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These are notes on sequences and series, at a first-year calculus level. The goal is to see
how complex numbers and infinite series are related. I’ll start with a few comments about the
“Axiom of Completeness,” which does not apply to the complex numbers. In fact, C will not
appear until page 5.

1.1 Sets of real numbers

Recall that R denotes the set of real numbers, which contains zero and also all positive or
negative decimal expansions. The rational numbers, defined as Q = { p

q : p, q integers, q �= 0},
have repeating decimal expansions (including the terminating decimals, where 0 repeats). So,
Q is a subset of R, but the two sets are definitely not equal.

√
2, π, and e are all examples of

“irrationals,” real numbers which are not quotients of integers, and whose decimal expansions
do not repeat.

The two number systems R and Q have many things in common, including all the laws
of arithmetic (the commutative, associative, distributive laws, etc., for +, −, ×, and ÷, with
division allowed for any numbers except zero in the denominator.) and the rules for inequalities.
The set Z of integers (positive, 0, and negative) obeys the same rules except that dividing two
integers does not always give an integer. In N, the set of natural numbers {1, 2, 3, 4, . . .}, the
sum and product of natural numbers is in N, but not always the difference or quotient.

Let S be a subset of either R or Q or Z or N.

Definition 1.1. A set S is “bounded above,” with an “upper bound U ,” if every element x ∈ S
satisfies x ≤ U .

Definition 1.2. A set S is “bounded below,” with a “lower bound B,” if every element x ∈ S
satisfies x ≥ B.

Not every set S has an upper bound, for example, S = [0,∞) has a lower bound, but not an
upper bound. Upper bounds are never “unique,” either, since if U is an upper bound of S, then
so is U + 1.

Definition 1.3. A set S is “bounded,” with a “bound M ,” if every element x ∈ S satisfies
|x| ≤ M .

Theorem 1.4. A set S ⊆ R is bounded if and only if it is bounded above and bounded below.
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Proof. First, assume S is bounded, with bound M . It follows that S has an upper bound:
x ≤ |x| ≤ M , and a lower bound: −x ≤ |x| ≤ M =⇒ x ≥ −M (so, U = M , and B = −M).

Second, for the converse, if S has both an upper bound U and a lower bound L, then S is
bounded: L ≤ x =⇒ −x ≤ −L, and since |x| is either x or −x, one of these must hold: |x| ≤ U ,
or |x| ≤ −L. Define the bound to be M = max{U,−L}, so |x| ≤ M .

For the next two statements, let A and B be subsets of R or Q or Z or N.

Theorem 1.5. If A ⊆ B, and B has an upper bound U , then U is also an upper bound of A.

Proof. If x ∈ A, then x ∈ B (this is the definition of ⊆), so x ≤ U (this is the definition of upper
bound of B). Since x ≤ U for all x ∈ A, U is, by definition, an upper bound of A.

The following is just the logical contrapositive of the previous Theorem.

Corollary 1.6. If A ⊆ B, and A has no upper bound, then B has no upper bound.

1.2 The Completeness Property

Definition 1.7. A number b is a “least upper bound of S” means that both of the following
are true:

1. b is an upper bound of S. (so if x ∈ S, then x ≤ b.)

2. if U is any upper bound of S, then b ≤ U .

The least upper bound b can be abbreviated b = lubS. There’s a similar definition of
“greatest lower bound” g = glbS:

Definition 1.8. A number g is a “greatest lower bound of S” means that both of the following
are true:

1. g is a lower bound of S. (so if x ∈ S, then x ≥ g.)

2. if L is any lower bound of S, then g ≥ L.

For example, if S = [0, 1), then glbS = 0 and lubS = 1. A set that has no upper bound will
also have no least upper bound. In general, the lub of a set might or might not be an element
of the set. However, the following Theorem says that the set always has an element close to the
lub (close meaning “within ε”).

Theorem 1.9. Suppose S has a least upper bound b. Then, for any ε > 0, there exists x ∈ S
such that

b − ε < x ≤ b.

Proof. Suppose, toward a contradiction, that there is some ε for which there does not exist such
an element x. Then, any x ∈ S satisfies either x ≤ b − ε or x > b. The x > b case is impossible
since b is an upper bound, but then x ≤ b− ε for all x would mean than b− ε is an upper bound
less than the least upper bound b. This contradiction proves the Theorem.
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Definition 1.10. A number system F has the “completeness property” if every non-empty
subset S ⊆ F that has an upper bound also has a least upper bound lubS ∈ F.

The rational numbers Q do not have the completeness property. The sequence

{1, 1.4, 1.414, 1.4142, 1.41421, 1.414213, 1.4142136 . . .}

of terminating decimal approximations of
√

2 is a sequence of rational numbers, with an upper
bound (U = 3

2 ∈ Q for example), but it does not have a least upper bound in the set of rational
numbers.

The real numbers R do have the completeness property. (I am not going to prove this, we will
take it for granted as a geometric property of the real number line.) For example, any postive
real number x has a decimal expansion, repeating or not, and the set of numbers formed by its
terminating decimal approximations forms a sequence with least upper bound x.

The set of integers Z also has the completeness property. Any bounded set S of integers must
be finite, and the lub of S is just the largest element of S. Similarly, N also has the completeness
property.

Theorem 1.11. Let A ⊆ B ⊆ F, where F has the completeness property. If A is non-empty,
and B has a least upper bound β, then A has a least upper bound α ∈ F, and α ≤ β.

Proof. By definition of lub, β is an upper bound of B, so by Theorem 1.5, β is also an upper
bound of A. Then by the completeness property, there exists a least upper bound α of A, which,
by definition of least upper bound, is less than or equal to any upper bound: α ≤ β.

