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These notes are elementary derivations of well-known, but sometimes hard
to find, facts on series in several variables. By “elementary” I mean “avoiding
the theory of complex differentiation and integration,” and the basic ideas of
the proofs will be natural generalizations of the first-year calculus treatment of
power series in one variable. I will also avoid issues of “uniformity,” even though
this is the usual approach to some of the theorems. Some books which state
some related facts on multi-indexed series are [D] and [GF].

1 Multi-indexed series

Notation 1.1.
e W=1{0,1,2,3,4,...} is the set of whole numbers (so N CW C 7).
e n € N will be a fixed natural number.

e Anelement o € W" is a “multi-index.” The “order” of & = (a1, vz, ..., o)
is |a] = a1 +az+ - -+ ay,. Sometimes to emphasize the number of terms
the order will be written |«|,,.

o (K,||) will be either of the fields R or C, with the usual absolute value
and complex conjugation (z — z).

e (B,] ||) will be a Banach space over K.
Definition 1.2. A “multi-indexed sequence in B” is a function
c: W' = B:aw— cq.
Definition 1.3. If the set
Ve={>_llcall : A € W", A finite}

acA

is a bounded subset of R, we will say “c forms a convergent multi-indexed series.”

It looks like an analogue of “absolutely convergent series,” but since there is
no canonical way to order W™ for n > 1, we won’t bother with “conditionally
convergent” series, where even when n = 1 the sum depends on the ordering.



Theorem 1.4. If ¢ forms a convergent multi-indexed series, then there exists
an element L € B with the following property: for any e; > 0, there is some
Ny € N such that if No > Ny, then

N2
Z Z Ca — L|| < €.
k=0 \ |a|=Fk

Further, L is unique and satisfies | L] < lubV,.

Proof. Let 8 be the least upper bound of the set V.. Then, given any €5 > 0,
there’s some finite set A C W" such that

Bocz< Y feall < 8.

acA

Let N3 = max{|a|: a € A}. Then,

Ny
Ny >N — 5—€2<Z|‘Ca”§2 ZHCaH < B,

ach k=0 \|ee|=k
N5 Ny
N5 >Ny > N3 =— H S Y |- 1D D ca H
k=0 \|a|=k k=0 \|a|=k
Ns Ns
= Z Z Ca ||| < Z Z l[eall
E=Ni+1 \|o|=k k=Ni+1 \|o|=k
N5 Ny
= (Do D leall ] ) = {22 D lleall
k=0 \|a|=k k=0 \ |a|=k
<B—-(8—e€) =ea.
N
This implies that as a sequence depending on NV, Z Z ca | is a Cauchy
k=0 \|a|=k

sequence in B, so it converges to some L € B. The uniqueness of L is the usual
uniqueness of a limit, and the bound for | L] is given, for No > Ny, by:

N2 N2
ILE< ([ D00 D ca ] | =L+ [ D[ D lleall | | <+ 8
k=0 \|a|=k k=0 \|a|=k

Notation 1.5. If ¢ forms a convergent multi-indexed series, and L € B is the
element from the previous Theorem, the following abbreviations make sense:

Z ca:za:cazz:ca:[/.

acWn



The idea of the Theorem and this Notation is that we can group the multi-
indexed series by its “homogeneous” parts, to get a well-defined “sum” of the
series. The Theorem also relates the multi-indexed series Z to a single-indexed

(e
o0

series Z, as defined in first-year calculus. It will usually be convenient to denote

k=0
the partial sums:

S (Y wl- Y a

k=0 \|a|=k la| <N

To approximate the sum L by a finite partial sum, it is obviously not suffi-
cient to consider arbitrary finite index sets A, but the following two Theorems
generalize Theorem 1.4 by showing that it is sufficient to consider finite sets
that contain “enough” of the lower-order terms.

Theorem 1.6. If ¢ forms a convergent multi-indexed series, then there exists a
unique element L € B with the following property: for any e > 0, there is some
N € N such that if A CW" is a finite set and {a: |a| < N} C A, then

(5e)

Proof. Let L be as in Theorem 1.4, and let ¢ > 0. Then, corresponding to
€1 = €/2 > 0, there’s some N7 € N such that if Ny > N, then

< €.

