O(3)

—2 20 — — —
€3 —Cl zg  C4 .z | D3 .o  ECICIC4 — 2C1CaC3 — C1C2C4 = .
= ——% AT ——zma+ 52+ — 2122
C1 Cc1C1 c1 C1C17°T2
11, — 20— —
P3 C1C1 — 2p3°Cica — c1CacCy .
+ 5— Z21%2
ci1C1T2
20=—2,.2 11, =2 02 22 2—2 2—— S —
P53 C17C5 — P3 C1C1 Co + P3~CciC1” + €{C27C3 — ECIC1C2C4 + C1C1C2C2C4 o
+ c2err? 72
161 72
+0(3).
The only #,%; term has coefficient -4, so a stabilizing transformation must have

ci1Cy1
. . = . 772 —_
cy = 0, and similarly p3° = 0. The 72 term has coefficient “’3331 , SO €3 = C12.

Making these substitutions into the remaining terms gives the quantity

95 - p;l pozc — ey 4 1532 B

= . ER— 3 C1 —P3 C2 1C27 .9

21T + ——Z1%2 + 5 5 + O(3).
T2 C1T2 175

So, ¢ = pél = 0 and this implies p%Q =0.
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For the next step, we use transformation (8.2), with co = 0, so 21 = ¢121.
Z4 — (21 + Ei‘g)é’il
= 523+ ce2s + s — (121 + eRe(r222 + p2))(c121)
= 05(5% +e3) + ce((21 + ex2)21 + eq) + pa(z1, 2 + iHa, hg, hy)
—(c121 + eRe(ra(z2 + iH2) + p2))(c121)
= 577 +e(ce — 1oC1) 2120 + (c6 — €1€1) 2121 + pa(21,72,0,0) + O(3)
€5 55 Co—CICT. = | e(ce —Cira) = .

= SR T T ARl T T R1x2
C1 c1C1 C1T2
02
p ~ p y
+izf+iz1x2+ o i34+ 0(3).
Cl C1T2 5
The only z2 term has coefficien £5, 50 c5 = 0, and similarly p20 =pll =p%2 = 0.

The 2,27, term has coefficient M so ¢g = c¢1¢1. The only remaining Z;z» term

has coefficient M, soif e = 1, then ¢; = ro.

For the final step, consider the transformation (8.2) with c2 = 0 and
p2(2) = phzs + phea + P3zi + pazizo + ped.

Im(Z2) = Im(rozz + p2)
= Im(rexe + iroHs) + Im(pa(21, x2 + iHa, hs, hy))
= roHy(21, 21, 22)

+Im(py (2} + e3) + p5((21 + ex2)Z1 + ea)

+p322 + phay (wa + iHy) + p3(wy + iHa)?)

P%_P_géz Pg_l’_%a pg—p_§~ =

= z Z12
2iei2 t 22 Y i
"2 4 i 2
Py — P2 = Py —€p3 . - 5 Pz
+t— 1w + = — 2132 + i3+ 0(3
2iciTy 142 QiciTy 2 2 % 2 ( )

For all the quadratic terms to be 0, it follows that p3 and pj are real, p3 = pl, and
4 _ 2
Py = €p3-
We arrive at the following conclusions in the two cases. If € = 1, the stabilizer
of the quadratic normal form is the set of transformations of the form:

(8.3) Z1 = rzi+p1 (5)
Zy = r22+ D23+ pia +p_52’f +p_32’12’2 + pazs + pa(2)
Z3 = 1’z +p3(?)
Zi = 124+ pa(2),

where 7 is a non-zero real number, p3 and pj are real, pi(Z) has weight > 2, and
D2, P3, p4 have weight > 3. If € = 0, the stabilizer is given by:

(8.4) 21 = an+p(2)
Zo = Tozo+ p%23 + p%Z4 +p%2% +ng§ +pa(?)
e 23 + p3(2)

Zy = 16124 +pa(?),

W
w
Il
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where c; is a non-zero complex number, 75 is a non-zero real number, p3, p5 are
real, and the functions p1, p2, p3, p4+ have weights as in the previous case.

