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Abstract

This approach to real projective geometry takes complex projective

geometry as a starting point. 1

1 Introduction

The containment of real projective spaces as subsets of complex projective spaces

is considered from an elementary, algebraic point of view. By using complex

linear algebra and \conjugate linear" maps, the goal is to construct a model of

a real projective space, by taking the set of points to be the �xed point set of

a certain type of involution of CPm . The lines of the model will be de�ned as

intersections of complex projective lines with this subset of CPm . This linear

algebraic approach generalizes the special case considered in [C], where the

involution of CPm was induced by complex conjugation of the coordinates of

Cm+1 with respect to a speci�c coordinate system.

The main results of the last two Sections �nd some conditions under which a

collineation of CPm must be a projective transformation or a projective trans-

formation composed with a conjugation (Theorem 4.6 for m 6= 1, Theorem 5.12

for m = 1). Corollary 4.7 shows that for m 6= 1, these are the only collineations

that restrict to collineations of a real projective subspace.

2 The complex foundation

Most of the constructions we'll need are standard in elementary projective ge-

ometry, and we brie
y recall them here to �x notation.

1MSC 2000 51A05, 51M35, 32V40
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Let C be the �eld of complex numbers, and let m � 0 be an integer, so

Cm+1 is a complex vector space. The complex projective m-space, CPm , is

the set of one-dimensional subspaces in Cm+1 . Denote the usual projection

�m : Cm+1 n f0g ! CPm , so that a non-zero column vector z spans the one-

dimensional subspace �m(z). An element z 2 CPm with representative non-zero

vector z = (z0; z1; : : : ; zm)
T will have homogeneous coordinates [z0 : z1 : : : : :

zm].

For d = 0; : : : ;m, de�ne a d-dimensional complex projective subspace of

CPm to be the image of some (d + 1)-dimensional complex linear subspace

V � Cm+1 , V = �m(V n f0g). So, for example, a complex projective line in

CPm is, by de�nition, the image of a 2-dimensional complex linear subspace of

Cm .

Let f : Cm+1 ! C
m+1 be any function. Given z 2 C

m+1 n f0g, suppose f
has the following two properties: �rst,

f(z) 6= 0; (1)

and second, for any � 2 C n f0g, there exists � 2 C n f0g so that

f(� � z) = � � f(z): (2)

Then f will also have these two properties at every non-zero scalar multiple of

z. If U � Cm+1 n f0g is the set of points where f has the two properties, then

we will say \f induces a map from CPm to CPm which is well-de�ned on the set

�m(U)," and we will denote the induced map, which takes �m(z) to �m(f(z)),

by f : z 7! f(z). It should also be mentioned that the map of projective spaces

induced by a composition of maps is equal to the composition of the induced

maps.

Example 2.1. If f : Cm+1 ! C
m+1 is complex linear, then f is well-de�ned

on the lines not contained in the kernel of f . If f : Cm+1 ! Cm+1 is complex

linear and invertible, then f is well-de�ned on all of CPm , and also invertible.

Let GL(m+ 1; C ) �M(m+ 1; C ) denote the subset of nonsingular matrices in

the set of (m + 1) � (m + 1) matrices with entries in C . Let PGL(m + 1; C )

denote the set of one-dimensional subspaces of M(m+ 1; C ) which are subsets

of GL(m + 1; C ) [ f0g. The following construction de�nes a group action of

PGL(m+1; C ) on CPm . For any nonsingular matrixA, there is a corresponding

invertible complex linear transformation, which in turn induces a well-de�ned

map CPm ! CPm , denoted A, and called a projective transformation. Any

non-zero scalar multiple of A induces the same map A : CPm ! CPm , so this

notation is consistent with the above conventions: a nonsingular matrixA spans

a line A 2 PGL(m+ 1; C ), and the projective transformation of CPm induced

by A will be denoted A : z 7! A(z).

