The Attraction of Surfaces of Revolution

Adam Coffman
CoffmanA@ipfw.edu
Department of Mathematical Sciences
Indiana University Purdue University Fort Wayne
Fort Wayne, IN 46805-1499

July 24, 2000

In my lectures for the first-year calculus sequence, I state and solve physics problems. After the section on surface area, the following problem generated some interest:

Assuming an inverse square law of attraction, what is the force exerted by a massive surface of revolution on a point mass m located on the axis of symmetry?

An important special case is the attractive force of gravity exerted by a spherical shell on a point mass m. Since any line through the center is an axis of symmetry, m can be anywhere in space.

For the general case, here are some preliminary assumptions:

1. The surface of revolution is defined by a nonnegative function $f(x)$ on a closed interval $[a, b]$, such that f^{\prime} exists on (a, b). The graph of f is revolved around the x-axis as in the Figure.
2. The surface's mass is distributed evenly, in the sense that it has a constant "planar density," $d \geq 0$. The units on d might be kilograms per square meter, for example, to distinguish it from linear or spatial density.
3. The "inverse square law" refers to a force exerted on a point mass m by another point mass M separated by distance $r>0$. Then the magnitude of the force is $G m M r^{-2}$, for a positive constant $G . M, m$ will be assumed nonnegative, and the direction of the force on m is toward M.
4. To simplify calculation, the point mass m can be assumed to be at the origin, by translating f left or right if necessary.

Figure 1

To start with the solution to the physics problem, we slice the surface with planes parallel to the $y z$-plane, and review a (sketchy) derivation of the integral formula for surface area.

The Riemann sum procedure is to partition $[a, b]$ into n subintervals [x_{i-1}, x_{i}], with length Δx_{i}, for $i=1$ to n, and then select a sample point x_{i}^{*} - the midpoint will be convenient. The graph of f can be approximated by n line segments L_{i} connecting $\left(x_{i-1}, f\left(x_{i-1}\right)\right)$ to $\left(x_{i}, f\left(x_{i}\right)\right)$. Revolving each segment L_{i} gives a truncated cone C_{i}, which approximates a slice S_{i} of the surface of revolution. Each C_{i} has surface area

$$
\pi\left(f\left(x_{i-1}\right)+f\left(x_{i}\right)\right) \sqrt{\left(\Delta x_{i}\right)^{2}+\left(\Delta f_{i}\right)^{2}}
$$

where Δf_{i} abbreviates $f\left(x_{i}\right)-f\left(x_{i-1}\right)$. (This well-known formula for the area of a truncated cone can be derived without calculus.) The average $\frac{1}{2}\left(f\left(x_{i-1}\right)+f\left(x_{i}\right)\right)$ is the distance from $\left(x_{i}^{*}, 0\right)$ to the midpoint of L_{i}, which can be approximated by $f\left(x_{i}^{*}\right)$. Then, the approximate area of C_{i}, and the slice S_{i}, is $2 \pi f\left(x_{i}^{*}\right) \sqrt{1+\left(\frac{\Delta f_{i}}{\Delta x_{i}}\right)^{2}} \Delta x_{i}$, and the mass of S_{i}, denoted M_{i}, is approximately the density times this area:

$$
M_{i} \approx d \cdot 2 \pi f\left(x_{i}^{*}\right) \sqrt{1+\left(\frac{\Delta f_{i}}{\Delta x_{i}}\right)^{2}} \Delta x_{i} .
$$

The total area of the surface is the $n \rightarrow \infty\left(\right.$ and $\left.\max \Delta x_{i} \rightarrow 0\right)$ limit of the sum of the approximate areas, and its total mass, denoted $M(f)=\sum M_{i}$, is equal to d times this area:

$$
M(f)=d \cdot \int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(\frac{d f}{d x}\right)^{2}} d x .
$$

The force F_{i}, exerted by each slice S_{i} on the mass m at the origin, will be directed along the x-axis. This is obvious by the rotational symmetry, and also follows from the following approximation of F_{i} as a vector sum. The slice S_{i} can itself be subdivided "radially" into $2 N$ pieces by N planes through the x-axis. When n and N are large, each of these pieces can be treated as a point with mass $\frac{M_{i}}{2 N}$, for the purposes of approximating F_{i} using the inverse square law. Every piece of S_{i} will be represented by one of its points, with horizontal coordinate x_{i}^{*} and at distance $f\left(x_{i}^{*}\right)$ from the x-axis, so that the line from m to this point is at an angle θ_{i} with the x-axis. The force exerted on m by the piece has approximate magnitude $G m \frac{M_{i}}{2 N}\left(\sqrt{\left(x_{i}^{*}\right)^{2}+\left(f\left(x_{i}^{*}\right)\right)^{2}}\right)^{-2}$. Its horizontal component (along the x-axis)
is $\cos \left(\theta_{i}\right)$ times the magnitude, and its radial component is $\sin \left(\theta_{i}\right)$ times the magnitude. The force exerted by the opposite piece (rotating the piece and its representative point by 180°) has the same horizontal component, but an oppositely directed radial component. In the sum over $2 N$ pieces, the radial components all cancel, and the approximate horizontal components total to