8.2. The cubic normal form in the non-degenerate case.

We consider M with a type (I) normal form ((8.1), with ¢ = 1). In analogy
with (2.4), any terms of the form 2z}, 22z9, 2123, 23 can be eliminated from the
hs and h4 series, without introducing any other quadratic or cubic terms in hg
or hyg, by a weight 3 transformation of the form Z3 = z3 + ps3(z1,22,0,0), 24 =
z4 + pa(z1, 22,0,0). However, we leave these terms in the expression (8.6) since
even if they are eliminated as a first step, they may re-appear when other terms
are eliminated. So, to deal simultaneously with all ten cubic terms in each of hs,
h4, we consider a coordinate transformation of the form zZ; = z; + p1, Zo = 22 + po,
Zg = 23 + p3, Z4 = 24 + Py, With

(85) p1 = plzg+pizl +pizize + izl
P2 = Dpyzizs -+ paraza + P3S4 paziae + Pyz1zs + Dyzs
_ 1 2 3 4 5_3 62 7 2 8 _3
P3 = Pp32123 + P32124 + P32223 + P32224 + P32] + D321 22 + P32125 + P32a
P = piz123 4+ piziza + Dizezs + pizeza + phzs 4+ pSeize + plzizs + pSal,

so p1 has weight 2 and po, p3, ps have weight 3, and although there is a linear term
in p1, Lemma 2.3 applies. Since it fits the form of (8.3), such a transformation does
not affect the quadratic terms of Hsy, h3 or hy4, as considered in Section 8.1. For
points on M,

(8.6) 33 — 22

[ —
= 23+ p3(2) — (21 + p1(2))
= e3+p3— 25D — P12

210,25 120, 22 11, 03033 021 32 0125 .2

= e3 zizZ1te3" zz] te3 z1Z1x2 +e3” 2] +e3” 21T + e3 2115
3003 201,2 102, .2 003,.3
+e37 2] +e3  ZiTs +e3  z1x5 + €3 75

+ps(z1, 32, 21, (21 + 22)71) — 221p1 (21,22, 22, (21 + 22)21) + O(4)
= eglozle + eémzlzf + eéllzlilxg + egBOZf + egmzfxg + englx%

—l—egoozf + egmzfxg + eémzlx% + egmxg

+p3a1 7t + piai(z1 + 22) 7 + Paaat + paaa(z + 22) 7

+p52} + pSeizs + plaiad + pal

—271(p1 2} + pizi + plzias + piad) + O(4),
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(8.7) Zi— (51 +32)5
= 24+ pa(?) — (21 + p1(2) + 22 + Re(p2(2))) (21 + p1(2))

e4 +ps — (21 + x2)p1 — Z1(p1 + Re(pz2)) — p1b1 — Re(p2)p1

= eilozle + e}fozlzf + e}luzlzlxg + 62302§ + egmzf:cg + 621221563
—1—6200,2? + eimzfxg + e}iOQle% + e203x§

+pa(z1, z2, 5%7 (21 + x2)Z1)

— (21 + 22)p1(21, 02, 23, (21 + 2)21) — 2101 (21, T2, 21, (21 + 2)21) + O(4)
= eilozfil + e?ozlif + 6411112’121])2 + 62302f + egmifxg + 62125113%

—1—62002? + eimzfxg + 6}10221x§ + e203x§

+pi21Zt + piza (21 + 22) 7 + phaat + phaa(z + 22) %

5.3, 6.2 7..2, .83
T3] + Pi2 T2 + Py21Ty + PiTy

—(21 + 22) (127 + 327 + piarwe + plas)
—Z1(p1Z} + Pi2t + pizizs + piad) + O(4).