H Z ca | — L|| < €/2.
\

a|<N:

Also as in Theorem 1.4, corresponding to e = ¢/2, there’s some N3 so that

Ny>Ns = B—¢€/2< > Jlcall <8
|| <Ny

Let N = max{Ny, N3}, and, for any finite A containing {a : |a] < N}, let



N5 =max{|a] : « € A} > N > N3. Then,

H(an>—L = Ca | — L+ Z Ca
ach la|<N a €A
|a| > N
< ( ca) —L|+ D> el
o <N a€A
|a| > N
< Ca | —L|| + Z l[eall
|| <N N<|a|<Ns
< €/24+¢/2=¢

For the uniqueness, suppose Li and Lo have the claimed property. Then, for
any € > 0, there’s some N so that if A is finite and {a : o] < N} C A, then

(5) =

and there’s some N’ so that if {a : |a] < N’} C A, then

(5)

Let N” = max{N, N'}, so that if {a : |a|] < N"”} C A, then
Ll - (Z Ca) + <Z Ca) _L2
acA acA
acA acA
i

Theorem 1.7. If ¢ forms a convergent multi-indexed series with sum L, and
o: W — W" is any bijection, then

o0
Z Cg(k) =1TL.
k=0

€
<§,

€

5"

11 = Le||

+

IN

<EL €
—+-=e€
2 2




Proof. Given any € > 0, let N be the corresponding number from the previous
Theorem. Then, o *({a : |a| < N}) is a finite subset of W, with largest
element M;. For any My > My, let A = {o(1),...,0(M3)}, a finite subset of
Wm such that {a: |a| < N} =o(c7 ' ({a: |a] < N})) Co({1,...,M1}) CA.

So,
Mo
(&) -l (5)
k=0 acA
i

Theorem 1.8 (Easy Comparison). If (By,|| |[1) and (Ba,| ||2) are Banach
spaces, and cq 1S a multi-indezed sequence in By that forms a convergent multi-
indexed series, and b, is a multi-indexed sequence in Ba such that ||ba|l2 <
llcallr for all but finitely many a € W™, then by also forms a convergent multi-
indexed series.

< €.

Proof. Let U be any upper bound for V,, and let ® be a fixed finite set such
that ||ball2 > |lcalli = « € ®. Then, the set V4 is bounded: for any finite
A C W,

Dollballz = | D lball +< > ||ba||2>

ach acA\® acAnd
< > lealr | + (Z |ba||2> <U+ (Z ||ba||2> .
aeA\D acd acd

Corollary 1.9. Given any set I' C W", and a multi-indexed sequence in B,
Ca, define another multi-indexed sequence in B:

a -1 ca ifael
1 0 fa¢l

If co forms a convergent multi-indexed series, then so does dy. [ |

Notation 1.10. If ¢, forms a convergent multi-indexed series, and I'" and d,
are as in the previous Corollary, with sum M, denote

Y ta= Y da=M.

acl acWn

Theorem 1.11 (Comparison with Estimate). Given by, a multi-indexed se-
quence in B, and cq, a multi-indezed sequence in R, if ||b|| < ca for all
a € W” and > co = A, then by, forms a convergent multi-indezed series, with
sum L € B such that | L|| < .



Proof. Note that the hypothesis implies ¢ = |ca|. Let § = lubV,, as in the
Proof of Theorem 1.4, so that for any ez > 0, there is some N3 such that if
N4 2 1\737 then

ﬂ_62 < angﬂ

|| <Ny

= an — Bl < es.

|a| <Ny

This implies 5 = A, by the uniqueness of the sum from Theorem 1.4. For any

finite A C W",
S el < 3 ca <A
acA acA

This shows b, forms a convergent multi-indexed series, with lubVj, < A. The
inequality ||L|| < A follows from the bound from Theorem 1.4.

Theorem 1.12. If Z ca =1L, and o0 : W — 2" has the property that
acWn

W= J o(v)

¥ EWHL

s a disjoint union, then

Z Z ca | = L.

YEW™ \ a€o(y)

Proof. (Step 1, establishing convergence.) For each v € W™, denote by d2, the
multi-indexed sequence in B corresponding to Corollary 1.9, applied to ¢, and
o(v). Then d forms a convergent multi-indexed series, and as in the above
Notation, denote for each ~,

Y a= > dl=1L,

aco(y) acWn

Given a finite, non empty subset A € W™ with #A elements, Theorem 1.4
applies to € = A > 0, giving N1(v,A) € N so that if No > Ny(y,A), then

1
—L —.
Y <#A

H \a\<Nz



If No > N1(A) = max{Ni(vy,A) : v € A}, then

S Y | = Sz

YEA ||a€a(w) ~YEA
Yl (T a) s a
YEA || <Ny || <N,
1
S OSE S Sl ot
YEA YEA \|a|<N2
= 14+) Jeal <145
finite

the last step using the disjointness property of o, and the lub § as in Theorem
1.4.
(Step 2, establishing the value of the limit.) Let € > 0. Denote

SN ID SIS D VAT

YEW™ \ aco(y) ~yeWm™

with the goal of showing ||L — L, || < e. Applying Theorem 1.6 to the hypothesis
that ¢, forms a convergent multi-indexed series with sum L, there’s some N
corresponding to €/3 so that if A is any finite subset of W™ containing {« :

|a] < N}, then
Z Ca — L

< €
acA 3

By the assumed property of o, for each a € W™ there is a unique v € W™ so
that a € o(y). Let I'; be a finite subset of W™ so that

