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These notes are elementary derivations of well-known, but sometimes hard
to find, facts on series in several variables. By “elementary” I mean “avoiding
the theory of complex differentiation and integration,” and the basic ideas of
the proofs will be natural generalizations of the first-year calculus treatment of
power series in one variable. I will also avoid issues of “uniformity,” even though
this is the usual approach to some of the theorems. Some books which state
some related facts on multi-indexed series are [D] and [GF].

1 Multi-indexed series

Notation 1.1.

• W = {0, 1, 2, 3, 4, . . .} is the set of whole numbers (so N ⊆ W ⊆ Z).

• n ∈ N will be a fixed natural number.

• An elementα ∈ Wn is a “multi-index.” The “order” ofα = (α1, α2, . . . , αn)
is |α| = α1 +α2+ · · ·+αn. Sometimes to emphasize the number of terms
the order will be written |α|n.

• (K, | |) will be either of the fields R or C, with the usual absolute value
and complex conjugation (z �→ z̄).

• (B, ‖ ‖) will be a Banach space over K.

Definition 1.2. A “multi-indexed sequence in B” is a function

c : Wn → B : α �→ cα.

Definition 1.3. If the set

Vc = {
∑
α∈Λ

‖cα‖ : Λ ⊆ W
n, Λ finite}

is a bounded subset of R, we will say “c forms a convergent multi-indexed series.”

It looks like an analogue of “absolutely convergent series,” but since there is
no canonical way to order W

n for n > 1, we won’t bother with “conditionally
convergent” series, where even when n = 1 the sum depends on the ordering.
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Theorem 1.4. If c forms a convergent multi-indexed series, then there exists
an element L ∈ B with the following property: for any ε1 > 0, there is some
N1 ∈ N such that if N2 ≥ N1, then∥∥∥∥∥∥

⎛
⎝ N2∑

k=0

⎛
⎝ ∑

|α|=k

cα

⎞
⎠
⎞
⎠− L

∥∥∥∥∥∥ < ε1.

Further, L is unique and satisfies ‖L‖ ≤ lubVc.

Proof. Let β be the least upper bound of the set Vc. Then, given any ε2 > 0,
there’s some finite set Λ ⊆ W

n such that

β − ε2 <
∑
α∈Λ

‖cα‖ ≤ β.

Let N3 = max{|α| : α ∈ Λ}. Then,

N4 ≥ N3 =⇒ β − ε2 <
∑
α∈Λ

‖cα‖ ≤
N4∑
k=0

⎛
⎝∑

|α|=k

‖cα‖
⎞
⎠ ≤ β,

N5 ≥ N4 ≥ N3 =⇒
∥∥∥∥∥∥
⎛
⎝ N5∑

k=0

⎛
⎝∑

|α|=k

cα

⎞
⎠
⎞
⎠−

⎛
⎝ N4∑

k=0

⎛
⎝∑

|α|=k

cα

⎞
⎠
⎞
⎠
∥∥∥∥∥∥

=

∥∥∥∥∥∥
N5∑

k=N4+1

⎛
⎝∑

|α|=k

cα

⎞
⎠
∥∥∥∥∥∥ ≤

N5∑
k=N4+1

⎛
⎝∑

|α|=k

‖cα‖
⎞
⎠

=

⎛
⎝ N5∑

k=0

⎛
⎝ ∑

|α|=k

‖cα‖
⎞
⎠
⎞
⎠−

⎛
⎝ N4∑

k=0

⎛
⎝ ∑

|α|=k

‖cα‖
⎞
⎠
⎞
⎠

< β − (β − ε2) = ε2.

This implies that as a sequence depending on N ,
N∑

k=0

⎛
⎝∑

|α|=k

cα

⎞
⎠ is a Cauchy

sequence in B, so it converges to some L ∈ B. The uniqueness of L is the usual
uniqueness of a limit, and the bound for ‖L‖ is given, for N2 ≥ N1, by:

‖L‖ ≤
∥∥∥∥∥∥
⎛
⎝ N2∑

k=0

⎛
⎝∑

|α|=k

cα

⎞
⎠
⎞
⎠− L

∥∥∥∥∥∥+
⎛
⎝ N2∑

k=0

⎛
⎝∑

|α|=k

‖cα‖
⎞
⎠
⎞
⎠ < ε1 + β.

Notation 1.5. If c forms a convergent multi-indexed series, and L ∈ B is the
element from the previous Theorem, the following abbreviations make sense:∑

α∈Wn

cα =
∑
α

cα =
∑

cα = L.
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The idea of the Theorem and this Notation is that we can group the multi-
indexed series by its “homogeneous” parts, to get a well-defined “sum” of the

series. The Theorem also relates the multi-indexed series
∑
α

to a single-indexed

series
∞∑
k=0

, as defined in first-year calculus. It will usually be convenient to denote

the partial sums:
N∑

k=0

⎛
⎝∑

|α|=k

cα

⎞
⎠ =

∑
|α|≤N

cα.

To approximate the sum L by a finite partial sum, it is obviously not suffi-
cient to consider arbitrary finite index sets Λ, but the following two Theorems
generalize Theorem 1.4 by showing that it is sufficient to consider finite sets
that contain “enough” of the lower-order terms.

Theorem 1.6. If c forms a convergent multi-indexed series, then there exists a
unique element L ∈ B with the following property: for any ε > 0, there is some
N ∈ N such that if Λ ⊆ Wn is a finite set and {α : |α| ≤ N} ⊆ Λ, then∥∥∥∥∥

(∑
α∈Λ

cα

)
− L

∥∥∥∥∥ < ε.

Proof. Let L be as in Theorem 1.4, and let ε > 0. Then, corresponding to
ε1 = ε/2 > 0, there’s some N1 ∈ N such that if N2 ≥ N1, then∥∥∥∥∥∥

⎛
⎝ ∑

|α|≤N2

cα

⎞
⎠− L

∥∥∥∥∥∥ < ε/2.

Also as in Theorem 1.4, corresponding to ε2 = ε/2, there’s some N3 so that

N4 ≥ N3 =⇒ β − ε/2 <
∑

|α|≤N4

‖cα‖ ≤ β.

Let N = max{N1, N3}, and, for any finite Λ containing {α : |α| ≤ N}, let
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N5 = max{|α| : α ∈ Λ} ≥ N ≥ N3. Then,

∥∥∥∥∥
(∑

α∈Λ

cα

)
− L

∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥∥∥

⎛
⎝ ∑

|α|≤N

cα

⎞
⎠− L+

∑
α ∈ Λ
|α| > N

cα

∥∥∥∥∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥
⎛
⎝ ∑

|α|≤N

cα

⎞
⎠− L

∥∥∥∥∥∥+
∑

α ∈ Λ
|α| > N

‖cα‖

≤
∥∥∥∥∥∥
⎛
⎝ ∑

|α|≤N

cα

⎞
⎠− L

∥∥∥∥∥∥+
∑

N<|α|≤N5

‖cα‖

< ε/2 + ε/2 = ε.