The last line can be converted to Z1, Z2 coordinates, but this would only introduce
higher order terms, without changing any of the cubic coefficients. Inspecting (8.6)
and (8.7) shows that the pa quantity does not contribute cubic terms to hs or hy.
Each of the defining equations hs and hy has 10 complex cubic coefficients, and
we have a choice of 20 complex coefficients in the three components p;1, ps, pg of
the coordinate transformation. By comparing like terms in the above quantities,
it turns out that we can find coefficients for p;, ps, ps4 that eliminate all the cubic
terms of hz and hy, by solving a linear system of 20 unknowns (coefficients of p)
given 20 constants (coefficients of e).



A. COFFMAN

The twenty equations are

0 = 21042 2p1

0 — 021 +p3 _ 2p1

0 = 120 +p3

0 _ 111 +p3 +p3

0 - 2}71

0 = 32— 2pT 4 pi

0 — 300+p3

0 = +p3

0 — 102 4t

0 — 003+p

0 = €3'+pi—pf

0 02 2 43

0 6212—29_?—pi‘+pi
0 = e +pi—1}

0 = e —pi

0 = ei' —pi—pl+pi+pi
0 3% — pt 4+ p3

0 €201 — pl 48

0 A

0 = e3” —pi+0pi,
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and the solutions are

021

€3

1 030
pP1 = ¢4
2 _ 1733 2030
P = 5 €3
) l— 14—+ 11—+ 1—
3 210 111 012 030
pi = el — 012 _ (030 4 — o030 _ oIy — 0210 4 —,
2 2 2 2
1— 1 11—
4 _ 030 _ 17917 210 ERE
p; = -—e —e3 + = + =
! 4 23 2¢ 2¢
A
pg _ _6210+26030
p§ _ e(3)30 111 +6210+eo12 26710 4 2e11T — 26012 — 2030
4 _ 111 ~030 | ,210
p3 = —eg —2e” +ej
I
A
A
o=
1 2030 120
Py = ) €3 — €4
2 _ 13 210
Py = 563 — €
3 _ l 030 021
Py = 2@3 — €y
1 1 1 1 —_— = —
4 030 111 210 012
pi = Seg — ey +oeg +oegt —eplf+eptt —ef?
2 2 2
— l— 1=+ 11—
030 012 030 111 210 g2
I R s B L B
5 _ 030 300
by = €5 —¢€4
6 _ 030 201
by = €5 —¢€4
1 1 1
7 111 210 o012 102
p4 - __63 + _63 + = 3 6230 — 64
2 2 2
s _l 111+l210+1012_ 030 _ 003
Py = 263 263 263 €4 €y -

The cubic terms can similarly be eliminated from Hs, using only the ps component

of the transformation. For points on M,

(8.8) Im(Z) = Im(z + p2(2))

= Im(wo +iH2(21, 21, 72) + p2(21, 02 + iHa, 25 + €3, (21 + 2) 21 + €4))
= Hy(z1,z1,22) + Im(pQ(Zl, T, 23, (21 + 22)21)) + O(4)

= 210227 4219252 + el 21z 20 + €39023 4 €300%3

+62012 o + 610221x +e201 2225 4+ el9%2122 + €

1 _ _
+o- (P2 + piwa(a1 + @2)51 + phai + pa2iwe + pizia; + phad)

21

=3

003 3

1
9 (pQlel +p2x2(21 +x2)%1 +p221 +p le2 +p221x2 +p2x2) +0(4).
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The coefficients e!! and 3% are real, but the others can be complex, leading to

six equations in six unknowns:

1
0 — 300, 2.3
€3 +2z’p2
1
0 — 2014 — 4
€5 +2z’p2
1 R
0 = At =37
1
0 = 210 —,1
ERRR e
1
0 = "+ (r5—pf)
1 1—
8.9 0 = el024 —,5_ — .2
(8.9) €9 +2ip2 2Z-P2
The solutions are
1 _2‘210
Y2 ey
p% = —ie%n
Bo= 2l
py = —2ie3"t
(8.10) py = —2ies?? 4 et
ps = —iey”

9. ADDENDUM TO: SECTION 4, SOME DEGENERATE CASES

The following Subsections could be read in [Cs] at the beginning of Section 4.

