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In my lectures for the first-year calculus sequence, I state and solve
physics problems. After the section on surface area, the following problem
generated some interest:

Assuming an inverse square law of attraction, what is the force exerted
by a massive surface of revolution on a point mass m located on the axis of
symmetry?

An important special case is the attractive force of gravity exerted by a
spherical shell on a point mass m. Since any line through the center is an
axis of symmetry, m can be anywhere in space.

For the general case, here are some preliminary assumptions:

1. The surface of revolution is defined by a nonnegative function f(x)
on a closed interval [a,b], such that f’ exists on (a,b). The graph of f is
revolved around the z-axis as in the Figure.

2. The surface’s mass is distributed evenly, in the sense that it has a
constant “planar density,” d > 0. The units on d might be kilograms per
square meter, for example, to distinguish it from linear or spatial density.

3. The “inverse square law” refers to a force exerted on a point mass m
by another point mass M separated by distance » > 0. Then the magnitude
of the force is GmMr~2, for a positive constant G. M, m will be assumed
nonnegative, and the direction of the force on m is toward M.

4. To simplify calculation, the point mass m can be assumed to be at
the origin, by translating f left or right if necessary.
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Figure 1

To start with the solution to the physics problem, we slice the surface
with planes parallel to the yz-plane, and review a (sketchy) derivation of
the integral formula for surface area.

The Riemann sum procedure is to partition [a,b] into n subintervals
[zi—1,z;], with length Az;, for i =1 to n, and then select a sample point
— the midpoint will be convenient. The graph of f can be approximated by
n line segments L; connecting (z;_1, f(zi—1)) to (z;, f(x;)). Revolving each
segment L; gives a truncated cone C;, which approximates a slice S; of the
surface of revolution. Each C; has surface area

(f(zi1) + f(xi)V/(Azi)? + (Afi)?,

where Af; abbreviates f(x;) — f(x;—1). (This well-known formula for the
area of a truncated cone can be derived without calculus.) The average
2(f(mi—1) + f(z;)) is the distance from (z,0) to the midpoint of L;, which
can be approximated by f(z}). Then, the approximate area of Cj, and the
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slice S, is 2nf(z]) /1 + (ﬁg};) Agz;, and the mass of S;, denoted M;, is




approximately the density times this area:
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The total area of the surface is the n — oo (and max Az; — 0) limit of the
sum of the approximate areas, and its total mass, denoted M (f) = >_ M;,
is equal to d times this area:

M(f) :d./ab27rf(x) 1+ (%)2@;.

The force Fj, exerted by each slice S; on the mass m at the origin, will
be directed along the z-axis. This is obvious by the rotational symmetry,
and also follows from the following approximation of F; as a vector sum.
The slice S; can itself be subdivided “radially” into 2N pieces by N planes
through the z-axis. When n and N are large, each of these pieces can
be treated as a point with mass %, for the purposes of approximating F;
using the inverse square law. Every piece of S; will be represented by one
of its points, with horizontal coordinate z] and at distance f(z}) from the
r-axis, so that the line from m to this pomt is at an angle 0 with the
z-axis. The force exerted on m by the piece has approximate magnitude
Gmdki(\/(z5)2 + (f(2}))?) 2. Its horizontal component (along the z-axis)
is cos(0;) times the magnitude, and its radial component is sin(6;) times the
magnitude. The force exerted by the opposite piece (rotating the piece and
its representative point by 180°) has the same horizontal component, but an
oppositely directed radial component. In the sum over 2N pieces, the radial
components all cancel, and the approximate horizontal components total to
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()2 + (f(27))?

A2 f(z7) ( m) Az; *
(@)% + (f (7)) V(@)? + (F(#))?
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The second step uses the earlier approximation for M;, and the ratio for the
cosine: cos(f;) = T This formula for F; is actually a signed
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quantity, with the formula for the cosine taking into account the direction
of the force acting on m: to the right for 7 > 0, and to the left for z; < 0.
So, in the n — oo limit, the answer to the physics question is

b @) @)
[, 2 e

assuming that this definite integral exists, which (mathematically) is a non-
trivial condition required of f.

As an application of this formula, consider a sphere with center (¢, 0) (on
the positive z-axis, ¢ > 0) and radius R > 0. Using the above formula, with

f(@) = VR = (o = o, and [a,b] = [c— R.c+ ) gives f'(a) = =2,

and total force
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The total mass of the sphere is M(f) = 4wR?d, and if this mass were
concentrated at the center (c,0) with ¢ > R, the force on the mass m at
(0,0) would be GmM (f)c 2. This is the same as the above integral, so we
have a single-variable derivation of a result of Newton, that the external
gravitational attraction of a sphere is equal to the attractive force of a point
with the same mass at the sphere’s center. This was part of Newton’s
argument that a solid ball has the same property.

The same integral also demonstrates the fact that if the particle of mass
m is inside the sphere, so ¢ < R, then it feels no force acting in any direction.
(This fact was interesting and surprising to many students.) At ¢ = R, the



particle is on the sphere, and the force is %GmM(f)c_Q; plotting F' as a
function of ¢, there is a discontinuity at ¢ = R. The ¢ = 0 and ¢ < 0 cases
follow from similar calculations.

Other surfaces of revolution for which the above integral formula might
be tractable are cylinders, f(x) = K, truncated cones, f(x) = kz + K, or
funnel shapes, f(z) = k/x, over intervals where f(z) > 0. The construction
also could be applied to a repelling force.