The “completeness property” doesn’t say anything about lower bounds. However, the fol-
lowing Theorem shows how to find a lower bound, or a glb, just by switching some ± signs and
then using an upper bound.

Theorem 1.12. Suppose the number system F has the completeness property, and also the
property that for every number x ∈ F, the system contains an opposite number: −x ∈ F. Then,
any non-empty subset S ⊆ F that has a lower bound B ∈ F, also has a greatest lower bound
glbS ∈ F.

Proof. Let −S denote the set of numbers opposite to the numbers in S (by hypothesis, every
element of −S is in F, and if S is non-empty, then so is −S). So, let y be any element of −S;
y must be the opposite of something in S, so y = −x, for x ∈ S, and x ≥ B, so −y ≥ B, and
y ≤ −B. This shows that any element of −S is less than or equal to the number −B (again, by
hypothesis, B ∈ F =⇒ −B ∈ F). So, −B is, by definition, an upper bound for the set −S. By
the completeness property, there exists a least upper bound b ∈ F of −S. It turns out that −b
is a greatest lower bound of the original set S.

To see this, the first thing to check is that −b is a lower bound of S. So, let x be any element
of S. Since b is an upper bound of −S, and −x ∈ −S, −x ≤ b by definition of upper bound,
and it follows that x ≥ −b. The other thing to check is that −b is greater than any other lower
bound of S. Suppose B′ is a lower bound for S. Then, just as previously, −B′ is an upper
bound for the set −S, which must be bigger than the least upper bound, so −B′ ≥ b. It follows
that B′ ≤ −b, so −b is greater than the lower bound B′.
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For example, Z and R satisfy the conditions of the Theorem. The set N doesn’t have the
“opposite” property, so this Theorem doesn’t apply to F = N. However, every non-empty subset
S of N has a lower bound, anyway (just use 1 ∈ N), and has a greatest lower bound (the smallest
element of S).

1.3 Real Sequences

Definition 1.13. A function f(x) is called “bounded on the domain D” if the set of values
{f(x) : x ∈ D} is a bounded set. This means that there’s a number M so that for every number
x ∈ D, the inequality |f(x)| ≤ M holds.

An example of this is D = N, so the function is a sequence:

Definition 1.14. A sequence a = (a1, a2, . . . , an, . . .) is called “bounded” if the set of values
{a1, a2, . . . , an, . . .} is a bounded set. This means that there is a number M so that for every
natural number n ∈ N, the inequality |an| ≤ M holds.

The definition of “increasing” is the same for sequences as it is for functions. (because
sequences are just a type of function)

Definition 1.15. A sequence a is “increasing” means: if p < q, then ap < aq.

Definition 1.16. A sequence a is “decreasing” means: if p < q, then aq < ap.

Definition 1.17. A sequence a is “monotonic” (or “monotone”) if one of the previous two
definitions holds.

Definition 1.18. A sequence could be called “weakly increasing,” “weakly decreasing,” or
“weakly monotonic” if the < symbols in the previous three definitions are replaced by ≤.

Definition 1.19. A sequence a is “convergent”, with “limit L,” if for any ε > 0, there is some
cutoff N with the following property: if n ≥ N , then |an −L| < ε. The fact that a is convergent
with limit L can be abbreviated:

lim
n→∞ an = L.

Theorem 1.20. Suppose bn is a weakly decreasing sequence, and lim
n→∞ bn = L. Then bn ≥ L

for all n.

Proof. Suppose, toward a contradiction, that there is some index k so that bk < L. Then let
ε = L − bk > 0, so that by the definition of limit, there’s some N so that if n ≥ N , then
|bn − L| < ε. This implies −ε < bn − L < ε, and so −(L − bk) < bn − L < L − bk for all n ≥ N ,
including some n which are bigger than k. Adding L to the inequality gives bk < bn < 2L − bk,
for some n > k. However, having both n > k and bk < bn contradicts the “weakly decreasing”
hypothesis, which says that if k < n, then bk ≥ bn.

Theorem 1.21. Suppose bn is a weakly increasing sequence, and lim
n→∞ bn = L. Then bn ≤ L

for all n.

Proof. The proof would be very similar to the previous proof.
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The previous Theorems assumed a monotonic (decreasing or increasing) sequence was conver-
gent, and proved there was a (lower or upper) bound. The next Theorem assumes a monotonic
sequence is bounded, and proves that it is convergent.

Theorem 1.22. In a number system F which has the completeness property, let a = (a1, . . . , an, . . .)
be a sequence. If the sequence is weakly increasing, and bounded above, with upper bound U ∈ F,
then a is a convergent sequence, and its limit is some number L ∈ F, such that L ≤ U .

Proof. Since the set of values of a is non-empty, and has an upper bound, it has a “least
upper bound” lub{a1, a2, . . . , an, . . .} = L ∈ R, L ≤ U . Given any ε > 0, there exists some
sequence element aN ∈ (L− ε, L] by Theorem 1.9. Because a is weakly increasing, the inequality
L−ε < aN ≤ an holds for any n ≥ N , and an ≤ L by definition of lub, so L−ε < an ≤ L < L+ε.
It follows that for any ε > 0, there is some N so that |an − L| < ε for all n ≥ N , which is the
definition of “a converges to L.”

A similar Theorem, proved in a similar way using glb, states that a weakly decreasing se-
quence with lower bound is convergent, with limit equal to its greatest lower bound. These two
Theorems together are called the “Monotonic Sequence Theorem,” and the MST is usually used
with F = R. The MST is false for F = Q, which does not have the completeness property:
the earlier example showed that a bounded, increasing sequence of rational numbers need not
converge to a rational number. MST is true for Z: every weakly increasing sequence of integers
which is bounded above by an integer U converges to some integer L ≤ U .