For the uniqueness, suppose L1 and L2 have the claimed property. Then, for
any ε > 0, there’s some N so that if Λ is finite and {α : |α| ≤ N} ⊆ Λ, then∥∥∥∥∥

(∑
α∈Λ

cα

)
− L1

∥∥∥∥∥ <
ε

2
,

and there’s some N ′ so that if {α : |α| ≤ N ′} ⊆ Λ, then∥∥∥∥∥
(∑

α∈Λ

cα

)
− L2

∥∥∥∥∥ <
ε

2
.

Let N ′′ = max{N,N ′}, so that if {α : |α| ≤ N ′′} ⊆ Λ, then

‖L1 − L2‖ =

∥∥∥∥∥L1 −
(∑

α∈Λ

cα

)
+

(∑
α∈Λ

cα

)
− L2

∥∥∥∥∥
≤

∥∥∥∥∥
(∑

α∈Λ

cα

)
− L1

∥∥∥∥∥+
∥∥∥∥∥
(∑

α∈Λ

cα

)
− L2

∥∥∥∥∥ <
ε

2
+

ε

2
= ε.

Theorem 1.7. If c forms a convergent multi-indexed series with sum L, and
σ : W → Wn is any bijection, then

∞∑
k=0

cσ(k) = L.
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Proof. Given any ε > 0, let N be the corresponding number from the previous
Theorem. Then, σ−1({α : |α| ≤ N}) is a finite subset of W, with largest
element M1. For any M2 ≥ M1, let Λ = {σ(1), . . . , σ(M2)}, a finite subset of
Wn such that {α : |α| ≤ N} = σ(σ−1({α : |α| ≤ N})) ⊆ σ({1, . . . ,M1}) ⊆ Λ.
So, ∥∥∥∥∥

(
M2∑
k=0

cσ(k)

)
− L

∥∥∥∥∥ =
∥∥∥∥∥
(∑

α∈Λ

cα

)
− L

∥∥∥∥∥ < ε.

Theorem 1.8 (Easy Comparison). If (B1, ‖ ‖1) and (B2, ‖ ‖2) are Banach
spaces, and cα is a multi-indexed sequence in B1 that forms a convergent multi-
indexed series, and bα is a multi-indexed sequence in B2 such that ‖bα‖2 ≤
‖cα‖1 for all but finitely many α ∈ Wn, then bα also forms a convergent multi-
indexed series.

Proof. Let U be any upper bound for Vc, and let Φ be a fixed finite set such
that ‖bα‖2 > ‖cα‖1 =⇒ α ∈ Φ. Then, the set Vb is bounded: for any finite
Λ ⊆ W

n,

∑
α∈Λ

‖bα‖2 =

⎛
⎝ ∑

α∈Λ\Φ
‖bα‖2

⎞
⎠+

( ∑
α∈Λ∩Φ

‖bα‖2
)

≤
⎛
⎝ ∑

α∈Λ\Φ
‖cα‖1

⎞
⎠+

(∑
α∈Φ

‖bα‖2
)

≤ U +

(∑
α∈Φ

‖bα‖2
)
.

Corollary 1.9. Given any set Γ ⊆ Wn, and a multi-indexed sequence in B,
cα, define another multi-indexed sequence in B:

dα =

{
cα if α ∈ Γ
0 if α /∈ Γ

.

If cα forms a convergent multi-indexed series, then so does dα.

Notation 1.10. If cα forms a convergent multi-indexed series, and Γ and dα
are as in the previous Corollary, with sum M , denote∑

α∈Γ

cα =
∑

α∈Wn

dα = M.

Theorem 1.11 (Comparison with Estimate). Given bα, a multi-indexed se-
quence in B, and cα, a multi-indexed sequence in R, if ‖bα‖ ≤ cα for all
α ∈ W

n and
∑

cα = λ, then bα forms a convergent multi-indexed series, with
sum L ∈ B such that ‖L‖ ≤ λ.
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Proof. Note that the hypothesis implies cα = |cα|. Let β = lubVc, as in the
Proof of Theorem 1.4, so that for any ε2 > 0, there is some N3 such that if
N4 ≥ N3, then

β − ε2 <
∑

|α|≤N4

cα ≤ β

=⇒
∣∣∣∣∣∣
⎛
⎝ ∑

|α|≤N4

cα

⎞
⎠− β

∣∣∣∣∣∣ < ε2.

This implies β = λ, by the uniqueness of the sum from Theorem 1.4. For any
finite Λ ⊆ W

n, ∑
α∈Λ

‖bα‖ ≤
∑
α∈Λ

cα ≤ λ.

This shows bα forms a convergent multi-indexed series, with lubVb ≤ λ. The
inequality ‖L‖ ≤ λ follows from the bound from Theorem 1.4.

Theorem 1.12. If
∑

α∈Wn

cα = L, and σ : Wm → 2W
n

has the property that

W
n =

⋃
γ∈Wm

σ(γ)

is a disjoint union, then

∑
γ∈Wm

⎛
⎝ ∑

α∈σ(γ)

cα

⎞
⎠ = L.

Proof. (Step 1, establishing convergence.) For each γ ∈ Wm, denote by dγα the
multi-indexed sequence in B corresponding to Corollary 1.9, applied to cα and
σ(γ). Then dγα forms a convergent multi-indexed series, and as in the above
Notation, denote for each γ,∑

α∈σ(γ)

cα =
∑

α∈Wn

dγα = Lγ .

Given a finite, non-empty subset Λ ⊆ Wm with #Λ elements, Theorem 1.4
applies to ε = 1

#Λ > 0, giving N1(γ,Λ) ∈ N so that if N2 ≥ N1(γ,Λ), then∥∥∥∥∥∥
⎛
⎝ ∑

|α|≤N2

dγα

⎞
⎠− Lγ

∥∥∥∥∥∥ <
1

#Λ
.
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If N2 ≥ N1(Λ) = max{N1(γ,Λ) : γ ∈ Λ}, then
∑
γ∈Λ

∥∥∥∥∥∥
∑

α∈σ(γ)

cα

∥∥∥∥∥∥ =
∑
γ∈Λ

‖Lγ‖

=
∑
γ∈Λ

∥∥∥∥∥∥Lγ −
⎛
⎝ ∑

|α|≤N2

dγα

⎞
⎠+

⎛
⎝ ∑

|α|≤N2

dγα

⎞
⎠
∥∥∥∥∥∥

<

⎛
⎝∑

γ∈Λ

1

#Λ

⎞
⎠+

∑
γ∈Λ

⎛
⎝ ∑

|α|≤N2

‖dγα‖
⎞
⎠

= 1 +
∑
finite

‖cα‖ ≤ 1 + β,

the last step using the disjointness property of σ, and the lub β as in Theorem
1.4.

(Step 2, establishing the value of the limit.) Let ε > 0. Denote

∑
γ∈Wm

⎛
⎝ ∑

α∈σ(γ)

cα

⎞
⎠ =

∑
γ∈Wm

Lγ = Lσ,

with the goal of showing ‖L−Lσ‖ < ε. Applying Theorem 1.6 to the hypothesis
that cα forms a convergent multi-indexed series with sum L, there’s some N
corresponding to ε/3 so that if Λ is any finite subset of Wn containing {α :
|α| ≤ N}, then ∥∥∥∥∥

∑
α∈Λ

cα − L

∥∥∥∥∥ <
ε

3
.