9.1. Cubic normal forms in a degenerate case. We consider M with a type
(IT) normal form (satisfying the first non-degeneracy condition, but not the second:
(8.1), with € = 0). To deal simultaneously with all ten cubic terms in each of hg,
h4, we consider a coordinate transformation of the form zZ; = z; + p1, Zo = 22 + po,
Z3 = 23 + p3, Z4 = 24 + p4, With

p1 = pizzF Pzt +pirize +plad +pia
P2 = P13+ Pazaza+ Pazi + Pazize + Prz12s + pozs

1 2 3 4 5.3, 6.2 7.2, .8.3
P3 = Pp3z123 + p32124 + P32223 + P322z4 + P32] + P32 22 + P32125 + P32s
p1 = Ppizizs+ piziza + Pheazs + Pizaza + Piz; + pSatae + phaizs + pias,

so p1 has weight 2 and pe, ps, ps have weight 3. This is similar to (8.5), but
the term pfz, is included, to give all the available weight 2 terms in p;, and even
with both linear terms, Lemma 2.3 applies. Since it fits the form of (8.4), such a
transformation does not affect the quadratic terms of Hsy, h3 or hy, as considered
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in Section 8.1. For points on M,

(9.1)

33 — 22
23+ p3(2) — (21 + p1(2))

N —)
es+ps —2z1p1 — D1

210 25 120, 52 111, 5 030 33 021 32 0125 .2
= €3 2121t e€3" 2121 te3 2121T2 +e3” 2] +e3” ZiTa + e3 " 2125

3003 201 2 102, .2 003,.3
+e377 2] +e3 z1T2 +e3 T z1x5 + €37 7x;

2

+p3(z1, 22, 21, 2121) — 221p1 (21, @2, 22, 2171) + O(4)
= eglozfil + eémzlif + eénzlilxg + eg302f + egmifxg + e§1221x§
+e§0°z§ + e%mzfxg + eémzlx% + ego‘o’xg
+piz1Z; + p3ai L + piwazi + parezi
+p5a} + pSatws + piaad + phal

—2z1(piz} + pi2d + piziws + piad + piaizi) + O(4)

= (ps—2p7 +e3?) 721 + (e3°! + p§)zias + (3 — 2p3 + 9?2 s

+(=2p] + p3 + €310 z127 + (5% + p§)ad + (0§ + i) 21210
+(p5 + e3?)z123 + (0§ + €37)z0 + (—2p3 + §°) 2}

+(e9'2 — 2p%)a2z + 0O(4),

Z4 — 2151
24+ pa(2) — (21 +p1(2)) (21 + p1(2))
€4+ ps — 21p1 — Z1p1 — P1D1

210,25 120, 32 11, 5 03033 02132 0125 .2
ey 21721 tey  zz] tey z1z21xe ey z) ey Zixe ey T21T5
300,,3 2012 102 003,.3

2
+ey 2]+ ey zire ey Tzixs ey v xy

+pa(z1, x2, 5%, Z1%1)

—p1(21, 72,22, 2121) — Z1p1(21, 22, 71, 2171) + O(4)

2102 120, =2 11, > 03033 02132 0122 2
ey 2121 tey Tz ey T zizime ey 2 ey 2 ey T2
3003 2012 102 003,.3

2
+ey 2]+ ey zire tey Tzixs ey v xy
1, 32 2,25 3. 52 4 >
+tP4z12] + P12z + PyTazi + pyraziZy

5.3, 6.2 7..2, .83
T3] + Pi2 T2 + Pyz1Ty + PiTy

—21(p1 27 +pizf + piaiws + pias + piaizi)

—Z1(p1 2} + pizd + pizizs + plad + plzaiz) + O(4)

(—pt + 3720 + (32 — p? — pi + ph) 21 + (3 + p} — ph) 27

+(p + €922 s + (0f + €§°)ad + (] + €1 — pl)z1a3

+(ph =} +ei™ = phazmms + (50 — p} — p} + pD) 2T + (0 + €30 2Py

+(e3 — ph)a3z + O(4)