Example 2.2. Suppose � : C ! C is a �eld isomorphism, and de�ne a map:

~� : Cm+1 ! C
m+1 : ~�((z0; : : : ; zm)

T ) = (�(z0); : : : ; �(zm))
T :
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Since ~� satis�es properties (1, 2) at every point of Cm+1 nf0g, it induces a map

~� : CPm ! CPm : ~�([z0 : : : : : zm]) = [�(z0) : : : : : �(zm)]:

One example of a �eld isomorphism of C is complex conjugation, � : z0 7! �z0.

The induced maps are ~� : Cm+1 ! Cm+1 and ~� : CPm ! CPm , and both are

involutions.

De�nition 2.3. A map g : CPm ! CPm is a \collineation" if it is well-de�ned

on CPm , invertible, and it has the property that, for V � CPm , g(V ) is a

complex projective subspace of CPm if and only if V is a complex projective

subspace of CPm .

The following Proposition is the Fundamental Theorem of Projective Geom-

etry. See [Csik�os] x6, [Samuel], [Seidenberg].

Proposition 2.4. For m 6= 1, the group of projective transformations of CPm

is a normal subgroup of the group of collineations, and an invertible map g :

CPm ! CPm is a collineation if and only if it is of the form g = ~�ÆA for some

�eld isomorphism � and projective transformation A.

Example 2.5. A map B : Cm+1 ! Cm+1 will be called \conjugate linear" if

it is additive, and satis�es the identity B(�z) = ��B(z) for all z 2 Cm+1 and all

scalars � 2 C . Since ~� ÆB is complex linear, it has some matrix representation

A 2 M(m + 1; C ), and we can conclude that every conjugate linear map B is

of the form ~� ÆA. An invertible conjugate linear map satis�es properties (1, 2)

at every point of Cm+1 n f0g, so it induces a map B, and the induced map is a

collineation of CPm , of the form B = ~� ÆA for some projective transformation

A.

3 Hints at reality

Notation 3.1. Given a conjugate linear involution B (so that B Æ B is the

identity map), its �xed point set will be denoted RB � C
m+1 . The set of

vectors z such that B(z) = �z will be denoted IB � Cm+1 .

Lemma 3.2. Given a conjugate linear involution B, these sets are equal:

RB = f
1

2
(z+B(z)) : z 2 C

m+1g = iIB;

and every element z 2 Cm+1 is uniquely expressible as a sum x + y, for some

x 2 RB and y 2 IB.

Proof. The claimed equalities of sets are easy to check, using the properties of

B. The identity z = 1

2
(z+B(z))+ 1

2
(z�B(z)) gives the claimed decomposition.

The uniqueness easily follows from the fact that RB and IB intersect only at

the origin.
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Theorem 3.3. Given a complex linear map A : Cm+1 ! Cm+1 and conjugate

linear involutions B1;B2, if A(RB1
) � RB2

, then A = B2ÆAÆB1. If, further,

A is invertible, then A(RB1
) = RB2

.

Proof. For any z 2 RB1
, z = B1(z) =) A(z) = A(B1(z)) = B2(A(B1(z))).

So, the complex linear maps A and B2 ÆA ÆB1 agree at every element of RB1
.

It follows from Lemma 3.2 that RB1
spans Cm+1 , so A = B2 ÆA ÆB1.

To check the claimed equality, it will be enough to show that if z 2 RB2
,

then A�1(z) 2 RB1
.

B1(A
�1(z)) = B1((B2 ÆA ÆB1)

�1(z)) = (B1 ÆB1 ÆA
�1 ÆB2)(z) = A�1(z):

Theorem 3.4. Given a conjugate linear map B : Cm+1 ! C
m+1 and conjugate

linear involutions B1;B2, if B(RB1
) � RB2

, then B = B2ÆBÆB1. If, further,

B is invertible, then B(RB1
) = RB2

.