By the assumed property of σ, for each α ∈ Wn there is a unique γ ∈ Wm so
that α ∈ σ(γ). Let Γ1 be a finite subset of Wm so that

{α : |α| ≤ N} ⊆
⋃

γ∈Γ1

σ(γ).

Then, for any α such that |α| ≤ N , there’s some γ ∈ Γ1 so that α ∈ σ(γ),
which, by construction, means cα = dγα, and for any N2 ≥ N , cα will be exactly
one of the terms of ∑

γ∈Γ1

⎛
⎝ ∑

|α|≤N2

dγα

⎞
⎠ .

(The “exactly one” refers to cα as a formal symbol, since of course, some values
of the multi-indexed sequence c may repeat, or be equal to 0.) This implies, for
any N2 ≥ N , and any Γ2 ⊆ Wm which is finite and contains Γ1,∥∥∥∥∥∥

⎛
⎝∑

γ∈Γ2

⎛
⎝ ∑

|α|≤N2

dγα

⎞
⎠
⎞
⎠− L

∥∥∥∥∥∥ <
ε

3
. (1)
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Similarly applying Theorem 1.6 to the multi-indexed sequence Lγ , which
was shown to form a convergent multi-indexed series in Step 1, there is some
N ′ so that if Γ3 ⊆ Wm is a finite set containing {γ : |γ| ≤ N ′}, then∥∥∥∥∥∥

⎛
⎝∑

γ∈Γ3

Lγ

⎞
⎠− Lσ

∥∥∥∥∥∥ <
ε

3
. (2)

In particular, both inequalities (1) and (2) hold for the finite set Γ = Γ1 ∪ {γ :
|γ| ≤ N ′}.

As in Step 1, there is some N1(Γ) = max{N1(γ,Γ) : γ ∈ Γ} corresponding
to the above Γ and ε

3·#Γ > 0, so that if N2 ≥ N1(Γ), then

∑
γ∈Γ

∥∥∥∥∥∥Lγ −
∑

|α|≤N2

dγα

∥∥∥∥∥∥ <
ε

3
. (3)

Let N1 = max{N,N1(Γ)}, so that for any N2 ≥ N1, inequalities (1), (2),
and (3) all hold, and:

‖L− Lσ‖ =

∥∥∥∥∥∥L−
⎛
⎝∑

γ∈Γ

Lγ

⎞
⎠+

⎛
⎝∑

γ∈Γ

Lγ

⎞
⎠− Lσ

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∑
γ∈Γ

⎛
⎝Lγ −

∑
|α|≤N2

dγα

⎞
⎠
∥∥∥∥∥∥

+

∥∥∥∥∥∥
⎛
⎝∑

γ∈Γ

⎛
⎝ ∑

|α|≤N2

dγα

⎞
⎠
⎞
⎠− L

∥∥∥∥∥∥
+

∥∥∥∥∥∥
⎛
⎝∑

γ∈Γ

Lγ

⎞
⎠− Lσ

∥∥∥∥∥∥ <
ε

3
+

ε

3
+

ε

3
.

Theorem 1.7 could be considered a special case. The converse statement,
that if the double sum converges, then the multi-indexed sum also converges:∑
α∈Wn

cα = L, is clearly false. However, under a stronger “absolute convergence”

assumption, the following result holds.

Theorem 1.13. Given a multi-indexed sequence cα in B, and a map σ as in
Theorem 1.12, if ∑

γ∈Wm

⎛
⎝ ∑

α∈σ(γ)

‖cα‖
⎞
⎠
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forms a convergent multi-indexed series, with sum λ ∈ R, then∑
α∈Wn

cα

and ∑
γ∈Wm

⎛
⎝ ∑

α∈σ(γ)

cα

⎞
⎠

both form convergent multi-indexed series, with the same sum L ∈ B, and ‖L‖ ≤
λ.

Proof. Let dγα be the multi-indexed sequence in B as in Notation 1.10, corre-
sponding to the cα terms with indices in the set σ(γ). The hypothesis means
that ∑

α∈Wn

||dγα|| =
∑

α∈σ(γ)

‖cα‖

converges, with a sum λγ , which as in the Proof of Theorem 1.11, is the lub of
finite sums of terms ‖cα‖, α ∈ σ(γ). Theorem 1.11 then applies to show that∑

α∈Wn

dγα =
∑

α∈σ(γ)

cα

is convergent, with sum Lγ ∈ B, and ‖Lγ‖ ≤ λγ . The hypothesis also means

that
∑

γ∈Wm

λγ = λ, which by Theorem 1.11 again, implies that
∑

γ∈Wm

Lγ is a

convergent series, with sum L ∈ B such that ‖L‖ ≤ λ.

To show that
∑

α∈Wn

cα is convergent, let Λ be a finite subset of Wn. Then,

there is some finite set Γ so that Λ =
⋃
γ∈Γ

(Λ ∩ σ(γ)), and

∑
α∈Λ

‖cα‖ =
∑
γ∈Γ

⎛
⎝ ∑

α∈Λ∩σ(γ)

‖cα‖
⎞
⎠ ≤

∑
γ∈Γ

λγ ≤ λ.

By Theorem 1.4,
∑

α∈Wn

cα has sum L′ ∈ B; to show L′ = L, suppose ε > 0.

By Theorem 1.6, corresponding to ε/3 > 0, there is some N ∈ N such that if Λ
is a finite subset of Wn and {α : |α| ≤ N} ⊆ Λ, then∥∥∥∥∥

(∑
α∈Λ

cα

)
− L′

∥∥∥∥∥ <
ε

3
.

Also by Theorem 1.4, there is some N3 ∈ N such that if N4 ≥ N3, then∥∥∥∥∥∥
⎛
⎝ ∑

|γ|≤N4

Lγ

⎞
⎠− L

∥∥∥∥∥∥ <
ε

3
.
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We can further pick N4 large enough so that {α : |α| ≤ N} ⊆
⋃

|γ|≤N4

σ(γ). Let

C be the number of such indices:

C = #{γ ∈ W
m : |γ| ≤ N4}.

For each γ, there is, corresponding to ε
3C > 0, some N5(γ) such that if N6(γ) ≥

N5(γ), then ∥∥∥∥∥∥
⎛
⎝ ∑

|α|≤N6(γ)

dγα

⎞
⎠− Lγ

∥∥∥∥∥∥ <
ε

3C
.

If we choose each N6(γ) larger than N , then

{α : |α| ≤ N} ⊆
⋃

|γ|≤N4

{α ∈ σ(γ) : |α| ≤ N6(γ)},

and

‖L− L′‖ ≤
∥∥∥∥∥∥L−

∑
|γ|≤N4

Lγ

∥∥∥∥∥∥
+
∑

|γ|≤N4

∥∥∥∥∥∥
⎛
⎝ ∑

|α|≤N6(γ)

dγα

⎞
⎠− Lγ

∥∥∥∥∥∥
+

∥∥∥∥∥∥
⎛
⎝ ∑

|γ|≤N4

⎛
⎝ ∑

|α|≤N6(γ)

dγα

⎞
⎠
⎞
⎠− L′

∥∥∥∥∥∥
<

ε

3
+ C · ε

3C
+

ε

3
.
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2 The geometric series

Lemma 2.1. Given k ∈ W, the number of multi-indices α ∈ Wn such that

|α| = k is

(
k + n− 1
n− 1

)
.