The last line can be converted to Z1, Z2 coordinates, but this would only introduce
higher order terms, without changing any of the cubic coefficients. Inspecting (9.1)
and (9.2) shows that the pa quantity does not contribute cubic terms to hs or hy.
Each of the defining equations hs and hy has 10 complex cubic coefficients, and
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we have a choice of 21 complex coefficients in the three components py, ps, ps of
the coordinate transformation. By inspecting the z;22 terms, we see that the only
coefficient which transforms these coefficients is p{, but it is unlikely to cancel both
es and e4. However, if we choose to eliminate the leg term from e3 only, it turns
out that we can find coefficients for p’ that also eliminate the remaining 18 cubic
terms of hg and hy, and in fact this can be done while choosing p3 = p3 = 0.

All the cubic terms can be eliminated from Fs using p, in a way similar to (but
even simpler than) the calculation from Section 8.2. The six equations are the same
except that (8.9) is just 0 = ed2 + 21172, and the six solutions are the same, except
that (8.10) is just pj = —2iei?2. In fact, a real-valued series in 21, 21, T2 can always
be written, formally, as the real or imaginary part of some series in 21, o, 27, 2171,
so it is easy to find pa(21, 2,27, 2121) that eliminates the lowest-degree terms in
E5, without the rearrangements that were used in Section 3.

So, after the transformation, the defining equations become

(93) Y2 = E2(21721)m2)
23 = 2% +€3(2’1,21,$2)
4 = 21z21+ eZlQleg + eq(z1, 21, x2),

where Es, e3, eq have degree 4. A transformation of the form Z; = c121, 25 = 29,
Z3 = c_1223, Z4 = 1C124, as in (8.4), changes the coefficient from 6212 to 016212, SO
we get two cubic normal forms, corresponding to scaling the z;23 coefficient to be

either 1 or 0.

9.2. Stabilizer of the cubic degenerate normal form.
Without going through all the calculations as in Section 8.1, we can state the
subgroup of the stabilizer group (8.4), consisting of transformations which preserve

the normal form (9.3) with eJ12 = 1:

(9.4) % = 1’z +pia+pis
pia = p?[12122 + p(1)2’4
Zo = rza+p2a + p2B + P2c
P2a = P%Z:s + p§z4 + p_ézf + szg
p2B = py’lzizs+ P101Z1Z4 + o 2ozs + Y020z
AT e
iy = o #3+psatpsp
psa = 2r°pYzizs + 2r%pllenzg
Zy = 124+ paa+pip
paa = rplzizs + 07 plzzs + 12 (plt + pih)zoz,

where r is a non-zero real number, p3, p3, pJ°, p93° are real, p; (%) has weight 3,

and the functions pac(2), psp(2), p4B( Z) have weight 4.

9.3. The quartic normal form for the degenerate case.

Again considering the normal form (9.3) with €J'? = 1, we can in fact eliminate
all the degree 4 terms from Fjs, e3, e4 by a polynomial coordlnate change. We begin
by considering all transformations of the form (9.4), with r = 1.
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As in (9.1), for points on M,
33— 72
L 2
= 23+p3(2) — (21 +p1(2))
= e3+ps—2uD1 —D1°

2
= e3+p3a+psp—2Z1(p1a +piB) — (P1a + P1B)
(9.5) = e3+psa+psp—221(p1a+piB) —Pia- +0(5),

where in line (9.5), €4 represents the degree 4 terms of e4 and all the cubic terms
cancel, by the assumption that the transformation stabilizes the cubic normal form.
Similarly, as in (9.2),

2 — (B + 335
= 24+ pa(2) — (21 + p1(2) + (22 + Re(p2(2)))*) (21 + p1(2))
= es+ps— (21 +23)P1 — (21 + P1)(p1 + 272Re(p2) + (Re(p2))?)
= €4+ pia+pip — (p1a + P15 + 222Re(p24))Z1 — P1aDTA
(9.6) —21(p1a +p1B) — 23P1a + O(5).