{a:lal<N}C | o(y).
~el

Then, for any e such that |a| < N, there’s some v € T'y so that a € o(7),
which, by construction, means co = d,, and for any Ny > N, ¢, will be exactly
one of the terms of

”
2| 2
Y€el'1 \|a|<N2

(The “exactly one” refers to ¢, as a formal symbol, since of course, some values
of the multi-indexed sequence ¢ may repeat, or be equal to 0.) This implies, for
any No > N, and any I'y € W™ which is finite and contains I'y,

S X @)L <3 (1)

YET2 \ |a|<N3



Similarly applying Theorem 1.6 to the multi-indexed sequence L., which
was shown to form a convergent multi-indexed series in Step 1, there is some
N’ so that if I's C W™ is a finite set containing {~ : |y] < N'}, then

S| Lo << 2)

3
~v€ls

In particular, both inequalities (1) and (2) hold for the finite set I' = T'; U {y :
[yl < N}
As in Step 1, there is some Ni(T') = max{Ny(v,T) : v € '} corresponding

to the above I' and 35 > 0, so that if No > Ni(I'), then

€
Sy = > a4 <3 (3)
~er || <N

Let N7 = max{N, N1(I')}, so that for any No > Nj, inequalities (1), (2),
and (3) all hold, and:

IL—Loll = |L—|D> Ly |+ D Ly| - Lo
~el ~el
< Z Ly — Z o
ver || <Nz

HIDO[ D @) -¢

’YEF |(1|§N2

€ € €
DLy | - Lo < s+ 5+
~erl

Theorem 1.7 could be considered a special case. The converse statement,
that if the double sum converges, then the multi-indexed sum also converges:
Z ca = L, is clearly false. However, under a stronger “absolute convergence”

aewn
assumption, the following result holds.

Theorem 1.13. Given a multi-indexed sequence co in B, and a map o as in
Theorem 1.12, if

Yo D el

YEW™ \a€co(y)



forms a convergent multi-indezed series, with sum A € R, then
D ca
acWn

and

2 | 2 e

~yeW™ \ aco(vy)
both form convergent multi-indexed series, with the same sum L € B, and | L|| <

A

Proof. Let d) be the multi-indexed sequence in B as in Notation 1.10, corre-
sponding to the ¢ terms with indices in the set o(vy). The hypothesis means

that
dolldll= > leal

acWn aco(y)

converges, with a sum Ay, which as in the Proof of Theorem 1.11, is the lub of
finite sums of terms ||cq ||, @ € o(7). Theorem 1.11 then applies to show that

> =) ca
acwn aco(v)
is convergent, with sum L, € B, and ||L|| < A,. The hypothesis also means
that Z Ay = A, which by Theorem 1.11 again, implies that Z L, is a
yeWm YyEW™
convergent series, with sum L € B such that | L] < A.

To show that Z Ca is convergent, let A be a finite subset of W”. Then,

aEW?L
there is some finite set I" so that A = U (Ano(v)), and
~el
dolleall=> 2 Do leall | DM <A
ach YT \aceAno(vy) ~er

By Theorem 1.4, Z Ce has sum L' € B; to show L' = L, suppose € > 0.

acWn
By Theorem 1.6, corresponding to €/3 > 0, there is some N € N such that if A

is a finite subset of W™ and {a : o] < N} C A, then

(5e) -

Also by Theorem 1.4, there is some N3 € N such that if Ny > N3, then

S| -L <§.
[v|<Na

€
3 .




We can further pick N4 large enough so that {a: |a] < N} C U o(v). Let

[V[<N4
C be the number of such indices:

C = #{y e W™ : |y < Ni}.

For each =, there is, corresponding to 5% > 0, some N5 () such that if Ne(v) >
N5(7), then

€
Y — N
H |a|§ 0% | =Ly < 55

<Ns(7)

If we choose each Ng(vy) larger than N, then

{a:la|<N}C | {aco(y):lal < Ns()},
[7V|<N4

and

-l < |- Y 1,

[¥I<N4
2 a)-w
[v|<N4 || <Ne ()

+H D >ooar|| -1

[VISNs \|e|<Ng(7)

€ €
O e

< £
3 3¢ 3

10



2 The geometric series

Lemma 2.1. Given k € W, the number of multi-indices o« € W™ such that
. ( k+n—1 )
la| =k is .
n—1

Proof. We will first find the number of multi-indices & € N” such that |a| =
K >n. The sum a1 + ... + a,, = K can be visualized as K dots in a row,
separated into blocks of size a; by n — 1 dividers, for example, 6 =243 + 1 is
represented:

Each divider fits between two of the dots, and between any two adjacent dots is
at most one divider (since a; > 0). The number of ways to assign n — 1 dividers
to the K — 1 spaces between the K dots is ( I;__ll >

The function (aq,...,a,) — (a1 +1,...,ay + 1) is obviously a bijection
W™ — N™ which, for any k& > 0, restricts to a bijection from the set of multi-
indices of order k£ in W™ to the set of multi-indices of order k+n in N™. Applyinﬁ
the previous paragraph’s formula to K = k+n gives the claim of the Lemma.