Proof. The composition B2ÆB is complex linear, and satis�es (B2ÆB)(RB1
) �

RB2
, so the previous Theorem applies, and B2 Æ B = B2 Æ (B2 ÆB) ÆB1. It

follows that B2 ÆB = B ÆB1, and B = B2 ÆB ÆB1.

When B is invertible, the previous Theorem showed (B2 ÆB)(RB1
) = RB2

,

and the conclusion follows from applying B2 to both sides.

De�nition 3.5. A conjugate linear involution B : Cm+1 ! Cm+1 induces a

map B : CPm ! CPm , which will be called a \real involution." The �xed point

set of a real involution B will be denoted RB � CPm .

Theorem 3.6. Given a conjugate linear involution B, the following subsets of

CPm are non-empty and equal:

RB = �m(RB n f0g) = �m(IB n f0g):

Proof. It follows from m � 0 and Lemma 3.2 that both RB and IB contain

non-zero elements, and that they have the same non-empty image under �m.

To show �m(RB n f0g) � RB , if z = �m(z) for some z 2 RB n f0g, then
z = B(z) =) z = �m(z) = �m(B(z)) = B(�m(z)) = B(z). For the other

direction, suppose z 2 RB , so B(z) = z = �m(z) for some representative z 6= 0.

It will be enough to show that some non-zero complex scalar multiple of z is

an element of RB. B(z) = B(�m(z)) = �m(B(z)) = �m(z) =) B(z) = �z

for some non-zero scalar �. 1

2
(z +B(z)) = 1

2
(z + �z) = 1+�

2
z 2 RB, which is

enough unless � = �1, in which case z 2 IB, and iz 2 RB.

Theorem 3.7. If B is a conjugate linear involution and V is a complex linear

subspace of Cm+1 , then �m((RB \V) n f0g) = �m(RB n f0g) \ �m(V n f0g).

Proof. The inclusion �m((RB \ V) n f0g) � �m(RB n f0g) \ �m(V n f0g) is
elementary set theory. It remains to show that if z 2 �m(RBnf0g)\�

m(Vnf0g),
and z has representative z 2 Cm+1 n f0g, then some non-zero complex scalar
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multiple of z is in (RB\V)nf0g. From z 2 �m(Vnf0g), we get a representative
z 2 Vnf0g, and any non-zero complex scalar multiple of z is still in Vnf0g. By
Theorem 3.6, any vector z such that �m(z) 2 �m(RB n f0g) has some complex

scalar multiple in RB n f0g.

Theorem 3.8. Given a real involution B, and a map A : CPm ! CPm which

is either a projective transformation or induced by an invertible conjugate lin-

ear map, the composite A Æ B Æ A�1 is a real involution, with �xed point set

RAÆBÆA�1 = A(RB).

Proof. If A and B induce A and B, then clearly A Æ B Æ A�1 is a conjugate

linear involution inducing A ÆB ÆA�1.

To show RAÆBÆA�1 � A(RB), if z = (A Æ B Æ A�1)(z), then B(A�1(z)) =

A�1(z) 2 RB , so z is the image under A of the point A�1(z) 2 RB . To show

A(RB) � RAÆBÆA�1 , if z = A(x) for some x 2 RB , then (A Æ B Æ A�1)(z) =

A(B(A�1(A(x)))) = A(B(x)) = A(x) = z, so z 2 RAÆBÆA�1 .

Proposition 3.9 ([Csik�os] Lemma 6.1.3). Given a basis fz0; : : : ; zmg of

Cm+1 , let q = z0 + : : :+ zm. If A 2 M(m + 1; C ) is a matrix such that every

vector z0; : : : ; zm;q is an eigenvector of A, then A is a multiple of the identity

matrix.

Theorem 3.10. Given a projective transformation A of CPm , and conjugate

linear involutions B1, B2, if A(RB1
) � RB2

, then there exists A 2 GL(m+1; C )

so that A induces A, and A = B2 ÆA ÆB1.