1.4 Complex Sequences

Note that many of the above ideas don’t apply to the complex number system C. This is
because there’s no way to work with inequalities. The definitions of “lower bound,” “upper
bound,” “lub,” “glb,” “increasing,” “decreasing,” and the Monotonic Sequence Theorem don’t
apply to complex sequences. However, it is still possible to have a sequence of complex numbers
(a function with domain N where the output values are complex numbers). Also, the definition
of bounded makes sense for subsets S ⊆ C. Definition 1.3 uses the absolute value, so |z| ≤ M is
a comparison of real numbers. Geometrically, a bounded set S is contained in some large disc
(radius M) centered at the origin of the complex number plane. This also leads to the definition
of bounded functions with complex values, and bounded sequences with complex values: the
values have to form a bounded subset of the target set C. The definition of convergent also still
works for complex sequences (Definition 1.19), since it also uses absolute values.

Here’s a Theorem about two complex sequences, an and bn:

Theorem 1.23. If lim
n→∞ an = L, and |an| = |bn|, then bn is a bounded sequence.

Proof. The definition of “bounded” says we have to show there’s some number M so that
|bn| ≤ M . Given any ε > 0, by the definition of limit, there’s some N so that |an − L| < ε for
n ≥ N . By the triangle inequality, |bn| = |an| = |an − L + L| ≤ |an − L| + |L|. This implies
|bn| < ε + |L| for n ≥ N , so |L| + ε is a bound for all the elements in the b sequence except
the first N . A bound for the whole b sequence is the following maximum of N + 1 nonnegative
numbers: M = max{|b1|, |b2|, . . . , |bN |, |L| + ε}.
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For example, let a be the constant sequence an = 1, and then bn can be any sequence of 1’s
and −1’s. The Theorem doesn’t say that b must converge, but only that the convergence of a
implies the boundedness of b. As another example, with bn = an, we get the following:

Corollary 1.24. If an is a convergent sequence, then an is bounded.

Theorem 1.23 can also be rephrased as its logically equivalent contrapositive:

Corollary 1.25. If bn is not a bounded sequence, and |an| = |bn|, then lim
n→∞ an does not exist.

1.5 Complex series

Here are a few Theorems that apply to series formed by sequences of complex numbers. The
first Theorem could be proved using the rules for limits, but here’s a proof that uses only the
definition of limit.

Theorem 1.26. If
∞∑

k=1

ak is a convergent series, then lim
k→∞

ak = 0.

Proof. lim
k→∞

ak = 0 means that for any ε > 0, there’s some K so that if k > K, then |ak −0| < ε.

So, given ε > 0, we need to find some cutoff K, past which ak will be closer to 0 than ε.

Denote the partial sums of the series by sn =
n∑

k=1

ak. The definition of “convergent series”

is that sn gets close to some limit L: lim
n→∞ sn = L. In fact, sn gets within ε/2 of L for large

enough n: by definition of limit, there’s some number N so that if n > N , then |sn − L| < ε/2.
Let K = N + 1. Then, k > K = N + 1 =⇒ k > k − 1 > N , so we can plug both k and

k − 1 into the n from the previous paragraph to get |sk − L| < ε/2 and |sk−1 − L| < ε/2. The
triangle inequality (which is still true for complex numbers!) shows how small ak must be:

|ak| = |sk − sk−1| = |(sk − L) + (L − sk−1)| ≤ |sk − L| + |sk−1 − L| <
ε

2
+

ε

2
= ε.

The contrapositive follows immediately, and is also useful:

Corollary 1.27 (The “Divergence Test”). If lim
k→∞

ak �= 0 (it approaches some other limit,

or the limit does not exist), then
∞∑

k=1

ak is a divergent series.

Theorem 1.28 (Geometric Sequence). Given a number r ∈ C, the sequence rn diverges if
|r| ≥ 1 and r �= 1. If |r| < 1, the sequence converges to 0, and if r = 1, the sequence 1n converges
to 1.
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Proof. If r = 1, 1n = 1 is a constant sequence with limit 1.
If |r| < 1, to show rn → 0, we need to find how big n must be (n > N) to get |rn − 0| < ε.

If r = 0, the sequence is constant, with limit 0. If r �= 0, use the increasing function ln on the
inequality |r|n < ε to get n ln(|r|) < ln(ε). Since 0 < |r| < 1, ln(|r|) < 0, so dividing by ln(|r|)
reverses the inequality: n > ln(ε)/ ln(|r|). Let N be the number ln(ε)/ ln(|r|), which is the cutoff
guaranteeing |rn| < ε.

If |r| > 1, we can show even more than lim rn DNE: it will follow from Corollary 1.25 that
lim

n→∞ rn does not exist, because rn is not a bounded sequence. To show that rn is not bounded,

we need to find how big n must be (n > N) to get |rn| > M (so any number M > 0 is not a bound
for rn). Again, using ln on both sides of |r|n > M gives n ln(|r|) > ln(M), and since |r| > 1,
ln(|r|) is positive and we can divide without switching the inequality: n > ln(M)/ ln(|r|) = N .

If |r| = 1 (so r is on the unit circle) but r �= 1, then |1 − r| is a positive number, so we can
use 1

2 |1 − r| as an output tolerance. The sequence rn is bounded: |rn| = |r|n = 1n = 1, but not
convergent. Suppose, toward a contradiction, that rn has some limit L, which means there’s
some cutoff N so that for all n ≥ N , |rn − L| < 1

2 |1 − r|. In particular, for some n ≥ N , n + 1
is also > N , so |rn − L| and |rn+1 − L| are both < 1

2 |1 − r|. However, then

|rn − rn+1| = |rn(1 − r)| = |rn||1 − r| = 1|1 − r| = |1 − r|,
and also (by the triangle inequality for complex number addition)

|rn − rn+1| = |(rn − L) − (rn+1 − L)| ≤ |rn − L| + |rn+1 − L| <
1
2
|1 − r| + 1

2
|1 − r|,

but this implies |1− r| < |1− r|, which is false, so the contradiction shows that there is no such
limit L.