$$
\begin{aligned}
F_{i} & \approx G m \frac{M_{i}}{\left(x_{i}^{*}\right)^{2}+\left(f\left(x_{i}^{*}\right)\right)^{2}} \cos \left(\theta_{i}\right) \\
& \approx G m \frac{d 2 \pi f\left(x_{i}^{*}\right) \sqrt{1+\left(\frac{\Delta f_{i}}{\Delta x_{i}}\right)^{2}} \Delta x_{i}}{\left(x_{i}^{*}\right)^{2}+\left(f\left(x_{i}^{*}\right)\right)^{2}} \frac{x_{i}^{*}}{\sqrt{\left(x_{i}^{*}\right)^{2}+\left(f\left(x_{i}^{*}\right)\right)^{2}}} \\
& =2 \pi G m d \frac{x_{i}^{*} f\left(x_{i}^{*}\right) \sqrt{1+\left(\frac{\Delta f_{i}}{\Delta x_{i}}\right)^{2}}}{\left(\left(x_{i}^{*}\right)^{2}+\left(f\left(x_{i}^{*}\right)\right)^{2}\right)^{(3 / 2)}} \Delta x_{i} .
\end{aligned}
$$

The second step uses the earlier approximation for M_{i}, and the ratio for the cosine: $\cos \left(\theta_{i}\right)=\frac{x_{i}^{*}}{\sqrt{\left(x_{i}^{*}\right)^{2}+\left(f\left(x_{i}^{*}\right)\right)^{2}}}$. This formula for F_{i} is actually a signed quantity, with the formula for the cosine taking into account the direction of the force acting on m : to the right for $x_{i}^{*}>0$, and to the left for $x_{i}^{*}<0$.

So, in the $n \rightarrow \infty$ limit, the answer to the physics question is

$$
\int_{a}^{b} 2 \pi G m d \frac{x f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}}}{\left(x^{2}+(f(x))^{2}\right)^{(3 / 2)}} d x
$$

assuming that this definite integral exists, which (mathematically) is a nontrivial condition required of f.

As an application of this formula, consider a sphere with center $(c, 0)$ (on the positive x-axis, $c>0$) and radius $R>0$. Using the above formula, with $f(x)=\sqrt{R^{2}-(x-c)^{2}}$, and $[a, b]=[c-R, c+R]$ gives $f^{\prime}(x)=\frac{c-x}{\sqrt{R^{2}-(x-c)^{2}}}$,
and total force

$$
\begin{aligned}
F & =\int_{c-R}^{c+R} 2 \pi G m d \frac{x \sqrt{R^{2}-(x-c)^{2}} \sqrt{1+\left(\frac{c-x}{\sqrt{R^{2}-(x-c)^{2}}}\right)^{2}}}{\left(x^{2}+R^{2}-(x-c)^{2}\right)^{(3 / 2)}} d x \\
& =2 \pi G m d R \int_{c-R}^{c+R} \frac{x}{\left(R^{2}+2 x c-c^{2}\right)^{(3 / 2)}} d x \\
& =\left.\frac{2 \pi G m d R}{c^{2}} \frac{R^{2}+x c-c^{2}}{\sqrt{R^{2}+2 x c-c^{2}}}\right|_{c-R} ^{c+R} \\
& = \begin{cases}\frac{2 \pi G m d R^{2}}{c^{2}}\left(\frac{c+R}{\sqrt{(c+R)^{2}}}+\frac{c-R}{\sqrt{(c-R)^{2}}}\right) & \text { if } c \neq R \\
& =\left\{\begin{array}{cl}
4 \pi G m d R^{2} c^{-2} & \text { if } c>R \\
0 & \text { if } c<R \\
2 \pi G m d & \text { if } c=R .
\end{array}\right.\end{cases}
\end{aligned}
$$

The total mass of the sphere is $M(f)=4 \pi R^{2} d$, and if this mass were concentrated at the center $(c, 0)$ with $c>R$, the force on the mass m at $(0,0)$ would be $G m M(f) c^{-2}$. This is the same as the above integral, so we have a single-variable derivation of a result of Newton, that the external gravitational attraction of a sphere is equal to the attractive force of a point with the same mass at the sphere's center. This was part of Newton's argument that a solid ball has the same property.

The same integral also demonstrates the fact that if the particle of mass m is inside the sphere, so $c<R$, then it feels no force acting in any direction. (This fact was interesting and surprising to many students.) At $c=R$, the particle is on the sphere, and the force is $\frac{1}{2} G m M(f) c^{-2}$; plotting F as a function of c, there is a discontinuity at $c=R$. The $c=0$ and $c<0$ cases follow from similar calculations.

Other surfaces of revolution for which the above integral formula might be tractable are cylinders, $f(x)=K$, truncated cones, $f(x)=k x+K$, or funnel shapes, $f(x)=k / x$, over intervals where $f(x) \geq 0$. The construction also could be applied to a repelling force.