Theorem 2.2 (Geometric series: convergence). Givenv € B andr = (r1,72,...,7,) €
K™ such that |r;| <1 fori=1,...,n, the multi-indexed sequence in B:
ver® =uv-rftorg? e

forms a convergent multi-indexed series. Its sum is

n

a_ . 1
zo;v.r B H(l—ﬁ‘)'

i=1

Proof. (Step 1, establishing convergence.) Let p = max{|ri|,...,|rn|}, and
given any finite A C W, let N = max{|a] : a € A}.

Dollox® = o lloll - | a2

Qn

acA achA

N

< Y (S g e
k=0 \|a|=k
N

k+n—1

< (KRt )

k=0

using the previous Lemma. The above finite sum is a partial sum of a single-
indexed series, which converges by the Ratio test ([C]):

E+1+n-1
(i)

I n-1 Jim 217 1
P kd+n—1 . T k1’ P<
n—1 P

11



(Step 2, approximating the geometric series.) The following claim will be
proved by induction on n. For any N € W, there is some multi-indexed sequence
in K, 63", such that [6%"] < 2"~! and

<ﬁ“‘”)>i SRS D ol (DRt

i=1 k=0 \|a|.=k k=N+1 \|a|n=k

For n =1, let 55\;’11) =1if @y = N +1, or 0 otherwise. This works, by the usual
calculation:
1 N N
LHS = <H(1_”>>Z Z r* z(l—rl)Zr’le—r{vH,
i=1 k=0 \|a|1=k k=0
N+1
_ N1 _ N, N+l
RHS = 1— > | > > =1-63% .

k=N+1 ‘ah:k‘

Suppose, inductively, that the claim holds for some n € N. Then, it also holds
for n + 1, applied to the vector (r1,r2,...,7n, Tnt1), although we will continue
to use the symbol r for an n-tuple: (r1,72,...,7,). Starting with the LHS,

12



N N—j+n
= N—jn .o J
I=rpp) Y 1= D > 6 r o
]:0 k:N7j+1 ‘a‘n—k
N N—j+n
- E ]. — E E 5N7]:nra rj
n+1
J=0 k=N—j+1 \|a|.=k
N N—j+n
N—jn o Jj+1
(22 X RS i
7=0 k=N-—j+1 la|n=Fk
N+n

= 1— 5N,nra
> | X4

k=N+1 \|a|,=k

N N—j+n
N—jn_ o 7
+ Z 1- E E O, r Tyt
j=1 k=N-—j+1 \a\nzk
N+1 N—(j=1)+n
- - S oy mga ] |
1 Z 50( r rn+1
J=1 k=N—-(j—1)+1 \|a|,=k
N+n
_ N,n..o
ikl UD DI ED DI A
k=N+1 \|a|,=k

N—j+ln al||__ N—jn. .a j
Z E:‘Sa r E g Oq il | | iy

N—j+1+n N—j+n
F=N=j+2 \oln=k k=N —j+1 ol =k

J=1
n
0,n .. N+1
- 1- Z Z 50‘ r rn-{-l
k=1 \|a|,=k

N+n+1

N, 1 -
= 1= Z Z 50( e (r1)r2)"'77‘n77‘n+1)a —RI{;S’7
k=N+1 |a|"+1:k

where Y1 is either 0, £1, a number from a §*™ multi-indexed sequence, or
the difference of two of these numbers.

(Step 3, establishing the value of the limit.) If v = 0, the sum claimed in
the Theorem is obvious. If v # 0, and € > 0, then, by the Cauchy property of

13



the convergent series from Step 1, there’s some N; € N so that for all N > Ny,

n
N+n H'l_ril
Z k+n-—1 pk<i=1 e
n—1 vl

k=N+1

By the equality from Step 2,

Sl Do

k=N+1 || =k

PO

k=N+1 || =k

(]

N+n H|]‘_ri|
Z 2n1(k+n—1>pk<i1 e
n—1 [[v]]

k=N+1

IN

and this is enough to find the limit from Theorem 1.4:

N

ool
Z Zv'r" —U'Hm < €.

k=1 \|o|=k i=1

Theorem 2.3 (Geometric series: divergence). For v, r, as in the previous
Theorem, but with v # 0 and |r;| > 1 for somei=1,...,n, v-r* does not form
a convergent multi-indezed series.

Proof. Finite sets of the form
A=1{(0,0,...,0,k,0,...,0): Ny <k < Ny} CW",
with a; = 0 for j # ¢, give sums of the form
N2
Dollo-r*l= > ol - Iral* = [loll (N2 — Ny + 1),
acA k=N,

which are unbounded. (Here, as always, we are using the convention that 7“? =1
for any r; € K.) i

14



3 Power series

Notation 3.1. For r = (r1,...,7,) € R", and a = (a1,...,a,) € K", define
the “polydisc with center a and polyradius r,” A(a,r) C K", by

Ala,r) ={(z1,...,20n) €EK": |2y —a| <miyi=1,...,n}.