Proof. There is some invertible matrix A0 that induces A. Given a non-zero

element z 2 RB1
, z = �m(z) 2 RB1

by Theorem 3.6, and A(z) = A(B1(z)) =

B2(A(B1(z))). This implies

A(�m(z)) = �m(A0(z)) = B2(A(B1(�
m(z)))) = �m(B2(A0(B1(z)))):

So, there is some complex scalar � (depending on z) so that B2(A0(B1(z))) =

�A0(z), and it follows that every non-zero element z 2 RB1
is an eigenvector of

the complex linear map A0
�1 ÆB2ÆA0ÆB1. Since RB1

spans Cm+1 by Lemma

3.2, and is closed under addition, it contains elements z0; : : : ; zm;q satisfying

the hypothesis of Proposition 3.9, which gives a non-zero constant � 2 C such

that � �A0 = B2 ÆA0 ÆB1. Multiplying both sides by �� gives

�� �� �A0 = �� �B2ÆA0ÆB1 = B2Æ(� �A0)ÆB1 = B2Æ(B2ÆA0ÆB1)ÆB1 = A0;

so �� � � = 1, and � = ei� for some � = ��. Let A = ei�=2 �A0, so that

B2ÆAÆB1 = B2Æ(e
i�=2 �A0)ÆB1 = e�i�=2 �B2ÆA0ÆB1 = e�i�=2 �(ei�A0) = A:

Theorem 3.11. Given a map B : CPm ! CPm which is induced by some

invertible conjugate linear map Cm+1 ! Cm+1 , and conjugate linear involutions

B1, B2, if B(RB1
) � RB2

, then there exists an invertible conjugate linear map

B : Cm+1 ! Cm+1 so that B induces B, and B = B2 ÆB ÆB1.
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Proof. B is induced by someB0, andB2ÆB0 is an invertible complex linear map

which induces a projective transformationB2ÆB such that (B2ÆB)(RB1
) � RB2

.

The previous Theorem applies, so there is someA so thatA = B2ÆAÆB1 andA

induces B2 ÆB. Let B = B2 ÆA, so it is an invertible conjugate linear map that

induces B2Æ(B2ÆB) = B, andB2ÆBÆB1 = B2Æ(B2ÆA)ÆB1 = B2ÆA = B.

Theorem 3.12. Given a projective transformation A of CPm , and conjugate

linear involutions B1, B2, if A(RB1
) � RB2

, then A(RB1
) = RB2

.

Proof. Let A be as in Theorem 3.10, so it induces A and A = B2 ÆA ÆB1. It

follows that A = B2 Æ A Æ B1. It will be enough to show that if z 2 RB2
, then

A�1(z) 2 RB1
.

B1(A
�1(z)) = B1((B2 ÆA ÆB1)

�1(z)) = (B1 ÆB1 ÆA
�1 ÆB2)(z) = A�1(z):

Theorem 3.13. Given a map B : CPm ! CPm induced by an invertible

conjugate linear map, and conjugate linear involutions B1, B2, if B(RB1
) �

RB2
, then B(RB1

) = RB2
.

Proof. B is induced by some B, and B2 ÆB induces a projective transformation

B2 Æ B so that (B2 Æ B)(RB1
) � RB2

. The previous Theorem showed (B2 Æ

B)(RB1
) = RB2

, and the conclusion follows from applying B2 to both sides.

Theorems 3.12 and 3.13 could also have been proved using Theorems 3.3,

3.4, 3.10, and 3.11.

Theorem 3.14. Given a real involution B and projective transformations A1,

A2, if A1(x) = A2(x) for all x 2 RB, then A1 = A2.