Proof. We will first find the number of multi-indices α ∈ Nn such that |α| =
K ≥ n. The sum α1 + . . . + αn = K can be visualized as K dots in a row,
separated into blocks of size αi by n− 1 dividers, for example, 6 = 2 + 3 + 1 is
represented:

· · | · · · |·
Each divider fits between two of the dots, and between any two adjacent dots is
at most one divider (since αi > 0). The number of ways to assign n− 1 dividers

to the K − 1 spaces between the K dots is

(
K − 1
n− 1

)
.

The function (α1, . . . , αn) �→ (α1 + 1, . . . , αn + 1) is obviously a bijection
Wn → Nn, which, for any k ≥ 0, restricts to a bijection from the set of multi-
indices of order k in Wn to the set of multi-indices of order k+n in Nn. Applying
the previous paragraph’s formula toK = k+n gives the claim of the Lemma.

Theorem 2.2 (Geometric series: convergence). Given v ∈ B and r = (r1, r2, . . . , rn) ∈
Kn such that |ri| < 1 for i = 1, . . . , n, the multi-indexed sequence in B:

v · rα = v · rα1
1 · rα2

2 · . . . · rαn
n

forms a convergent multi-indexed series. Its sum is

∑
α

v · rα = v ·
n∏

i=1

1

(1− ri)
.

Proof. (Step 1, establishing convergence.) Let ρ = max{|r1|, . . . , |rn|}, and
given any finite Λ ⊆ W

n, let N = max{|α| : α ∈ Λ}.∑
α∈Λ

‖v · rα‖ =
∑
α∈Λ

‖v‖ · |r1|α1 · |r2|α2 · . . . · |rn|αn

≤ ‖v‖
N∑

k=0

⎛
⎝∑

|α|=k

|r1|α1 · |r2|α2 · . . . · |rn|αn

⎞
⎠

≤ ‖v‖
N∑

k=0

(
k + n− 1
n− 1

)
ρk,

using the previous Lemma. The above finite sum is a partial sum of a single-
indexed series, which converges by the Ratio test ([C]):

lim
k→∞

∣∣∣∣∣∣∣∣

(
k + 1 + n− 1

n− 1

)
ρk+1

(
k + n− 1
n− 1

)
ρk

∣∣∣∣∣∣∣∣
= lim

k→∞
k + n

k + 1
ρ = ρ < 1.

11



(Step 2, approximating the geometric series.) The following claim will be
proved by induction on n. For any N ∈ W, there is some multi-indexed sequence
in K, δN,n

α , such that |δN,n
α | ≤ 2n−1 and

(
n∏

i=1

(1− ri)

)
N∑

k=0

⎛
⎝ ∑

|α|n=k

rα

⎞
⎠ = 1−

N+n∑
k=N+1

⎛
⎝ ∑

|α|n=k

δN,n
α rα

⎞
⎠ .

For n = 1, let δN,1
(α1)

= 1 if α1 = N +1, or 0 otherwise. This works, by the usual

calculation:

LHS =

(
1∏

i=1

(1− ri)

)
N∑

k=0

⎛
⎝ ∑

|α|1=k

rα

⎞
⎠ = (1− r1)

N∑
k=0

rk1 = 1− rN+1
1 ,

RHS = 1−
N+1∑

k=N+1

⎛
⎝ ∑

|α|1=k

δN,1
α rα

⎞
⎠ = 1− δN,1

(N+1)r
N+1
1 .

Suppose, inductively, that the claim holds for some n ∈ N. Then, it also holds
for n+ 1, applied to the vector (r1, r2, . . . , rn, rn+1), although we will continue
to use the symbol r for an n-tuple: (r1, r2, . . . , rn). Starting with the LHS,

12



(
n+1∏
i=1

(1 − ri)

)
N∑

k=0

⎛
⎝ ∑

|α|n+1=k

(r1, r2, . . . , rn, rn+1)
α

⎞
⎠

= (1− rn+1)

(
n∏

i=1

(1− ri)

)
N∑
j=0

⎛
⎝N−j∑

k=0

⎛
⎝ ∑

|α|n=k

rα

⎞
⎠
⎞
⎠ rjn+1

= (1− rn+1)

N∑
j=0

⎛
⎝1−

N−j+n∑
k=N−j+1

⎛
⎝ ∑

|α|n=k

δN−j,n
α rα

⎞
⎠
⎞
⎠ rjn+1

=

⎛
⎝ N∑

j=0

⎛
⎝1−

N−j+n∑
k=N−j+1

⎛
⎝ ∑

|α|n=k

δN−j,n
α rα

⎞
⎠
⎞
⎠ rjn+1

⎞
⎠

−
⎛
⎝ N∑

j=0

⎛
⎝1−

N−j+n∑
k=N−j+1

⎛
⎝ ∑

|α|n=k

δN−j,n
α rα

⎞
⎠
⎞
⎠ rj+1

n+1

⎞
⎠

=

⎛
⎝1−

N+n∑
k=N+1

⎛
⎝ ∑

|α|n=k

δN,n
α rα

⎞
⎠
⎞
⎠

+

⎛
⎝ N∑

j=1

⎛
⎝1−

N−j+n∑
k=N−j+1

⎛
⎝ ∑

|α|n=k

δN−j,n
α rα

⎞
⎠
⎞
⎠ rjn+1

⎞
⎠

−
⎛
⎝N+1∑

j=1

⎛
⎝1−

N−(j−1)+n∑
k=N−(j−1)+1

⎛
⎝ ∑

|α|n=k

δN−(j−1),n
α rα

⎞
⎠
⎞
⎠ rjn+1

⎞
⎠

= 1−
⎛
⎝ N+n∑

k=N+1

⎛
⎝ ∑

|α|n=k

δN,n
α rα

⎞
⎠
⎞
⎠

+

⎛
⎝ N∑

j=1

⎛
⎝
⎛
⎝N−j+1+n∑

k=N−j+2

⎛
⎝ ∑

|α|n=k

δN−j+1,n
α rα

⎞
⎠
⎞
⎠−
⎛
⎝ N−j+n∑
k=N−j+1

⎛
⎝ ∑
|α|n=k

δN−j,n
α rα

⎞
⎠
⎞
⎠
⎞
⎠rjn+1

⎞
⎠

−
⎛
⎝1−

n∑
k=1

⎛
⎝ ∑

|α|n=k

δ0,nα rα

⎞
⎠
⎞
⎠ rN+1

n+1

= 1−
N+n+1∑
k=N+1

⎛
⎝ ∑

|α|n+1=k

δN,n+1
α (r1, r2, . . . , rn, rn+1)

α

⎞
⎠ = RHS,

where δN,n+1
α is either 0, ±1, a number from a δ∗,n multi-indexed sequence, or

the difference of two of these numbers.
(Step 3, establishing the value of the limit.) If v = 0, the sum claimed in

the Theorem is obvious. If v �= 0, and ε > 0, then, by the Cauchy property of
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the convergent series from Step 1, there’s some N1 ∈ N so that for all N ≥ N1,

N+n∑
k=N+1

(
k + n− 1
n− 1

)
ρk <

n∏
i=1

|1− ri|

2n−1‖v‖ · ε.