Note that if some 7; < 0, then A(a,r) = Q.

Definition 3.2. For ¢, a multi-indexed sequence in B, a = (aq,...,a,) € K,
and x = (21,...,2,) € K", denote a multi-indexed sequence in B:
Ca(x—a)* =cq - (x1 —a1)™ - (x2 —a2)®® ... (T — an)™

If it forms a convergent multi-indexed series, call its sum, Z ca(x—a)*, a

acWn
“convergent (B-valued) power series.” Given cq, and a, call the set

{x: g ca(x —a)® is a convergent power series} C K"
acWn

the “set of convergence of the power series with coefficients ¢, and center a.”
Such a set always contains a. Its (possibly empty) interior is the “domain of
convergence.” If S is any subset of the set of convergence, we will say “the
power series Y cq(x — a)* converges for x € S.”

Theorem 3.3. If co is a multi-indexed sequence in B, and a, y € K", and
{caly1—a1)® ...« (Yn—an)* : € W"} is a bounded set in B, then Y co(x—
a)*, > |lcall(x — a)®, and > ||lca(x — a)®|| all converge for x € A(a, (Jy1 —
Clllv R |yn - an|))'

Proof. By definition of “bounded,” there’s some M € R so that for all o,

lea(ys —a1)® - (Y — an)® || = llcall - [y1 — ar|® - ... - |yn — an|* < M.
If x € Aa, (Jy1 — a1, - -, |yn — anl)), then
[ca(x—a)%| = [lcall(x—a)%
= |lcall - |lz1 —ar|* ... |20 — an|®”
z1 —ap | Ty — ap |
< M-|—— Sl
Y1 —a1 Yn — Qn

50 Y ca(x—a)*, Y [lcall(x—a)™, and Y ||ca(x—a)®|| converge by comparison
to the geometric series.

Corollary 3.4. Given cq, a, and'y, if Y co(y —a)® is a convergent power
series, then the polydisc A(a, (Jy1 — a1l, ..., |yn — anl)) is a subset of the set of
convergence of the power series with coefficients co, and center a. The same
polydisc is also a subset of the set of convergence of the power series with

15



coefficients ||ca|| and center a. There exists a constant M such that for all

x € Ala, (Jy1 — a1ly .-+, [yn — anl)), the sum Y co(x — a)* satisfies
Hanx—a H<Z||cax—a°‘|\<MH |9c,—a, .
|y17a1|
Similarly,

‘ZHCQH x—a) ‘<Z|\cax—a°‘||<MH1_ T

lyi—ai]
Proof. The boundedness of the terms follows immediately from the definition
of convergent series. The estimates follow from Theorems 1.11 and 2.2.

Notation 3.5. For a multi-index o = (g, ..., ap) € W*, we’ll use a “prime”
to denote o’ = (aq,...,@n—1), and then denote @ = (&', ). Similarly for
vectors y = (y1,...,yn) €K™, let y' = (y1,...,Yn—1) and y = (¥, yn)-
Theorem 3.6. Given n > 2, a multi-indezed sequence ¢ in B, a sequence
b: W =K, andy € K*, if

> [etaan e

o’ eWn—1

forms a convergent multi-indexed series for each a,, € W, and

(5 ownat]) i on e}
a/EWn—l

is a bounded subset of K, then, for all x € A0, (Jyal,---, |ynl)),
S (3 )
an€W \a/eWwn—1
and
Z Co * by, - X&
aEWn
are both convergent, with the same sum.
Proof.
x € A0, (il lyn) = [etaran )| < |e@.an )
SO Z c(a,’a")(x')o‘ and Z H (o an) ')0‘/ converge by comparison
a’ewn—1 a’ewn—1

(Theorem 1.11), and

Z Hc(a/,an)(x/)a} < Z HC(O‘ an) H —
a’eWn-1 a’cWr—1
‘( > learan e H)by < ‘( > [ewant® H) w27
a/ewn—l a'ewn—l

16



By hypothesis, the RHS is bounded by M > 0, so

’( > et )bx
a/ewn-1

(assuming y, # 0, since otherwise the Theorem is trivial). The convergence
of the first claimed sum from the Theorem follows from comparison with the
single-variable geometric series.