Proof. B is induced by some B, and let A1, A2 2 GL(m+1; C ) induce A1, A2,

soA2
�1ÆA1 induces A

�1

2
ÆA1, which satis�es (A

�1

2
ÆA1)(x) = (A�1

2
ÆA2)(x) = x

for all x 2 RB . Since any non-zero x 2 RB satis�es �m((A2
�1 Æ A1)(x)) =

(A�1

2
ÆA1)(�

m(x)) = �m(x), every non-zero element of RB is an eigenvector of

A2
�1 ÆA1, including elements z0; : : : ; zm;q 2 RB as in the Proof of Theorem

3.10. It follows from Proposition 3.9 that there is some non-zero � 2 C such

that A1 = �A2, and A1 = A2.

Theorem 3.15. Given two real involutions B1, B2, there exists a projective

transformation A such that A(RB1
) = RB2

.

Proof. Let B1;B2 induce B1, B2. By Lemma 3.2, RB1
spans Cm+1 , and there-

fore contains a basis fz0; : : : ; zmg of C
m+1 . Since RB2

also spans Cm+1 , it con-

tains a basis, and there exists someA 2 GL(m+1; C ) taking the �rst basis to the

second. If x 2 RB1
, then it is of the form

P
cpzp = B1(

P
cpzp) =

P
�cpB1(z) =P

�cpzp, so cp = �cp for p = 0; : : : ;m. It is easy to check A(x) 2 RB2
, so

A(RB1
) � RB2

, and A(RB1
) � RB2

. The equality follows from Theorem

3.12.
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Theorem 3.16. The �xed point set of a real involution of CPm does not contain

any complex projective lines.

Proof. Suppose, toward a contradiction, that B is a conjugate linear involution,

and V � Cm+1 is a two-dimensional complex linear subspace such that �m(V n
f0g) � RB . By Theorem 3.6, �m(V n f0g) � �m(RB n f0g), so every element

of V is a complex scalar multiple of an element of RB. Let fz0, w0g � V be

a linearly independent (over C ) set; there are scalars �; � 2 C so that fz1 =

�z0;w1 = �w0g � RB, and fz1;w1g is a basis of V. The vector z1 + iw1 2 V

is non-zero, and is a non-zero multiple of an element of RB, so for some � 6= 0,

�(z1 + iw1) = B(�(z1 + iw1)) = ��B(z1 + iw1) = ��(z1 � iw1):

Since fz1;w1g is a basis of V, the coeÆcients must be equal: � = �� and

i� = �i��. However, these equations imply � = 0, a contradiction.

Theorem 3.17. Given two distinct complex projective lines V1, V2 in CPm ,

and a real involution B, if V1 intersects RB in at least two points, and V2 also

intersects RB in at least two points, then V1 \ V2 � RB .

Proof. First, V1 \ V2 could be the empty set, and the claim trivially follows.

Otherwise, denote two distinct points u; v 2 V1\RB , with V1 = �m(V1nf0g)
for some 2-dimensional complex linear subspace V1 in Cm+1 , and let B be

induced by some conjugate linear involution B. Similarly, denote two distinct

points x; y 2 V2 \ RB , with V2 = �m(V2 n f0g). It follows from the hypothesis

V1 6= V2 that V1 6= V2, and from the current assumption V1 \ V2 6= � that

V1 \V2 is a one-dimensional complex linear subspace of Cm+1 .

By Theorem 3.7, u; v 2 �m(V1nf0g)\�
m(RBnf0g) = �m((V1\RB)nf0g),

so there are some representatives u;v 2 (V1 \ RB) n f0g which form a basis

of V1 (since if they were not independent, then u = v). Similarly, there are

x;y 2 (V2 \RB) n f0g which form a basis of V2. Let z be any representative

of z 2 V1 \ V2, so z 2 (V1 \ V2) n f0g. There are coeÆcients �; � 2 C , not

both 0, so that z = �u + �v, and similarly, z = 
x+ Æy. One of the following

elements of RB must be non-zero:

