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In my lectures for the �rst-year calculus sequence, I state and solve

physics problems. After the section on surface area, the following problem

generated some interest:

Assuming an inverse square law of attraction, what is the force exerted

by a massive surface of revolution on a point mass m located on the axis of

symmetry?

An important special case is the attractive force of gravity exerted by a

spherical shell on a point mass m. Since any line through the center is an

axis of symmetry, m can be anywhere in space.

For the general case, here are some preliminary assumptions:

1. The surface of revolution is de�ned by a nonnegative function f(x)

on a closed interval [a; b], such that f 0 exists on (a; b). The graph of f is

revolved around the x-axis as in the Figure.

2. The surface's mass is distributed evenly, in the sense that it has a

constant \planar density," d � 0. The units on d might be kilograms per

square meter, for example, to distinguish it from linear or spatial density.

3. The \inverse square law" refers to a force exerted on a point mass m

by another point mass M separated by distance r > 0. Then the magnitude

of the force is GmMr
�2, for a positive constant G. M , m will be assumed

nonnegative, and the direction of the force on m is toward M .

4. To simplify calculation, the point mass m can be assumed to be at

the origin, by translating f left or right if necessary.

Figure 1
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To start with the solution to the physics problem, we slice the surface

with planes parallel to the yz-plane, and review a (sketchy) derivation of

the integral formula for surface area.

The Riemann sum procedure is to partition [a; b] into n subintervals

[xi�1; xi], with length �xi, for i = 1 to n, and then select a sample point x�i
| the midpoint will be convenient. The graph of f can be approximated by

n line segments Li connecting (xi�1; f(xi�1)) to (xi; f(xi)). Revolving each

segment Li gives a truncated cone Ci, which approximates a slice Si of the

surface of revolution. Each Ci has surface area

�(f(xi�1) + f(xi))
p
(�xi)2 + (�fi)2;

where �fi abbreviates f(xi) � f(xi�1). (This well-known formula for the

area of a truncated cone can be derived without calculus.) The average
1
2
(f(xi�1) + f(xi)) is the distance from (x�i ; 0) to the midpoint of Li, which

can be approximated by f(x�i ). Then, the approximate area of Ci, and the

slice Si, is 2�f(x�i )

r
1 +

�
�fi
�xi

�2
�xi, and the mass of Si, denoted Mi, is

approximately the density times this area:

Mi � d � 2�f(x�i )
s
1 +

�
�fi

�xi

�2

�xi:

The total area of the surface is the n!1 (and max�xi ! 0) limit of the

sum of the approximate areas, and its total mass, denoted M(f) =
P

Mi,

is equal to d times this area:

M(f) = d �
Z b

a

2�f(x)

s
1 +

�
df

dx

�2

dx:

The force Fi, exerted by each slice Si on the mass m at the origin, will

be directed along the x-axis. This is obvious by the rotational symmetry,

and also follows from the following approximation of Fi as a vector sum.

The slice Si can itself be subdivided \radially" into 2N pieces by N planes

through the x-axis. When n and N are large, each of these pieces can

be treated as a point with mass Mi

2N , for the purposes of approximating Fi
using the inverse square law. Every piece of Si will be represented by one

of its points, with horizontal coordinate x�i and at distance f(x�i ) from the

x-axis, so that the line from m to this point is at an angle �i with the

x-axis. The force exerted on m by the piece has approximate magnitude

Gm
Mi

2N
(
p
(x�i )

2 + (f(x�i ))
2)�2. Its horizontal component (along the x-axis)
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is cos(�i) times the magnitude, and its radial component is sin(�i) times the

magnitude. The force exerted by the opposite piece (rotating the piece and

its representative point by 180�) has the same horizontal component, but an

oppositely directed radial component. In the sum over 2N pieces, the radial

components all cancel, and the approximate horizontal components total to

Fi � Gm
Mi

(x�i )
2 + (f(x�i ))

2
cos(�i)

� Gm

d2�f(x�i )

r
1 +

�
�fi
�xi

�2
�xi

(x�i )
2 + (f(x�i ))

2

x
�

ip
(x�i )

2 + (f(x�i ))
2

= 2�Gmd

x
�

i f(x
�

i )

r
1 +

�
�fi
�xi

�2
((x�i )

2 + (f(x�i ))
2)(3=2)

�xi:

The second step uses the earlier approximation for Mi, and the ratio for the

cosine: cos(�i) =
x�
ip

(x�
i
)2+(f(x�

i
))2

. This formula for Fi is actually a signed

quantity, with the formula for the cosine taking into account the direction

of the force acting on m: to the right for x�i > 0, and to the left for x�i < 0.

So, in the n!1 limit, the answer to the physics question is

Z b

a

2�Gmd
xf(x)

p
1 + (f 0(x))2

(x2 + (f(x))2)(3=2)
dx;

assuming that this de�nite integral exists, which (mathematically) is a non-

trivial condition required of f .

As an application of this formula, consider a sphere with center (c; 0) (on

the positive x-axis, c > 0) and radius R > 0. Using the above formula, with

f(x) =
p
R2 � (x� c)2, and [a; b] = [c�R; c+R] gives f 0(x) = c�xp

R2
�(x�c)2

,
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and total force

F =

Z c+R

c�R

2�Gmd

x

p
R2 � (x� c)2

s
1 +

�
c�xp

R2
�(x�c)2

�2

(x2 +R2 � (x� c)2)(3=2)
dx

= 2�GmdR

Z c+R

c�R

x

(R2 + 2xc� c2)(3=2)
dx

=
2�GmdR

c2

R
2 + xc� c

2

p
R2 + 2xc� c2

����
c+R

c�R

=

8>><
>>:

2�GmdR2

c2
(

c+Rp
(c+R)2

+
c�Rp
(c�R)2

) if c 6= R

2�Gmd if c = R.

=

8<
:

4�GmdR2
c
�2 if c > R

0 if c < R

2�Gmd if c = R.

The total mass of the sphere is M(f) = 4�R2
d, and if this mass were

concentrated at the center (c; 0) with c > R, the force on the mass m at

(0; 0) would be GmM(f)c�2. This is the same as the above integral, so we

have a single-variable derivation of a result of Newton, that the external

gravitational attraction of a sphere is equal to the attractive force of a point

with the same mass at the sphere's center. This was part of Newton's

argument that a solid ball has the same property.

The same integral also demonstrates the fact that if the particle of mass

m is inside the sphere, so c < R, then it feels no force acting in any direction.

(This fact was interesting and surprising to many students.) At c = R, the

particle is on the sphere, and the force is 1
2
GmM(f)c�2; plotting F as a

function of c, there is a discontinuity at c = R. The c = 0 and c < 0 cases

follow from similar calculations.

Other surfaces of revolution for which the above integral formula might

be tractable are cylinders, f(x) = K, truncated cones, f(x) = kx +K, or

funnel shapes, f(x) = k=x, over intervals where f(x) � 0. The construction

also could be applied to a repelling force.
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