By the equality from Step 2,∣∣∣∣∣∣
(

n∏
i=1

(1− ri)

)⎛
⎝ N∑

k=1

⎛
⎝∑

|α|=k

rα

⎞
⎠
⎞
⎠− 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
N+n∑

k=N+1

⎛
⎝ ∑

|α|=k

δN,n
α rα

⎞
⎠
∣∣∣∣∣∣

≤
N+n∑

k=N+1

⎛
⎝∑

|α|=k

|δN,n
α rα|

⎞
⎠

≤
N+n∑

k=N+1

2n−1

(
k + n− 1
n− 1

)
ρk <

n∏
i=1

|1− ri|

‖v‖ · ε,

and this is enough to find the limit from Theorem 1.4:∥∥∥∥∥∥
⎛
⎝ N∑

k=1

⎛
⎝ ∑

|α|=k

v · rα
⎞
⎠
⎞
⎠− v ·

n∏
i=1

1

(1 − ri)

∥∥∥∥∥∥ < ε.

Theorem 2.3 (Geometric series: divergence). For v, r, as in the previous
Theorem, but with v �= 0 and |ri| ≥ 1 for some i = 1, . . . , n, v · rα does not form
a convergent multi-indexed series.

Proof. Finite sets of the form

Λ = {(0, 0, . . . , 0, k, 0, . . . , 0) : N1 ≤ k ≤ N2} ⊆ W
n,

with αj = 0 for j �= i, give sums of the form

∑
α∈Λ

‖v · rα‖ =

N2∑
k=N1

‖v‖ · |ri|k ≥ ‖v‖(N2 −N1 + 1),

which are unbounded. (Here, as always, we are using the convention that r0j = 1

for any rj ∈ K.)
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3 Power series

Notation 3.1. For r = (r1, . . . , rn) ∈ Rn, and a = (a1, . . . , an) ∈ Kn, define
the “polydisc with center a and polyradius r,” Δ(a, r) ⊆ K

n, by

Δ(a, r) = {(x1, . . . , xn) ∈ K
n : |xi − ai| < ri, i = 1, . . . , n}.

Note that if some ri ≤ 0, then Δ(a, r) = Ø.

Definition 3.2. For cα, a multi-indexed sequence in B, a = (a1, . . . , an) ∈ Kn,
and x = (x1, . . . , xn) ∈ Kn, denote a multi-indexed sequence in B:

cα(x− a)α = cα · (x1 − a1)
α1 · (x2 − a2)

α2 · . . . · (xn − an)
αn .

If it forms a convergent multi-indexed series, call its sum,
∑

α∈Wn

cα(x− a)α, a

“convergent (B-valued) power series.” Given cα, and a, call the set

{x :
∑

α∈Wn

cα(x− a)α is a convergent power series} ⊆ K
n

the “set of convergence of the power series with coefficients cα and center a.”
Such a set always contains a. Its (possibly empty) interior is the “domain of
convergence.” If S is any subset of the set of convergence, we will say “the
power series

∑
cα(x − a)α converges for x ∈ S.”

Theorem 3.3. If cα is a multi-indexed sequence in B, and a, y ∈ K
n, and

{cα(y1−a1)
α1 · . . . ·(yn−an)

αn : α ∈ Wn} is a bounded set in B, then
∑

cα(x−
a)α,

∑ ‖cα‖(x − a)α, and
∑ ‖cα(x − a)α‖ all converge for x ∈ Δ(a, (|y1 −

a1|, . . . , |yn − an|)).
Proof. By definition of “bounded,” there’s some M ∈ R so that for all α,

‖cα(y1 − a1)
α1 · . . . · (yn − an)

αn‖ = ‖cα‖ · |y1 − a1|α1 · . . . · |yn − an|αn ≤ M.

If x ∈ Δ(a, (|y1 − a1|, . . . , |yn − an|)), then
‖cα(x− a)α‖ = |‖cα‖(x− a)α|

= ‖cα‖ · |x1 − a1|α1 · . . . · |xn − an|αn

≤ M ·
∣∣∣∣x1 − a1
y1 − a1

∣∣∣∣
α1

· . . . ·
∣∣∣∣xn − an
yn − an

∣∣∣∣
αn

,

so
∑

cα(x−a)α,
∑ ‖cα‖(x−a)α, and

∑ ‖cα(x−a)α‖ converge by comparison

to the geometric series.

Corollary 3.4. Given cα, a, and y, if
∑

cα(y − a)α is a convergent power
series, then the polydisc Δ(a, (|y1 − a1|, . . . , |yn − an|)) is a subset of the set of
convergence of the power series with coefficients cα and center a. The same
polydisc is also a subset of the set of convergence of the power series with
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coefficients ‖cα‖ and center a. There exists a constant M such that for all
x ∈ Δ(a, (|y1 − a1|, . . . , |yn − an|)), the sum

∑
cα(x− a)α satisfies∥∥∥∑ cα(x− a)α

∥∥∥ ≤
∑

‖cα(x− a)α‖ ≤ M

n∏
i=1

1

1− |xi−ai|
|yi−ai|

.

Similarly,∣∣∣∑ ‖cα‖(x− a)α
∣∣∣ ≤∑ ‖cα(x− a)α‖ ≤ M

n∏
i=1

1

1− |xi−ai|
|yi−ai|

.

Proof. The boundedness of the terms follows immediately from the definition
of convergent series. The estimates follow from Theorems 1.11 and 2.2.

Notation 3.5. For a multi-index α = (α1, . . . , αn) ∈ Wn, we’ll use a “prime”
to denote α′ = (α1, . . . , αn−1), and then denote α = (α′, αn). Similarly for
vectors y = (y1, . . . , yn) ∈ Kn, let y′ = (y1, . . . , yn−1) and y = (y′, yn).

Theorem 3.6. Given n ≥ 2, a multi-indexed sequence c in B, a sequence
b : W → K, and y ∈ Kn, if ∑

α′∈Wn−1

∥∥∥c(α′,αn)(y
′)α

′∥∥∥
forms a convergent multi-indexed series for each αn ∈ W, and{( ∑

α′∈Wn−1

∥∥∥c(α′,αn)(y
′)α

′∥∥∥
)

· bαn · yαn
n : αn ∈ W

}

is a bounded subset of K, then, for all x ∈ Δ(0, (|y1|, . . . , |yn|)),
∑

αn∈W

( ∑
α′∈Wn−1

c(α′,αn)(x
′)α

′
)

· bαn · xαn
n

and ∑
α∈Wn

cα · bαn · xα

are both convergent, with the same sum.