Note that the quantities (9.5) and (9.6) are non-linear in p;4. Rather than give
the whole expansion of these expressions, we can consider just the z;z3 terms first.
If the coefficients of p;4 and pea are as in (9.4), the z3 term of p;p has coefficient

P30, and the 2123 terms of e3 and ey are 3! and €33, then the coefficient of the

z1x3 term in (9.5) is 3! — 2p930 and in (9.6) is €91® — p30 — 2Re(p3) — pit. We
can choose pJ3° to eliminate the term from ez, but to simultaneously eliminate it
from ey, the real number Re(pj) may not be enough, so we would need to use pit.

However, all the other terms in e§ and e} can be eliminated by p15, p3B, P4B-
Specifically, for k = 3,4,

4 400 4 310,35 3013 220,252 211,25
e, = € 21 tep 2iZ1+ey ziTatep ziz] +ep  z1z1x2

202 2,2 130

+ep “z1a5 + ey 3

=3 121, 22 12, 5 2 103
2121 F e z121%2 + €, "2121%5 + €, 212y
0404 | 03153 022522 | 0135 .3 , 004 4
+ep Z] et Zire e zis e 21Ty + e X,
so there are 30 coefficients, which can be eliminated by a transformation of the
following form, a special case of (9.4):

. 11
(97) Z2 = z1+p sz +m
2102 0303 011
P1 = Py 2122+ Dz + Py 2223
Zy = 2o+ pa(21,22, 23, 2)
5 11
23 = 23+ 2pi 2023+ p3
001 2002 110 0202 400 4
P3 = DP3 2324 +P3 2124 +P3 212224 +P3° 2524 + P32
310 3 22022 2012 111 0212
+p5 2 22 +Pp3T 2125 P35 2123 T3 212223 P37 2523
130, .3 040 4 0022
P37 2125 T P32 T P3 23
s 11 |, i1
Zy = za+(py +pi )22z +pa
001 2002 110 0202 400 4
Pa = Pi 2324+ Py 2124+ Dy 12224 +Ps 2324+ Dy 2
310 3 22022 2012 111 0212
+py 2122+ Py 212y + Py 2123+ P4 212223 + P4y 2523
130 040 4 0022

+p5*02125 + p§025 + pY Z3.
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The quantity p; does not depend on z4 and has three out of six weight 3 terms,
omitting 2§, 2122, and z1z3. The quantities p3 and p4 have all 13 weight 4 terms.
Together with the previously mentioned p}!, this gives exactly 30 unknowns, enough
to find the following solution that eliminates all the quartic terms from (9.5), (9.6):

1_
11 _ 013 013
(9.8) Py = 563 —ey
011 031
b1 = &
1_
210 __ 031
Py = 563
. 1—=
030 __ 013
Py = 563
P20l = 220
3 = 3
111 121
p3 = —€3
001 130
p3 = —€3
020 112
b3 = €3
P10 — 004
3 = 3
p200 = 310
3 = 3
002 040
p3 = —€3
400 400
b3 = €3
pélo _ _63114_2@
pi30 = _clo3
3 = 3
pAl0 = 30
3 = 3
220  __ 202
b3 = €3
1 -
021 __ 022 01342 0132013 01312
D3 = —e3 +1(e3 )" —eg g + (e3"”)
P20 = 202
4 = 4
P00 — 310
4 = 4
Pl = 130
4 = 4
pI0 = o
P02 = g0t
4 = 4
400 _ 400
Py = —€
1_
110 _ 031 211
by T 9% T4
040 __ 004
Py = ¢
1 .
111 _ 121 031
Py = ey +§e3
201 __ 220
Py = —€
1
130 _ 103 013
Dy = —e +§e3
021 _ 022
Py = —€
1 —— 11— l———=
020 013 013 013 3_013 112
pi = —geqes” ey et + —eftPest? — SeflPet — et
2 4 2
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The non-linear solutions for p32! and p$?° reflect the appearance of non-linear terms

n (9.5) and (9.6). The quartic terms can also be eliminated from Fs using a weight
4 function ps, as in Section 8.2.
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