The convergence of

Qn
Tn

Yn

<M

< > H0<a',an>(><’>"' )-Iba,,x%" = > llcaba,z*|
alEW"71 a’eW"*1

for each «,, and the convergence of

> ( 5 ucab%xau)

an €W \a/eWn—1

are enough, by Theorem 1.13, to establish the convergence of Z caba,x%, and
@

the claimed equality. [ |

Notation 3.7. For any o € W”, there exists a multi-indexed sequence in R,

W”—)R:ﬂ»—><ﬁ>,

with these properties:

(5)=0

o If for some i, 3; > «;, then ( ; ) = 0; otherwise, if 5; < «; for all
i=1,...,n, denote this property of 8 by “8 < a.”

e For any x, y € K", (x +y)* = Z < 2‘ )Xﬁyaﬁ.
BLla

We won’t need any exact values for ( Z ) until Section 5. It will sometimes
be convenient to write
[e % — (a7 —
S (5 )=y ()
B<Lla Bewn

with the understanding that all terms where “3 < «” is false are zero, even
though negative exponents formally appear.
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Theorem 3.8. Suppose A(0,r) is a subset of the set of convergence of a power
series with coefficients co, and center 0, and a € A(0,r). Then, there is a multi-
indexed sequence in B, c,, so that for all x € A(a, (r1 — |a1],..., 7 — |an])),

>l (x —a)®™ is a convergent power series, and

Zc;(x —a)® = anxa.

Proof. (Step 1, establishing convergence of a multi-indexed series.) Given any
x € Aa, (r1 — |a], ..., rn — |an])),

|z < o — ai| + [ai| < (ri — |ai]) + [ai| =7

implies both x and (|z1 —a1|+ |a1], .- ., |zn — an| + |an|) are elements of A(O,r),
so A(a, (ry — a1l ..., — |an])) € A(0,r), the RHS of the claimed equation is
a convergent power series, and Y co (|1 — a1| + a1, .- ., |20 — an| + |an])® is

also a convergent power series. By definition, there is some upper bound U(x)
for the partial sums:

Y llea - (Jer = arl +laa)* - (J2n = an] + an])™ || < U(x).

finite

For o, B € W™, let (o, 3) denote the element (a1, ..., an, B1, ..., Bn) € W,
Define a multi-indexed sequence

W2 -5 B: (a,B) — Ca < ; ) (x —a)Pa™P,

It forms a convergent multi-indexed series: let A be a finite subset of W2", and
N =max{|a|: (a,3) € A}. Then

= (3w

(a,B)€A

< S Sl (G )bl = el o
|| <N\ BLax

= Z leall - (Jz1 —ar + laa )™ - oo (Jzn — anl + |an )™ < U(x).
la|<N

(Step 2., establishing the claimed equality.) Define, as in Theorem 1.12, a
map

o1 W= 27 e {(a,3) : B € W"}.
It, and the multi-indexed series from Step 1, satisfy the hypotheses of that
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Theorem, so

Z Cop - ( Z >(x—a)ﬁa°“5

(e,B)eW?n

DI D S G PR e

aceW” \ (a,B)€01 ()

= Z Cor* Z(Z)(x—a)ﬂao‘_ﬁ

aeWn Bewn

= E Ccax®.

aEWn
The Theorem also applies to another map

oot W — 27 B {(a,B8) : ¢ € W"},
to give

Z Cor - < Z >(X_a)ﬁaa—ﬁ

(o, B)eW2n

Y Y e ( - ) (x — a)PacP

BeW™ \ (a,B)€02(B)

- 2z G)r)er)

Technically, the last expression follows from the previous one only for the terms
where (x —a)? # 0. Since A(a, (r; — |ai,...,7n — |an|)) is non-empty, it has
some element x so that (x —a)? # 0 for all 3, and we can use this to establish

the convergence of
« —
> Ca < s )aa %

acWn

which defines c’ﬁ not depending on x. [ |
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4 Geometry of the ball

Definition 4.1. A “positive semidefinite Hermitian form” on K" is a function
g : K" x K" — K such that:

e (homogeneity) For all x, y e K", A € K, g(A-x,y) = Ag(x,y).
e (additivity) For all x, y, z € K", g(x+y,2) = g(x,2) + 9(y, 2).

e (Hermitian symmetry) For all x, y € K", ¢g(x,y) = ¢(y,%). (so, for any
x € K", g(x,x) €R.)

e (positivity) For all x € K", g(x,x) > 0.

Lemma 4.2 (CBS). Given a positive semidefinite Hermitian form g, for any
x, y € K",
l9(x,¥)* < g(x,%)9(yy)-

Proof. For any A, u € K,
0 < g\ x+p yA-x+p-y)
= Ag(x,X) + pAg(y, x) + Mig(x,y) + pig(y,y)-
In particular, for A = ¢g(y,y) and p = —g(x,y),
0 < AAg(%,%) 4 pA(—f1) + Ma(—p) + pj
= My(x,x)g(y,y) - lg(x,y)*),

and if g(y,y) # 0, this proves the claim. Similarly, for A = —g(y,x) and
1= g(x,x),

o
IN

A A+ PA(=A) + Aa(=A) + pig(y, y)
= alg(xx)g(y,y) — lg(y,x)?),

and if g(x,x) # 0, this proves the claim. Finally, if g(x,x) = g(y,y) = 0, let
A=1and p=—g(x,y), so

0 < 0-ygxy)9(y,x) —g(y,x)g(x,y) +0
= —2|g(X,y)|27
proving g(x,y) = 0, and the claim. [ |
Lemma 4.3 (A #). Given a positive semidefinite Hermitian form g, the func-
tion
K" R x> xlly = +/90x,%)
satisfies, for all x, y € K",

Ix+ylg < lIxllg +lIylls-
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Proof.