Proof.

x ∈ Δ(0, (|y1|, . . . , |yn|)) =⇒
∥∥∥c(α′,αn)(x

′)α
′∥∥∥ ≤

∥∥∥c(α′,αn)(y
′)α

′∥∥∥ ,
so

∑
α′∈Wn−1

c(α′,αn)(x
′)α

′
and

∑
α′∈Wn−1

∥∥∥c(α′,αn)(x
′)α

′∥∥∥ converge by comparison

(Theorem 1.11), and∑
α′∈Wn−1

∥∥∥c(α′,αn)(x
′)α

′∥∥∥ ≤
∑

α′∈Wn−1

∥∥∥c(α′,αn)(y
′)α

′∥∥∥ =⇒
∣∣∣∣∣
( ∑

α′∈Wn−1

∥∥∥c(α′,αn)(x
′)α

′∥∥∥
)
bαny

αn
n

∣∣∣∣∣ ≤
∣∣∣∣∣
( ∑

α′∈Wn−1

∥∥∥c(α′,αn)(y
′)α

′∥∥∥
)
bαny

αn
n

∣∣∣∣∣ .
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By hypothesis, the RHS is bounded by M ≥ 0, so∣∣∣∣∣
( ∑

α′∈Wn−1

∥∥∥c(α′,αn)(x
′)α

′
∥∥∥
)
bαnx

αn
n

∣∣∣∣∣ ≤ M

∣∣∣∣xn

yn

∣∣∣∣
αn

(assuming yn �= 0, since otherwise the Theorem is trivial). The convergence
of the first claimed sum from the Theorem follows from comparison with the
single-variable geometric series.

The convergence of( ∑
α′∈Wn−1

∥∥∥c(α′,αn)(x
′)α

′∥∥∥
)

· |bαnx
αn
n | =

∑
α′∈Wn−1

‖cαbαnx
α‖

for each αn, and the convergence of

∑
αn∈W

( ∑
α′∈Wn−1

‖cαbαnx
α‖
)

are enough, by Theorem 1.13, to establish the convergence of
∑
α

cαbαnx
α, and

the claimed equality.

Notation 3.7. For any α ∈ Wn, there exists a multi-indexed sequence in R,

W
n → R : β �→

(
α

β

)
,

with these properties:

•

(
α

β

)
≥ 0,

• If for some i, βi > αi, then

(
α

β

)
= 0; otherwise, if βi ≤ αi for all

i = 1, . . . , n, denote this property of β by “β ≤ α.”

• For any x, y ∈ Kn, (x+ y)α =
∑
β≤α

(
α

β

)
xβyα−β.

We won’t need any exact values for

(
α

β

)
until Section 5. It will sometimes

be convenient to write

∑
β≤α

(
α

β

)
xβyα−β =

∑
β∈Wn

(
α

β

)
xβyα−β,

with the understanding that all terms where “β ≤ α” is false are zero, even
though negative exponents formally appear.
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Theorem 3.8. Suppose Δ(0, r) is a subset of the set of convergence of a power
series with coefficients cα and center 0, and a ∈ Δ(0, r). Then, there is a multi-
indexed sequence in B, c′α, so that for all x ∈ Δ(a, (r1 − |a1|, . . . , rn − |an|)),∑

c′α(x− a)α is a convergent power series, and∑
c′α(x− a)α =

∑
cαx

α.

Proof. (Step 1, establishing convergence of a multi-indexed series.) Given any
x ∈ Δ(a, (r1 − |a1|, . . . , rn − |an|)),

|xi| ≤ |xi − ai|+ |ai| < (ri − |ai|) + |ai| = ri

implies both x and (|x1−a1|+ |a1|, . . . , |xn−an|+ |an|) are elements of Δ(0, r),
so Δ(a, (r1 − |a1|, . . . , rn − |an|)) ⊆ Δ(0, r), the RHS of the claimed equation is
a convergent power series, and

∑
cα(|x1 − a1| + |a1|, . . . , |xn − an| + |an|)α is

also a convergent power series. By definition, there is some upper bound U(x)
for the partial sums:∑

finite

‖cα · (|x1 − a1|+ |a1|)α1 · . . . · (|xn − an|+ |an|)αn‖ ≤ U(x).

Forα, β ∈ W
n, let (α,β) denote the element (α1, . . . , αn, β1, . . . , βn) ∈ W

2n.
Define a multi-indexed sequence

W
2n → B : (α,β) �→ cα ·

(
α

β

)
(x− a)βaα−β.

It forms a convergent multi-indexed series: let Λ be a finite subset of W2n, and
N = max{|α| : (α,β) ∈ Λ}. Then

∑
(α,β)∈Λ

∥∥∥∥cα
(

α

β

)
(x− a)βaα−β

∥∥∥∥
≤

∑
|α|≤N

⎛
⎝∑

β≤α

‖cα‖
(

α

β

)
|x1 − a1|β1 · · · |xn − an|βn |a1|α1−β1 · · · |an|αn−βn

⎞
⎠

=
∑

|α|≤N

‖cα‖ · (|x1 − a1|+ |a1|)α1 · . . . · (|xn − an|+ |an|)αn ≤ U(x).

(Step 2., establishing the claimed equality.) Define, as in Theorem 1.12, a
map

σ1 : Wn → 2W
2n

: α �→ {(α,β) : β ∈ W
n}.

It, and the multi-indexed series from Step 1, satisfy the hypotheses of that
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Theorem, so

∑
(α,β)∈W2n

cα ·
(

α

β

)
(x− a)βaα−β

=
∑

α∈Wn

⎛
⎝ ∑

(α,β)∈σ1(α)

cα ·
(

α

β

)
(x− a)βaα−β

⎞
⎠

=
∑

α∈Wn

⎛
⎝cα ·

⎛
⎝ ∑

β∈Wn

(
α

β

)
(x− a)βaα−β

⎞
⎠
⎞
⎠

=
∑

α∈Wn

cαx
α.

The Theorem also applies to another map

σ2 : Wn → 2W
2n

: β �→ {(α,β) : α ∈ W
n},

to give

∑
(α,β)∈W2n

cα ·
(

α

β

)
(x− a)βaα−β

=
∑

β∈Wn

⎛
⎝ ∑

(α,β)∈σ2(β)

cα ·
(

α

β

)
(x− a)βaα−β

⎞
⎠

=
∑

β∈Wn

(( ∑
α∈Wn

cα ·
(

α

β

)
aα−β

)
(x− a)β

)
.

Technically, the last expression follows from the previous one only for the terms
where (x − a)β �= 0. Since Δ(a, (r1 − |a1|, . . . , rn − |an|)) is non-empty, it has
some element x so that (x− a)β �= 0 for all β, and we can use this to establish
the convergence of ∑

α∈Wn

cα ·
(

α

β

)
aα−β,

which defines c′β not depending on x.
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4 Geometry of the ball

Definition 4.1. A “positive semidefinite Hermitian form” on Kn is a function
g : Kn ×K

n → K such that:

• (homogeneity) For all x, y ∈ K
n, λ ∈ K, g(λ · x,y) = λg(x,y).