Theorem 1.29 (Geometric Series). Given a number r ∈ C, the series
∞∑

n=1

rn diverges if

|r| ≥ 1. If |r| < 1, the series converges to r
1−r .

Proof. The first case to check is |r| = 1 (so r is on the unit circle inside the complex number
plane). Then, lim

n→∞ rn does not converge to 0 (the limit is either 1 or DNE by the previous

Theorem), so the Divergence Test shows the series diverges.
For the rest of the Proof, assume |r| �= 1. The partial sum sn = r1 + r2 + · · · + rn satisfies

sn − r · sn = (r1 + r2 + · · ·+ rn)− r1 · (r1 + r2 + · · ·+ rn) = r − rn+1. Solving for sn, (dividing
by 1 − r, which is non-zero because we’re assuming r �= 1) gives sn = r−rn+1

1−r = r(1−rn)
1−r . The

infinite sum is the limit of the partial sums:

∞∑
n=1

rn = lim
n→∞ sn = lim

n→∞
r(1 − rn)

1 − r
=

r(1 −
(

lim
n→∞ rn

)
)

1 − r
.

If |r| < 1, the limit of rn is 0, which proves the limit of the sn is equal to the formula stated by
the Theorem.

If |r| > 1, then the limit of rn does not exist, so the series diverges (the Divergence Test
again, or using the above formula for the partial sums).
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1.6 Real series

Here are some important Theorems about real series. The proofs depend on the Monotonic
Sequence Theorem.

Theorem 1.30 (The “Comparison Test” for convergence). If sequences an and bn satisfy:
(1) 0 ≤ an ≤ bn, and

(2)
∞∑

n=1

bn is a convergent series,

then
∞∑

n=1

an is a convergent series.

Proof. Condition (2), by definition of “convergent series,” means that the sequence of partial

sums of bn, Sn =
n∑

k=1

bk, is a convergent sequence, with limit L = lim
n→∞ Sn =

∞∑
k=1

bk. Also, Sn is

a weakly increasing sequence:

Sn+1 − Sn =
n+1∑
k=1

bk −
n∑

k=1

bk = bn+1 ≥ 0 =⇒ Sn ≤ Sn+1.

By Theorem 1.21, Sn ≤ L for all n.

The sequence of partial sums of an, sn =
n∑

k=1

ak, is weakly increasing (again, sn+1 − sn =

an ≥ 0 =⇒ sn ≥ sn−1), and bounded above:

sn =
n∑

k=1

ak ≤
n∑

k=1

bk = Sn ≤ L.

The first inequality follows from (1) (each ak is less than bk, so the partial sums of the ak are
also less than the partial sums of the bk). By the Monotonic Sequence Theorem, sn converges
to some real number less than or equal to the upper bound L:

lim
n→∞

n∑
k=1

ak =
∞∑

k=1

ak ≤ L =
∞∑

k=1

bk.

If hypothesis (1), 0 ≤ an ≤ bn, holds only for large n (that is, if there is some cutoff N
so that n ≥ N =⇒ 0 ≤ an ≤ bn), then the Comparison test can still be used to determine

convergence, but we no longer get the estimate
∞∑

k=1

ak ≤
∞∑

k=1

bk.

The contrapositive of the Theorem is called the “Comparison test for divergence”:
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Corollary 1.31. If sequences an and bn satisfy:
(1) 0 ≤ an ≤ bn, and

(2)
∞∑

n=1

an is a divergent series,

then
∞∑

n=1

bn is a divergent series.

So, to determine if a positive series
∑

an is convergent, the Comparison test is useful if you
can find some other series bn with an ≤ bn. The next Theorem is more useful if you can find a
series bn with an ≈ bn (bn is approximately the same as an, but not necessarily always greater
than an).

Theorem 1.32 (The “Limit Comparison Test” for convergence). If sequences an and
bn satisfy:

(1) an ≥ 0 and bn > 0,

(2) lim
n→∞

an

bn
= c, and

(3)
∞∑

n=1

bn is a convergent series,

Then
∞∑

n=1

an is a convergent series.

Proof. Formula (2) means that for any ε > 0, there’s some N so that for n ≥ N , |an

bn
− c| < ε.

This implies an

bn
− c < ε, and since bn > 0, we can multiply both sides by bn (without reversing

the inequality!) to get an − bn · c < bn · ε. So, an < bn(c + ε) for n ≥ N . Since
∞∑

n=1

bn is a

convergent series, and c + ε is just a scalar,
∞∑

n=1

(bn · (c + ε)) is a convergent series, and, using

the previous Theorem,
∞∑

n=N

an is convergent by comparison to
∞∑

n=N

(bn · (c + ε)). This shows the

an series is convergent, since we can just add the first N − 1 terms without changing the fact

that it converges:
∞∑

n=1

an =
N−1∑
n=1

an +
∞∑

n=N

an.

Note that c can be any constant, and the idea of the limit (2) is that an ≈ c · bn, i.e.,
the a sequence is approximately just a scalar multiple of the b sequence, and the above proof
just stated this approximation more precisely. Unlike the Comparison test, we do not get any
estimate for the sum of the an series. If lim

n→∞
an

bn
does not exist (for example, if it’s +∞), then

this Theorem does not apply.
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Theorem 1.33 (The “Limit Comparison Test” for divergence). If sequences an and bn

satisfy:
(1) an ≥ 0 and bn > 0,

(2) lim
n→∞

an

bn
= c > 0, and

(3)
∞∑

n=1

bn is a divergent series,

Then
∞∑

n=1

an is a divergent series.