Ix+yl2 = gx+y.x+y)
= lg(x,%x) +g(y,x) +9(x,5) + 9(y,¥)l

< g(x,x)+9(y,y) +2l9(x.y)|
< g(xx)+9(y,y) +2V9(x,x)9(y,y)
= (Ixllg + llylly)?
using the previous Lemma. [ |
Definition 4.4. For i = 1,...,n, denote the “reflections in the coordinate
hyperplanes”
Ri:(x1, iy @) = (T1, ooy =Ty ooy ).

A positive semidefinite Hermitian form g is in “standard position” if all of the
reflections satisfy the “isometry” equation: for all x, y € K",

g(Ri(x), Ri(y)) = 9(%,y)-

Lemma 4.5. If g is in standard position, then it is of the form
n
g(X, y) = Z 9iTiYi,
i=1

for nonnegative real constants g1,...,¢gn-

Proof. First, any Hermitian form can be expressed in terms of a matrix, with
respect to the usual basis of row vectors {e’ = (0,...,0,1,0,...,0)}. For x =
> xz;e andy =) y;e’, the linearity properties give

n n
g(x,y) =Yz | Y _wigle’,e) | =xGy".
i=1 j=1

The “standard position” hypothesis, applied to the basis vectors, gives, for j # 1,
g(eiv ej) = g(Ri(ei)v Ri(ej)) = g(_eia ej) = _g(eia ej)7
so G is a diagonal matrix, with diagonal entries g; = g(e’, e?) > 0. [ |

Notation 4.6. For a positive semidefinite Hermitian form g, denote the “ball
with center a € K™ and radius R € R” by

By(a,R) = {(z1,..-,2n) : |(x1 — a1, ..., 2p —an)|g < R} CK™.

Geometrically, this shape will be the interior of an ellipsoid (if g is positive
definite), or of an ellipsoidal cylinder (if degenerate), or all of K™ (if g = 0).
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Lemma 4.7. If g is in standard position, then any ball By(a, R) is a union of
polydiscs with center a.

Proof. Given x € By(a, R), pick any constant p such that |[x — al|? < p* < R”.

n
Then, pick any é1,...,60, > 0 so that Zgiéf < R? — p?. Define r by
i=1

lwimail e
r; = { [[x—allg p if Ti i 7& 0

(52‘ ifxi—ai:O.

Then x € A(a,r), and a+r € By(a, R):

n n

2 2
E gilai +ri —a;|” = E giT;
i=1 i=1

n n 2
2 |z; — ail
S (=)
i=1 i=1 9
n
< Zgi63+p2<R2.

i=1

For any element y € A(a,r),
n n
ly — a||§ = Zgi|yi - ai|2 < Zgirf < R2.
=1 i=1

So, for any x € By(a, R), there is a polydisc such that x € A(a,r) C By(a, R).

Theorem 4.8. Given ¢, a multi-indexed sequence in B, a complex Banach
space, and a vector a € R™, if g is in standard position and Y cq(x — a)*
converges for all x in a real ball,

{xeR": Zgi(xi —a;)? < R?} = By(a, R) NR",
i=1

then Y co(z —a)* and 3 ||call(z — a)* converge on the complex ball with the
same radius,

By(a,R) ={z€C": ) gl — ai|* < R*}.
i=1

Proof. Given any complex vector z € Bg(a, R), the real vector (|z1 — a1| +

ai, ..., |2n — an| + an) is an element of By(a, R) N R™. From the Proof of the
previous Lemma, there is some r such that a+r € By(a, R)NR™ and (|21 —a1]|+
a1,y |20 — an| + an) € A(a,r). It follows that z is in the complex polydisc

A(a,r). By hypothesis, > cqo(a+1r —a)® is convergent, and by Corollary 3.4,
Y calz—a)® and > ||cal/(z — a)®™ are also convergent.
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Theorem 4.9. If g is in standard position and ) cox* converges on By(0, R),
and a € By(0, R), then there is some multi-indexed sequence c,, so that for all

x € By(a, R—|allg), Y cl,(x—a)™ is a convergent power series, with sum equal

to > cax®.