• (additivity) For all x, y, z ∈ K
n, g(x+ y, z) = g(x, z) + g(y, z).

• (Hermitian symmetry) For all x, y ∈ Kn, g(x,y) = g(y,x). (so, for any
x ∈ Kn, g(x,x) ∈ R.)

• (positivity) For all x ∈ Kn, g(x,x) ≥ 0.

Lemma 4.2 (CBS). Given a positive semidefinite Hermitian form g, for any
x, y ∈ Kn,

|g(x,y)|2 ≤ g(x,x)g(y,y).

Proof. For any λ, μ ∈ K,

0 ≤ g(λ · x+ μ · y, λ · x+ μ · y)
= λλ̄g(x,x) + μλ̄g(y,x) + λμ̄g(x,y) + μμ̄g(y,y).

In particular, for λ = g(y,y) and μ = −g(x,y),

0 ≤ λλ̄g(x,x) + μλ̄(−μ̄) + λμ̄(−μ) + μμ̄λ

= λ̄(g(x,x)g(y,y) − |g(x,y)|2),

and if g(y,y) �= 0, this proves the claim. Similarly, for λ = −g(y,x) and
μ = g(x,x),

0 ≤ λλ̄μ+ μλ̄(−λ) + λμ̄(−λ̄) + μμ̄g(y,y)

= μ̄(g(x,x)g(y,y) − |g(y,x)|2),

and if g(x,x) �= 0, this proves the claim. Finally, if g(x,x) = g(y,y) = 0, let
λ = 1 and μ = −g(x,y), so

0 ≤ 0− g(x,y)g(y,x) − g(y,x)g(x,y) + 0

= −2|g(x,y)|2,

proving g(x,y) = 0, and the claim.

Lemma 4.3 (Δ �=). Given a positive semidefinite Hermitian form g, the func-
tion

K
n → R : x �→ ‖x‖g = +

√
g(x,x)

satisfies, for all x, y ∈ Kn,

‖x+ y‖g ≤ ‖x‖g + ‖y‖g.
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Proof.

‖x+ y‖2g = g(x+ y,x+ y)

= |g(x,x) + g(y,x) + g(x,y) + g(y,y)|
≤ g(x,x) + g(y,y) + 2|g(x,y)|
≤ g(x,x) + g(y,y) + 2

√
g(x,x)g(y,y)

= (‖x‖g + ‖y‖g)2,

using the previous Lemma.

Definition 4.4. For i = 1, . . . , n, denote the “reflections in the coordinate
hyperplanes”

Ri : (x1, . . . , xi, . . . , xn) �→ (x1, . . . ,−xi, . . . , xn).

A positive semidefinite Hermitian form g is in “standard position” if all of the
reflections satisfy the “isometry” equation: for all x, y ∈ Kn,

g(Ri(x), Ri(y)) = g(x,y).

Lemma 4.5. If g is in standard position, then it is of the form

g(x,y) =

n∑
i=1

gixiȳi,

for nonnegative real constants g1, . . . , gn.

Proof. First, any Hermitian form can be expressed in terms of a matrix, with
respect to the usual basis of row vectors {ei = (0, . . . , 0, 1, 0, . . . , 0)}. For x =∑

xie
i and y =

∑
yje

i, the linearity properties give

g(x,y) =

n∑
i=1

xi

⎛
⎝ n∑

j=1

ȳjg(e
i, ej)

⎞
⎠ = xGyT .

The “standard position” hypothesis, applied to the basis vectors, gives, for j �= i,

g(ei, ej) = g(Ri(e
i), Ri(e

j)) = g(−ei, ej) = −g(ei, ej),

so G is a diagonal matrix, with diagonal entries gi = g(ei, ei) ≥ 0.

Notation 4.6. For a positive semidefinite Hermitian form g, denote the “ball
with center a ∈ Kn and radius R ∈ R” by

Bg(a, R) = {(x1, . . . , xn) : ‖(x1 − a1, . . . , xn − an)‖g < R} ⊆ K
n.

Geometrically, this shape will be the interior of an ellipsoid (if g is positive
definite), or of an ellipsoidal cylinder (if degenerate), or all of Kn (if g = 0).
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Lemma 4.7. If g is in standard position, then any ball Bg(a, R) is a union of
polydiscs with center a.

Proof. Given x ∈ Bg(a, R), pick any constant ρ such that ‖x− a‖2g < ρ2 < R2.

Then, pick any δ1, . . . , δn > 0 so that
n∑

i=1

giδ
2
i < R2 − ρ2. Define r by

ri =

{ |xi−ai|
‖x−a‖g

· ρ if xi − ai �= 0

δi if xi − ai = 0.

Then x ∈ Δ(a, r), and a+ r ∈ Bg(a, R):

n∑
i=1

gi|ai + ri − ai|2 =

n∑
i=1

gir
2
i

≤
n∑

i=1

giδ
2
i +

n∑
i=1

gi

( |xi − ai|
‖x− a‖g · ρ

)2

≤
n∑

i=1

giδ
2
i + ρ2 < R2.

For any element y ∈ Δ(a, r),

‖y − a‖2g =

n∑
i=1

gi|yi − ai|2 ≤
n∑

i=1

gir
2
i < R2.

So, for any x ∈ Bg(a, R), there is a polydisc such that x ∈ Δ(a, r) ⊆ Bg(a, R).

Theorem 4.8. Given c, a multi-indexed sequence in B, a complex Banach
space, and a vector a ∈ Rn, if g is in standard position and

∑
cα(x − a)α

converges for all x in a real ball,

{x ∈ R
n :

n∑
i=1

gi(xi − ai)
2 < R2} = Bg(a, R) ∩ R

n,

then
∑

cα(z − a)α and
∑ ‖cα‖(z − a)α converge on the complex ball with the

same radius,

Bg(a, R) = {z ∈ C
n :

n∑
i=1

gi|zi − ai|2 < R2}.

Proof. Given any complex vector z ∈ Bg(a, R), the real vector (|z1 − a1| +
a1, . . . , |zn − an| + an) is an element of Bg(a, R) ∩ Rn. From the Proof of the
previous Lemma, there is some r such that a+r ∈ Bg(a, R)∩Rn and (|z1−a1|+
a1, . . . , |zn − an| + an) ∈ Δ(a, r). It follows that z is in the complex polydisc
Δ(a, r). By hypothesis,

∑
cα(a + r − a)α is convergent, and by Corollary 3.4,∑

cα(z− a)α and
∑ ‖cα‖(z− a)α are also convergent.
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Theorem 4.9. If g is in standard position and
∑

cαx
α converges on Bg(0, R),

and a ∈ Bg(0, R), then there is some multi-indexed sequence c′α so that for all
x ∈ Bg(a, R−‖a‖g),

∑
c′α(x−a)α is a convergent power series, with sum equal

to
∑

cαx
α.

Proof. By Lemma 4.3, Bg(a, R−‖a‖g) ⊆ Bg(0, R). Given x ∈ Bg(a, R−‖a‖g),
there is, by the construction of the previous Lemma, some r ∈ R

n such that
‖r‖g < R − ‖a‖g and x ∈ Δ(a, r). The claim is that

Δ(a, r) ⊆ Δ(0, (|a1|+ r1, . . . , |an|+ rn)) ⊆ Bg(0, R).