Proof. Note the new condition in (2): the limit c has to be positive! We can use this positivity
to let ε = 1

2 c > 0, so that the definition of the limit in (2) means there’s some N so that if
n ≥ N , then |an

bn
− c| < 1

2c, which implies − c
2 < an

bn
− c < c

2 , and adding c to the inequality,

and then multiplying by bn > 0, gives c
2 · bn < an. By (3),

∞∑
n=1

c

2
bn is a divergent series (using

c > 0 again, we get a positive scalar multiple of a divergent series), so by the Comparison test

for divergence,
∞∑

n=1

an is a divergent series.

The new condition c > 0 is necessary. If c = 0, and bn forms a divergent series, the Limit
Comparison test is inconclusive. The approximation an/bn ≈ c =⇒ an ≈ c · bn isn’t very useful
if c = 0: it just says an ≈ 0, which is not enough to establish convergence or divergence of the
series. For example, an = 1/n2 and bn = 1/n are positive sequences, with lim

n→∞
an

bn
= 0. The b

series diverges, but the a series converges.

Theorem 1.34 (The “Alternating Series Test”). If the sequence bn satisfies
(1) bn ≥ bn+1 (“weakly decreasing”), and

(2) lim
n→∞ bn = 0,

then the series
∞∑

n=1

(−1)n−1bn is convergent.

Proof. First of all, notice the sequence bn must be non-negative. If it’s (1) weakly decreasing,
and (2) has limit zero, then by Theorem 1.20, bn ≥ 0.

Define the “even partial sum sequence” en =
2n∑
i=1

(−1)i−1bi = b1 − b2 + b3 − b4 + . . . − b2n.

Then en+1 − en = b2n+2 − b2n+1 ≥ 0, by (1), so en is weakly increasing.

Define the “odd partial sum sequence” dn =
2n−1∑
i=1

(−1)i−1bi = b1 − b2 + b3 − b4 + . . . + b2n−1.

Then dn − dn+1 = b2n − b2n+1 ≥ 0, by (1), so dn is weakly decreasing.
Since b is non-negative, dn − en = b2n ≥ 0, so en ≤ dn.
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Using this inequality, any dn is an upper bound for all sequence values em: if n ≤ m, then
em ≤ dm ≤ dn, and if n > m, then em ≤ en ≤ dn. So, en is a bounded, weakly increasing
sequence, and the Monotonic Sequence Theorem implies that lim

m→∞ em = L1 =lub{em} ≤ dn.
Using the inequality en ≤ dn, any en is a lower bound for all sequence values dm: if n ≤ m,

then dm ≥ dn ≥ en, and if n > m, then dm ≥ em ≥ en. So, dn is a bounded, weakly decreasing
sequence, and the Monotonic Sequence Theorem implies that lim

m→∞ dm = L2 =glb{dm} ≥ en.
The two inequalities en ≤ L1 ≤ dn and en ≤ L2 ≤ dn+1 can be subtracted:

en ≤ L1 ≤ dn

−dn+1 ≤ −L2 ≤ −en

=⇒ en − dn+1 ≤ L1 − L2 ≤ dn − en

=⇒ −b2n+1 ≤ L1 − L2 ≤ b2n.

Then by (2), for any ε > 0, there’s some N so that |bk − 0| < ε for k > N , so if 2n > N , then
−ε < −b2n+1 ≤ L1 − L2 ≤ b2n < ε. This shows L1 − L2 is smaller than any positive ε and
greater than any negative number −ε, so L1 − L2 = 0, and L1 = L2. Let L denote L1 = L2, so
whether k is even (k = 2n) or odd (k = 2n−1), the inequalities 0 ≤ L− en ≤ dn+1 − en = b2n+1

and 0 ≤ dn − L ≤ dn − en = b2n can be summarized as∣∣∣∣∣L −
k∑

i=1

(−1)i−1bi

∣∣∣∣∣ ≤ bk+1.

This is the “Alternating Series Estimate,” and it follows from (2) that if k > N , then bk+1 =
|bk+1 − 0| < ε, which proves convergence:∣∣∣∣∣L −

k∑
i=1

(−1)i−1bi

∣∣∣∣∣ < ε =⇒ L = lim
k→∞

k∑
i=1

(−1)i−1bi =
∞∑

i=1

(−1)i−1bi.

The inequality en ≤ L ≤ dn from the Proof provides both a lower and upper bound for the
exact value of the alternating infinite sum. The proof of convergence doesn’t require that the
sequence is weakly decreasing for all n — it is enough to assume bn is weakly decreasing past
some cutoff, M : if n ≥ M , then bn ≥ bn+1. (The first M terms don’t affect convergence or
divergence.) However, in this case, the Alternating Series Estimate will only hold for k ≥ M .

1.7 More about complex series

The Theorems in Section 1.6 apply only to real sequences. But if we have a sequence of an

complex numbers, we can consider the related sequence |an|, which is real and non-negative.
Recall the absolute value of a complex number is defined by |x + iy| =

√
x2 + y2, which is its

distance to the origin. The following Theorem applies to any complex series an.

Theorem 1.35. If
∞∑

n=1

|an| is a convergent series, then
∞∑

n=1

an is a convergent series.

11



Proof. The complex numbers an have real and imaginary parts, an = xn + iyn. The xn and yn

are real numbers, and could be positive or negative. We’ll focus on just the xn sequence, which
satisfies the following inequality: −|xn| ≤ xn ≤ |xn|. In fact, xn is actually equal to either |xn|,
if it’s positive, or −|xn| if it’s negative, just by definition of absolute value for real numbers.
Adding |xn| to the inequality gives 0 ≤ xn + |xn| ≤ 2|xn|.