1

2
(z+B(z)) =

1

2
(�u+ �v +B(�u+ �v)) =

1

2
(� + ��)u+

1

2
(� + ��)v

=
1

2
(
x+ Æy +B(
x+ Æy)) =

1

2
(
 + �
)x+

1

2
(Æ + �Æ)y;

1

2i
(z�B(z)) =

1

2i
(�u + �v �B(�u+ �v)) =

1

2i
(�� ��)u+

1

2i
(� � ��)v

=
1

2i
(
x+ Æy �B(
x+ Æy)) =

1

2i
(
 � �
)x+

1

2i
(Æ � �Æ)y:

These linear combinations show that there is a non-zero element of RB which

is on the one-dimensional complex linear subspace V1 \ V2, so it must be a

complex scalar multiple of z, and z = �m(z) 2 �m((V1 \V2 \ RB) n f0g) �

�m(RB n f0g) = RB .
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4 B-lines

At this point, we will take for granted some of the incidence axioms for com-

plex projective geometry. They are straightforward consequences of the linear

algebra de�nition of complex projective subspaces.

1. For any two distinct points in CPm , there exists a complex projective line

containing them. The fact is true but trivial for m = 0 or 1.

2. If the intersection of a complex projective line L and a complex projective

subspace V contains more than one point, then L � V . (In particular,

the line from the previous axiom is unique.)

3. Any two complex projective lines contained in a complex projective plane

have a non-empty intersection. Conversely, if two complex projective lines

have a non-empty intersection, then they coincide or are contained in a

complex projective plane.

De�nition 4.1. Given a real involution B, and two distinct points in RB ,

de�ne the \B-line" through the two points to be the intersection of RB with

the unique complex line containing the two given points.

Theorem 4.2. Given a real involution B, and two B-lines k and `, either k = `

or k intersects ` in at most one point in RB. If k and ` are both contained in

some complex projective plane U , then k intersects ` in at least one point.

Proof. Let k = V1 \ RB and ` = V2 \ RB , for complex projective lines V1, V2,

so k \ ` = (V1 \ V2) \ RB . As a consequence of the incidence axioms, V1 \ V2
is equal to either V1, or a set containing at most one point, and the �rst claim

follows. If k is contained in a complex projective plane U , then V1 \U contains

at least two points in k, so V1 � U (the incidence axioms again), and similarly

if ` � U , then V2 � U . By the third incidence axiom, there is some element

z 2 V1 \ V2. If V1 = V2, then k = `, so k \ ` contains at least two points.

If V1 6= V2, z is unique, and Theorem 3.17 applies (since k = V1 \ RB and

` = V2 \ RB each contain at least two points by the de�nition of B-line), to

show that z 2 (V1 \ V2) \RB = k \ `.

Any RB , together with the set of B-lines contained in RB , can be considered

as an abstract projective space satisfying various incidence properties. Without

going into the details, we list some of these axioms for a given set RB � CPm .

1. For any two distinct points in RB , there exists exactly one B-line contain-

ing them.

2. RB contains at least one point, and there exist in�nitely many points on

each B-line.

3. For m > 0, RB contains in�nitely many points and at least one B-line.
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4. For m > 1, RB contains in�nitely many B-lines, and not all points are on

one B-line.

5. For m > 2, not every pair of B-lines meets.

6. (Pasch-Veblen-Young [Seidenberg]) Given points u; v; x; y 2 RB , no three

of which lie on the same B-line, let k denote the B-line through u; v, and

` the B-line through x; y, and p the B-line through u; y, and q the B-line

through v; x. If k \ ` 6= �, then p \ q 6= �.

7. The theorems of Pappus and Desargues ([Csik�os], [Seidenberg]) hold in

RB .

The �rst above item summarizes Theorem 4.2, and the next few properties are

obvious and proofs are omitted. The PVY, Pappus, and Desargues properties

follow as a consequence of these properties of CPm , together with Theorems

3.17 and 4.2.