Proof. By Lemma 4.3, B,(a, R—||a||y) C B4(0, R). Given x € By(a, R— ||al|,),
there is, by the construction of the previous Lemma, some r € R™ such that
IIr|ly < R—lally and x € A(a,r). The claim is that
Aa,r) CA(0,(Jar| + 71, .., |an] + 7)) € By(0, R).
For the first subset, suppose y € A(a,r). Then
il < lyi — ail + lai| <7+ ail.

For the second subset, suppose y € A(0, (|ai|+7r1,...,|an| +r)). Then, using
the “standard position” hypothesis, and Lemmas 4.5 and 4.2 (CBS),

n
vl = > ailuil®
i=1

n
< Y gillail +1:)?
i=1

= all§ + llxll§ +2g((lasl, .- . [an]), x)
< (lally +lIrlly)* < B2

The Theorem follows from the claimed inclusion: since ) coXx® converges on
A0, (a1 471, ..., |an| +75)), there exist coefficients ¢/, defining a power series
> el (x—a)™ which converges to > ¢ox® on A(a, r), by Theorem 3.8. From the
Proof of that Theorem, these coefficients ¢, do not depend on x or the choice of
r, so By(a, R — ||al|y) is a subset of the set of convergence of ) ¢, (x — a)®. | |
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5 Functions defined by power series

Theorem 5.1. If Y cqx® converges on some polydisc A(0,r), then the function
f:A0O,r) > B:x— f(x anx

is continuous at a for all a € A(0,r).

Proof. “Continuity at the point a” means that for any € > 0, there are positive
numbers d;,i = 1,...,n,sothat if x € A(a, (01,...,0,)), then || f(x)—f(a)] <.
(Step 1, showing continuity at 0.) Fix some w € A(0,r), such that w; > 0

fori=1,...,n. Theorem 1.12 applies to the series Y cow® and the map
0) — {0}
. W 1) —» {a:a; >0}
oW 2 (1) » {arar=...=0;-1=0,0, >0} if2<i<n
() —» O ifj>n
to give
n
S e = s Y [F cawe
acwn i=1 \aco(i)
n
= co+ sz Z caw?‘flw?jjl won
i=1 aco(i)
For each i = 1,...,n, Corollary 3.4 applies to the convergent power series

i—1 g
Z CaWy' w1t wp

so there’s some M; > 0 so that for all x € A(0, w),

a;—1_ Qiq1 a,
> cart it | <M [T

aco(i)

Multiplying both sides by |x;| gives

Z CaX®|| < x| M; H \:rl

aco(i)
So, given € > 0, let §; = min{m, ..., %} Then,
n
T; 1 1
|xi|<6i:1—ﬂ>—: — <27,
(1 2 iy ]__M
- w5



and

n

S 3

i=1 \a€o(i)

5 (it [T <«

(Step 2, showing continuity everywhere else.) By Theorem 3.8, for any point
a € A(0,r), there are coefficients c,,, and a polydisc with center a, so that for x
in that polydisc, > ¢, (x —a)® converges, with sum f(x). By the construction
from the Proof of that Theorem, and the fact that the multinomial coefficient

( z ) has value 1 for all «

1) = F(O)] = [[ £ (x) = coll

IN

So, Step 1 applies to show

lim f(x) = lim Zc (x—a)* =cy = f(a).

x—a x—a—0

The following Theorem is for single-indexed series, with coefficients ¢ : W —
B, but Step 2 uses the methods of multi-indexed series (Theorem 3.8).

(o)
Theorem 5.2. Ichkzk converges on some disc {z : |z| <1} CK!, then the
k=0

(B-valued) function f(z chz 1s differentiable at a for all a in the disc,
k=0

with f'(a ch ka1,

Proof. “Differentiability at the point a” means that there’s an element f'(a) € B
so that for any € > 0, there is a § > 0 so that if 0 < |z — a|] < 4, then

‘ f(z) f — f'(a )H
(Step 1, showing dlfferentiability at 0.) Fix w € K with 0 < |w| <7, so

Co+ciw + <§: Ckwk> — ¢ oo
f(w) — f(0) L= k=2 I chkwkfl

w—20 w
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Just as in the Proof of the previous Theorem, Corollary 3.4 applies to the
oo

convergent power series Z cpw™ ™!, giving some M so that if |z| < |w|, then
k=2
— f(0 1
=0 < e
z—0 1 Izl

|w]

- ,

and this can be made less than any € > 0 by choosing § = min{5%7, %}
(Step 2, showing differentiability everywhere else.) By Theorem 3.8, for any
point @ such that |a| < r, there are coefficients ¢}, and a disc with center a,
[ee]

so that for z in that disc, Zc;ﬁ(z —a)® converges, with sum f(z). By the

k=0
construction from the Proof of that Theorem, and the fact that the binomial

coeflicient ( ET; ) = ( llf > has value k for all kK > 1 (and in particular, value

0 for k = 0),

z—a zZ—a z—a—0 zZ—aQ

(o) o0
[C] gives a proof that chzk and Z cr - k2" have the same radius of

k=0 k=1
convergence.
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