Another inequality which holds for real numbers y is 0 ≤ y2, so 0 ≤ x2 ≤ x2 + y2, and the
square root function is increasing on [0,∞), so

√
x2 ≤

√
x2 + y2 for any real x and y, which

proves 0 ≤ |xn| ≤
√

x2
n + y2

n = |an|. The Comparison test shows that
∞∑

n=1

|xn| is convergent, by

comparison with the convergent series
∞∑

n=1

|an|.
Combining the above inequalities gives 0 ≤ xn + |xn| ≤ 2|xn| ≤ 2|an|, and again the Compar-

ison test shows
∞∑

n=1

(xn + |xn|) is convergent, by comparison with the convergent series
∞∑

n=1

2|an|.
Subtracting two convergent series gives another convergent series:

∞∑
n=1

(xn + |xn|) −
∞∑

n=1

|xn| =
∞∑

n=1

(xn + |xn| − |xn|) =
∞∑

n=1

xn.

A similar argument, using the inequality yn ≤ |yn| ≤
√

x2
n + y2

n = |an|, shows that
∞∑

n=1

yn is

convergent. Then, the original series an is a sum of convergent series:

∞∑
n=1

an =
∞∑

n=1

(xn + iyn) =

( ∞∑
n=1

xn

)
+ i

( ∞∑
n=1

yn

)
.

The Theorem can be summarized by saying that any absolutely convergent series is a con-
vergent series.

Here are some comments on the “Ratio test,” where an can be any sequence of complex
terms.

Theorem 1.36 (The Ratio Test). If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L, and L < 1, then the series
∞∑

n=1

an is

absolutely convergent. If L > 1, or lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ∞, then the series is divergent.

The Theorem is inconclusive if L = 1, or if the limit L does not exist, but also does not
satisfy the technical definition of a +∞ limit. The basic idea is an analogy with the geometric
series: if an = rn, then the ratio is exactly constant: |(rn+1)/rn| = |r|, so L = |r|, and the
convergence or divergence of the series depends on whether |r| < 1 or |r| > 1. Series satisfying
the conditions of the Ratio test don’t necessarily have a constant ratio, but it’s close to L, so
it’s approximately constant, and the an series is close to a geometric series.
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Proof. First, consider L < 1, and let ε = (1 − L)/2 > 0 (so ε is half the distance from L to 1).
Then, there’s some number N so that if n ≥ N , then |

∣∣∣an+1
an

∣∣∣ − L| < (1 − L)/2, which implies∣∣∣an+1
an

∣∣∣ < L + (1 − L)/2 = 1+L
2 , and |an+1| < (1+L

2 )|an|. Since this is true for all n ≥ N , we can

start with n = N , to get |aN+1| < (1
2 + L

2 )|aN |, and then continue with n = N + 1, to get

|aN+2| < (
1 + L

2
) · |aN+1| < (

1 + L

2
) ·
(

(
1 + L

2
)|aN |

)
= (

1 + L

2
)2|aN |.

The pattern continues recursively, so that for any k ∈ N,

|aN+k| < (
1 + L

2
)k|aN |.

The Comparison test applies:

∞∑
k=1

|aN+k| ≤
∞∑

k=1

(
(
1
2

+
L

2
)k|aN |

)
= |aN |

∞∑
k=1

(
1 + L

2
)k,

which, since 1+L
2 < 1

2 + 1
2 = 1, is a convergent geometric series. The series starting with n = 1

is also convergent:
∞∑

n=1

|an| =
N∑

n=1

|an| +
∞∑

k=1

|aN+k|.
The second case is L > 1. Let ε = (L−1)/2 > 0 (again, this is half the distance from L to 1),

so there’s some number N so that if n ≥ N , then |
∣∣∣an+1

an

∣∣∣−L| < (L− 1)/2. This implies an �= 0

for n ≥ N (since we’re dividing by an), and also the two inequalities: −(L−1)/2 <
∣∣∣an+1

an

∣∣∣−L <

(L − 1)/2. Adding L to the inequality gives −(L − 1)/2 + L <
∣∣∣an+1

an

∣∣∣, so
∣∣∣an+1

an

∣∣∣ > L+1
2 , and

|an+1| > (L+1
2 )|an| for n ≥ N . It follows recursively as in the previous paragraph that

|aN+k| > (
1 + L

2
)k|aN |.

The Proof of the Geometric Sequence Theorem (Theorem 1.28) showed that L+1
2 > 1

2 + 1
2 = 1

implies (L+1
2 )k is an unbounded sequence, and since aN �= 0, (1+L

2 )k|aN | is also unbounded, and

so is |an|. By Corollary 1.25, an is not a convergent sequence, so by the Divergence test,
∞∑

n=1

an

is divergent.
The third case is L = ∞, which means that for any M , there’s some N so that if n ≥ N ,

then |an+1/an| ≥ M . In particular, let M = 2, so there’s a corresponding cutoff N where
|an+1/an| ≥ 2 for n ≥ N . Starting at the non-zero term aN , |aN+1| ≥ 2|aN |, and |aN+2| ≥
2|aN+1| ≥ 2 · (2|aN |), so recursively, |aN+k| ≥ 2k|aN |. Similarly to the previous paragraph, the
sequence an is unbounded, and the series is divergent.

Lemma 1.37. If r is a complex number such that |r| < 1, then lim
n→∞(n · rn) = 0.
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Proof. This could be proved by L’Hôpital’s Rule, but instead we’ll use the Ratio Test and
Theorem 1.26. If r = 0, then the sequence n · rn is constant, with limit 0. For r �= 0, consider
the following series:

∞∑
n=1

n · rn.

The limit from the Ratio test is L = lim
n→∞

∣∣∣∣(n + 1)r(n+1)

nrn

∣∣∣∣ = lim
n→∞

n + 1
n

|r| = |r|, so L < 1 by

hypothesis, the series is absolutely convergent by the Ratio test, and the sequence has limit 0
by Theorem 1.26.