Theorem 4.3 ([E] Proposition III.10). Given real involutions B1, B2, a

B1-line `, and a B2-line k, if ` intersects k in three distinct points, then ` = k.

Proof. Let ` = V \RB1
, k = V 0\RB2

. Since V 0 meets V in distinct points, V 0 =

V and k = V \RB2
. Let x; y; z be distinct points in ` \ k, with representatives

x;y; z 2 V\RB1
as in Theorem 3.17. Any two of these representatives span V,

so, for example, there are non-zero complex constants �; � with z = �x + �y.

It follows from z = B1(z) that � = �� and � = ��.

Since x; y; z 2 k � RB2
, they are also represented by �x; �y; �z 2 RB2

, for

some non-zero complex numbers �; �; �.

�z = B2(�z)

=) �(�x + �y) = B2(�(�x + �y))

=) (� � �)x + (� � �)y = B2((� � �=�)�x + (� � �=�)�y)

=
�� � �

�

�
B2(�x) +

�
� � �

�

�
B2(�y)

=
� �� � ��

��
� �
�
x+

�
�� � ��

��
� �

�
y:

From the equality of the coeÆcients, the properties � = ��, � = ��, and the fact

that � and � are both non-zero (which is where we are using the assumption

that x; y; z are distinct), a little calculation shows that �
��
= �

��
= �

��
.

To show ` � k, let u be any point in `, with representative u = Æx +

�y 2 RB1
, Æ = �Æ, � = ��. Then B2(u) = �m(B2(u)) = �m(B2(Æx + �y)) =

�m(B2((Æ=�)�x+ (�=�)�y)) = �m((�Æ � ��� )x+ (�� � �
��
)y)) = �m(��� (Æx+ �y)) = u,

so u 2 V \ RB2
= k. An analogous argument shows k � `.
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Theorem 4.4. Given a projective transformation A of CPm , real involutions

B1, B2, and a B1-line `, if there are three distinct points in ` whose images

under A are elements of RB2
, then A(`) is a B2-line.

Proof. ` = V \RB1
, for some complex projective line V , so A(`) = A(V \RB1

) �
A(V ), where A(V ) is also a complex projective line. Let k denote the B2-line

A(V ) \ RB2
, so A(`) meets k in three distinct points (since A is one-to-one).

The composite map B3 = A Æ B1 Æ A
�1 is a real involution, by Theorem

3.8, such that RB3
= A(RB1

). Since A is one-to-one, A(`) = A(V \ RB1
) =

A(V ) \ A(RB1
) = A(V ) \ RB3

. Since A(`) is a B3-line that meets the B2-line

k in three distinct points, A(`) = k by Theorem 4.3.

Theorem 4.5. Given a map B : CPm ! CPm induced by an invertible con-

jugate linear map, real involutions B1, B2, and a B1-line `, if there are three

distinct points in ` whose images under B are elements of RB2
, then B(`) is a

B2-line.

Proof. The previous Theorem applies to the projective transformation B2 Æ B,
which takes three distinct points in ` = V \ RB1

into RB2
. The conclusion is

that (B2 ÆB)(`) � RB2
is a B2-line, equal to the set B(`) = B(V ) \ RB2

.

Theorem 4.6. Given m 6= 1, a collineation g of CPm , real involutions B1, B2,

and a B1-line `, if g(`) � RB2
, then g is either a projective transformation, or

it is induced by some invertible conjugate linear map B : Cm+1 ! C
m+1 .

Proof. Let x; y be distinct points on ` = V \RB1
= �m((V\RB1

) n f0g), with
complex linearly independent representatives x;y 2 V\RB1

as in the Proof of

Theorem 3.17.