For the first subset, suppose y ∈ Δ(a, r). Then

|yi| ≤ |yi − ai|+ |ai| < ri + |ai|.

For the second subset, suppose y ∈ Δ(0, (|a1|+ r1, . . . , |an|+ rn)). Then, using
the “standard position” hypothesis, and Lemmas 4.5 and 4.2 (CBS),

‖y‖2g =

n∑
i=1

gi|yi|2

<

n∑
i=1

gi(|ai|+ ri)
2

= ‖a‖2g + ‖r‖2g + 2g((|a1|, . . . , |an|), r)
≤ (‖a‖g + ‖r‖g)2 < R2.

The Theorem follows from the claimed inclusion: since
∑

cαx
α converges on

Δ(0, (|a1|+r1, . . . , |an|+rn)), there exist coefficients c′α, defining a power series∑
c′α(x−a)α which converges to

∑
cαx

α on Δ(a, r), by Theorem 3.8. From the
Proof of that Theorem, these coefficients c′α do not depend on x or the choice of

r, so Bg(a, R−‖a‖g) is a subset of the set of convergence of
∑

c′α(x− a)α.
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5 Functions defined by power series

Theorem 5.1. If
∑

cαx
α converges on some polydisc Δ(0, r), then the function

f : Δ(0, r) → B : x �→ f(x) =
∑

cαx
α

is continuous at a for all a ∈ Δ(0, r).

Proof. “Continuity at the point a” means that for any ε > 0, there are positive
numbers δi, i = 1, . . . , n, so that if x ∈ Δ(a, (δ1, . . . , δn)), then ‖f(x)−f(a)‖ < ε.

(Step 1, showing continuity at 0.) Fix some w ∈ Δ(0, r), such that wi > 0
for i = 1, . . . , n. Theorem 1.12 applies to the series

∑
cαw

α and the map

σ : W1 → 2W
n

:

⎧⎪⎪⎨
⎪⎪⎩

(0) �→ {0}
(1) �→ {α : α1 > 0}
(i) �→ {α : α1 = . . . = αi−1 = 0, αi > 0} if 2 ≤ i ≤ n
(j) �→ Ø if j > n

to give

∑
α∈Wn

cαw
α = c0 +

n∑
i=1

⎛
⎝ ∑

α∈σ(i)

cαw
α

⎞
⎠

= c0 +

n∑
i=1

wi

⎛
⎝ ∑

α∈σ(i)

cαw
αi−1
i w

αi+1

i+1 · · ·wαn
n

⎞
⎠ .

For each i = 1, . . . , n, Corollary 3.4 applies to the convergent power series∑
α∈σ(i)

cαw
αi−1
i w

αi+1

i+1 · · ·wαn
n ,

so there’s some Mi > 0 so that for all x ∈ Δ(0,w),∥∥∥∥∥∥
∑

α∈σ(i)

cαx
αi−1
i x

αi+1

i+1 · · ·xαn
n

∥∥∥∥∥∥ ≤ Mi

n∏
i=1

1

1− |xi|
wi

.

Multiplying both sides by |xi| gives∥∥∥∥∥∥
∑

α∈σ(i)

cαx
α

∥∥∥∥∥∥ ≤ |xi|Mi

n∏
i=1

1

1− |xi|
wi

.

So, given ε > 0, let δi = min{ ε
n2nMi

, w1

2 , . . . , wn

2 }. Then,

|xi| < δi =⇒ 1− |xi|
wi

>
1

2
=⇒

n∏
i=1

1

1− |xi|
wi

< 2n,
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and

‖f(x)− f(0)‖ = ‖f(x)− c0‖ =

∥∥∥∥∥∥
n∑

i=1

⎛
⎝ ∑

α∈σ(i)

cαx
α

⎞
⎠
∥∥∥∥∥∥

≤
n∑

i=1

(
|xi|Mi

n∏
i=1

1

1− |xi|
wi

)
< ε.

(Step 2, showing continuity everywhere else.) By Theorem 3.8, for any point
a ∈ Δ(0, r), there are coefficients c′α, and a polydisc with center a, so that for x
in that polydisc,

∑
c′α(x− a)α converges, with sum f(x). By the construction

from the Proof of that Theorem, and the fact that the multinomial coefficient⎛
⎝ α

0

⎞
⎠ has value 1 for all α,

c′0 =
∑

α∈Wn

cα ·
(

α

0

)
aα = f(a).

So, Step 1 applies to show

lim
x→a

f(x) = lim
x−a→0

∑
c′α(x− a)α = c′0 = f(a).

The following Theorem is for single-indexed series, with coefficients c : W →
B, but Step 2 uses the methods of multi-indexed series (Theorem 3.8).

Theorem 5.2. If

∞∑
k=0

ckz
k converges on some disc {z : |z| < r} ⊆ K1, then the

(B-valued) function f(z) =

∞∑
k=0

ckz
k is differentiable at a for all a in the disc,

with f ′(a) =
∞∑
k=1

ck · kak−1.

Proof. “Differentiability at the point a” means that there’s an element f ′(a) ∈ B
so that for any ε > 0, there is a δ > 0 so that if 0 < |z − a| < δ, then∥∥∥ f(z)−f(a)

z−a − f ′(a)
∥∥∥ < ε.

(Step 1, showing differentiability at 0.) Fix w ∈ K with 0 < |w| < r, so

f(w)− f(0)

w − 0
− c1 =

c0 + c1w +

( ∞∑
k=2

ckw
k

)
− c0

w
− c1 = w

∞∑
k=2

ckw
k−1.
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Just as in the Proof of the previous Theorem, Corollary 3.4 applies to the

convergent power series

∞∑
k=2

ckw
k−1, giving some M so that if |z| < |w|, then

∥∥∥∥f(z)− f(0)

z − 0
− c1

∥∥∥∥ ≤ |z|M 1

1− |z|
|w|

,

and this can be made less than any ε > 0 by choosing δ = min{ ε
2M , |w|

2 }.
(Step 2, showing differentiability everywhere else.) By Theorem 3.8, for any

point a such that |a| < r, there are coefficients c′k, and a disc with center a,

so that for z in that disc,

∞∑
k=0

c′k(z − a)k converges, with sum f(z). By the

construction from the Proof of that Theorem, and the fact that the binomial

coefficient

(
(k)

(1)

)
=

(
k
1

)
has value k for all k ≥ 1 (and in particular, value

0 for k = 0),

c′1 =

∞∑
k=0

ck ·
(

k
1

)
ak−1 =

∞∑
k=1

ck · kak−1.

So, Step 1 applies to show

lim
z→a

f(z)− f(a)

z − a
= lim

z−a→0

( ∞∑
k=0

c′k(z − a)k

)
− c′0

z − a
= c′1 = f ′(a).

[C] gives a proof that

∞∑
k=0

ckz
k and

∞∑
k=1

ck · kzk−1 have the same radius of

convergence.
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