Here are some comments on the “Root Test,” which is similar to the Ratio test. an can be
complex, but the (1/n) power refers to the non-negative nth root of the real number |an|.

Theorem 1.38 (The Root Test). If lim
n→∞ |an|(1/n) = L, and L < 1, then the series

∞∑
n=1

an is

absolutely convergent. If L > 1, or lim
n→∞ |an|(1/n) = ∞ then the series is divergent.

The Theorem is inconclusive if L = 1, or if the limit L does not exist, but also does not
satisfy the technical definition of a +∞ limit. The basic idea is that the geometric series rn

has a constant nth root, |rn|(1/n) = |r|, so L = |r|, and the convergence and divergence results
depend on whether |r| < 1 or |r| > 1. Series satisfying the conditions of the root test don’t
necessarily have a constant (an)(1/n), but it’s close to L, so it’s approximately constant, and the
an series is close to a geometric series.

Proof. First, consider L < 1, and let ε = (1 − L)/2 > 0. Then, there’s some number N so that
if n > N , then ||an|(1/n) − L| < (1 − L)/2, which implies |an|(1/n) < L + (1 − L)/2 = 1

2 + L
2 .

Applying the function f(x) = xn to both sides gives |an| < (1
2 + L

2 )n (since f is increasing

for x ≥ 0). Since 1
2 + L

2 < 1
2 + 1

2 = 1,
∞∑

n=1

(
1
2

+
L

2
)n is a convergent geometric series, and

0 ≤ |an| < (1
2 + L

2 )n for n > N , so
∞∑

n=1

|an| is convergent by the Comparison Test.

The second case is L > 1. Let ε = (L−1)/2 > 0, so there’s some number N so that if n > N ,
then ||an|(1/n)−L| < (L−1)/2, which implies −(L−1)/2 < |an|(1/n)−L < (L−1)/2. Adding L
to the inequality gives −(L−1)/2+L < |an|(1/n), so |an|(1/n) > L

2 + 1
2 > 0, and |an| > (L

2 + 1
2 )n

for n > N . Since L
2 + 1

2 > 1
2 + 1

2 = 1, the Proof of the Geometric Sequence Theorem (Theorem
1.28) showed that (L

2 + 1
2 )n is an unbounded sequence, so |an| is also unbounded. By Corollary

1.25, an is not a convergent sequence, so by the Divergence Test,
∞∑

n=1

an is divergent.

The third case is L = ∞, which means for any M , there’s some N so that if n ≥ N ,
then |an|(1/n) ≥ M . In particular, let M = 1, so there’s some corresponding cutoff N so that
|an|(1/n) ≥ 1 for n ≥ N , which implies (again raising both sides to the nth power) |an| ≥ 1n = 1.
It follows (from the definition of limit) that lim

n→∞ an �= 0, so the series diverges by the Divergence

test.
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Example 1.39. Define a sequence an =
1

2n+(−1)n . The Root test shows that this forms a

convergent series
∑

an, since (an)(1/n) = (2−n · 2(−1)n+1
)(1/n) = 1

2 · (2(−1)n+1
)(1/n), which has

limit 1
2 . This particular sequence is an example where the Ratio test doesn’t work:

lim
n→∞ |an+1/an| = lim

n→∞
1

2n+1+(−1)n+1 · 2n+(−1)n

= lim
n→∞

1
2
· 2(−1)n−(−1)n+1

.

This limit doesn’t exist, since the exponent (−1)n − (−1)n+1 = (−1)n + (−1)n = 2 · (−1)n

oscillates between −2 and +2.

1.8 Power Series

Definition 1.40. An infinite series of the form
∞∑

n=0

cn(x − a)n is called a “power series.” The

cn are called the coefficients, and a is called the “center” of the power series.

The coefficients cn, the center a, and the variable x can all be complex numbers. The index
n usually starts at 0 (the constant term is c0x

0 = c0), or, if the first few coefficients are 0, n may
start at any positive integer. (The definition of power series excludes negative or non-integer
exponents n.)

Definition 1.41. The “domain of convergence” of a power series
∞∑

n=0

cn(x − a)n is the set of all

(complex) numbers x so that the series is convergent.

Note that the domain of convergence cannot be the empty set, since any power series always

converges at its center, x = a:
∞∑

n=0

cn(a − a)n = c0 + c101 + c202 + · · · = c0.

The following Lemma gives a “comparison” criterion for telling whether x is in the domain
of convergence of a power series with coefficients cn and center 0.

Lemma 1.42. Suppose r is a positive constant, and the sequence cnrn is bounded. Then,
∞∑

n=0

cnxn is absolutely convergent for all x in the disc {x ∈ C : |x| < r}.

Proof. Recall “bounded” means there exists some number M so that |cnrn| ≤ M for all n.
Since r is positive, |cnrn| = |cn|rn ≤ M =⇒ |cn| ≤ M/rn =⇒ |cn| · |xn| ≤ |xn|M/rn =⇒
|cnxn| ≤ M |x/r|n. Since |x| < r, |x/r| < 1 and

∞∑
n=0

M |x/r|n is a convergent geometric series, so

∞∑
n=0

|cnxn| converges by comparison, and
∞∑

n=0

cnxn is absolutely convergent.

Observe that Lemma 1.42 doesn’t say anything about the series
∑

cnrn, only the sequence
cnrn. However, if the series

∑
cnrn happens to be convergent, then the sequence cnrn must

have limit 0 (Theorem 1.26), and must also be bounded (Corollary 1.24), so Lemma 1.42 applies.
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This proves that if r > 0 is in the domain of convergence of a power series with center 0, and if
|x| < r, then x is also in the domain. This is almost, but not quite, enough to prove a theorem
called Abel’s Lemma, that the domain of convergence of any power series with center 0 must
be a disc centered at 0 (the domain may contain all, part, or none of its boundary circle). The
Proof uses Lemma 1.42 twice.

Theorem 1.43 (“Abel’s Lemma”). For a power series centered at a,
∞∑

n=0

cn(x − a)n, exactly

one of the following holds:

•
∞∑

n=0

cn(x − a)n converges to c0 at x = a, and diverges for all other x.

•
∞∑

n=0

cn(x − a)n is absolutely convergent for all x ∈ C.

• There is a real number R > 0 so that
∞∑

n=0

cn(x − a)n is absolutely convergent for |x−a| < R,

and the series is divergent for |x − a| > R.

Definition 1.44. The number R is the “Radius of convergence” of the power series, and it must
be nonnegative. The first two cases are referred to as R = 0 and R = ∞.

Note that the Theorem is inconclusive when both 0 < R < ∞ and |x−a| = R. (Geometrically,
this is the case where the domain of convergence is a disc in C with positive radius, and x is on
the circular boundary of the disc.) The power series could be divergent, absolutely convergent,
or conditionally convergent for x on the boundary. In the case where the center a is on the real
number line, then the real values of x for which the series is convergent form an interval centered
at a (the intersection of the disc and the real axis), and the points on the boundary are the two
endpoints, a − R and a + R.

Proof of Theorem 1.43. Since we can make the substitution x−a instead of x, it will be enough

to prove the Theorem when a = 0, so that the power series is
∞∑

n=0

cnxn, and the three cases are

x = 0, x ∈ C, or |x| < R.
Given the coefficient sequence cn, consider the set of real numbers S = {r ≥ 0 : cnrn is a

bounded sequence} ⊆ R. For example, 0 is an element of S because cn0n = 0 is bounded, so S
is not the empty set.

Suppose S does not have an upper bound; that is, for any x ∈ R, there’s some r ∈ S so that

|x| < r. Then cnrn is bounded (by definition of r ∈ S), and
∞∑

n=0

cnxn is absolutely convergent

by Lemma 1.42. This is the R = ∞ case.
If S does have an upper bound, then by the Completeness property of the real number system

R, S has a least upper bound: R = lub(S), and R ≥ 0.
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If |x| > R, then |x| /∈ S, meaning cn|x|n is not bounded. Since cn|x|n and cnxn have the

same absolute value, Corollary 1.25 applies, proving cnxn is a divergent sequence, so
∞∑

n=0

cnxn

diverges by the “Divergence test.”
If |x| < R, then there’s some r ∈ S such that |x| < r ≤ R (by Theorem 1.9, with ε =

R − |x| > 0). Again, r ∈ S means cnrn is bounded, which is exactly what is needed for Lemma

1.42, so
∞∑

n=0

cnxn is absolutely convergent.

Theorem 1.45. If
∞∑

n=0

cnxn has radius of convergence R, then
∞∑

n=1

cnnxn−1 also has radius of

convergence R.

Proof. Let S′ be the set {r ≥ 0 : cnnrn−1 is a bounded sequence}, similar to the set S from the
previous Proof, so that if S′ has a least upper bound R′, then R′ is the radius of convergence

of
∞∑

n=1

cnnxn−1. Also, if S′ has no upper bound, R′ = ∞. The Theorem claims that R′ = R, or

that they’re both ∞. The strategy will be to show both R′ ≤ R (Step 1.), and R′ ≥ R (Step
2.), so that equality must hold.

Step 1. Suppose x ∈ S′ (there’s at least one such x, for example x = 0), so that by definition
of S′, |cnnxn−1| ≤ M . Then for n ≥ 1, |cnxn| ≤ |cnnxn| = |cnnxn−1| · |x| ≤ M |x|, so cnxn is
a bounded sequence, and x ∈ S. This shows S′ ⊆ S, so if S has a least upper bound R, then
S′ has least upper bound R′ ≤ R by Theorem 1.11, which uses the Completeness property of
R. Since x = 0 is in the set, R′ ≥ 0 by definition of upper bound. If S′ has no upper bound
(R′ = ∞), then S also has no upper bound (by Corollary 1.6), so R = ∞ = R′. If S has no
least upper bound, this calculation is inconclusive and R′ could be finite or infinite. If R = 0,
then 0 ≤ R′ ≤ R implies R′ is also 0.

Step 2. Assume R > 0 or R = ∞ (since in the R = 0 case, Step 1. just showed R′ = R).
Also assume S′ has a least upper bound R′ ≥ 0 (since R′ = ∞ was also covered in Step 1.). By
Theorem 1.9, there is some ρ ∈ S so that 0 < R− ε < ρ ≤ R. (ρ=letter “rho”, and Theorem 1.9
applies with any ε ∈ (0, R) if R is finite; if R = ∞, pick any positive ρ ∈ S.) Pick any r so that
0 < R − ε < r < ρ (or, if R = ∞, pick any r so 0 < r < ρ). Then since ρ ∈ S, |cnρn| ≤ M , and

n|cn|rn−1 =
1
r
|cn|ρnn(

r

ρ
)n ≤ 1

r
Mn(

r

ρ
)n,

and since | rρ | < 1, Lemma 1.37 shows the sequence M
r · n( r

ρ)n converges to 0, so it is bounded
(Corollary 1.24), and the previous inequality implies ncnrn−1 is also a bounded sequence, so
r ∈ S′ and r ≤ R′. The numbers r, R, and R′ are this close: R − ε < r ≤ R′. Since R < R′ + ε
even when ε is very small, R must be less than or equal to R′. This, together with Step 1.,
proves R = R′. If R = ∞ (meaning S does not have an upper bound), then ρ, and r, could both
be arbitrarily large, and r ∈ S′ means S′ also has no upper bound, and R′ = ∞ = R.
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