Let g be induced by some ~� ÆA : Cm+1 ! Cm+1 as in Proposition 2.4. By

the hypothesis that g(x) 2 RB2
, g(x) = �m((~� ÆA)(x)) 2 �m(RB2

), so there

is some non-zero complex number � so that �(~� Æ A)(x) 2 RB2
. Similarly,

there is some non-zero � so that �(~� ÆA)(y) 2 RB2
. The vectors (~� ÆA)(x),

(~� ÆA)(y) are independent (since otherwise, g(x) = g(y), but g is assumed to

be one-to-one).

Let � be any complex number such that � = �� , and consider z = x+�y. It is

easy to check that z 2 (V\RB1
)nf0g, so z = �m(z) 2 `, g(z) 2 RB2

, and as with

x and y, there is some non-zero �� (depending on �) so that ��(~�ÆA)(z) 2 RB2
.

We also have the following expression:

��(~� ÆA)(z) = ��(~� ÆA)(x + �y)

= ��((~� ÆA)(x) + (~� ÆA)(�y))

= ��((~� ÆA)(x) + �(�)(~� ÆA)(y))

= ��(~� ÆA)(x) + (�� � �(�))(~� ÆA)(y)

= (�� �
1

�
)(�(~� ÆA)(x)) + (�� � �(�) �

1

�
)(�(~� ÆA)(y));
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which should be invariant under B2, so:

��(~� ÆA)(z) = B2(��(~� ÆA)(z))

= B2(
��

�
(�(~� ÆA)(x)) +

�� � �(�)

�
(�(~� ÆA)(y)))

=
���
�

�
B2(�(~� ÆA)(x)) +

�
�� � �(�)

�

�
B2(�(~� ÆA)(y))

=
��
��
(�(~� ÆA)(x)) +

�� � �(�)

��
(�(~� ÆA)(y)):

From the uniqueness of the coeÆcients of the linearly independent vectors (~� Æ
A)(x) and (~� Æ A)(y), we get �� = �� � �=�� and �� � �(�) = �� � �(�) � �=��,

and it follows from a short calculation that �(�) = �(�) �
����

����
. In particular,

that equation holds for � = 1, when �(1) = 1 = �(1), so
����

����
= 1, independent

of �. The conclusion is that �(�) = �(�) for all � such that � = ��, but it is

known ([Y]) that the only such �eld isomorphisms with that property are the

identity map, so ~� ÆA = A, and complex conjugation, � = �, so ~� ÆA = B is

a conjugate linear map.

It also follows from the hypothesis of Theorem 4.6 that g(`) is a B2-line, by

Theorems 4.4 and 4.5.

Corollary 4.7. Given m 6= 1, a collineation g of CPm , and conjugate linear

involutions B1, B2 of Cm+1 , if g(RB1
) � RB2

, then there exists an invertible

map A : Cm+1 ! Cm+1 such that A induces g, A = B2 ÆA Æ B1, and A is

either complex linear or conjugate linear. It also follows that g(RB1
) = RB2

.

Proof. The m = 0 case is trivial. For m > 1, RB1
contains at least two points,

and some B1-line `, so the previous Theorem applies. In the �rst case, where

g = A, Theorem 3.10 gives the required complex linear A. In the second case,

where g is induced by a conjugate linear mapB, Theorem 3.11 gives the required

conjugate linear map, which turns out to be some complex scalar multiple of B.

The equality of sets follows from Theorems 3.12, 3.13.

Corollary 4.8. Given m 6= 1, collineations g and h of CPm , and a real invo-

lution B, if h(x) = g(x) for all x 2 RB , then either g = h or g = h ÆB.

Proof. For x 2 RB , g
�1(h(x)) = g�1(g(x)) = x, so g�1 Æh is a collineation such

that (g�1 Æ h)(RB) � RB .

The previous Corollary applies. In the �rst case, where g�1Æh is a projective

transformation, it agrees with the identity transformation on RB , and g = h by

Theorem 3.14. In the second case, g�1 Æ h Æ B is a projective transformation

that agrees with the identity on RB , so g = h ÆB.
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5 The cross ratio

De�nition 5.1. De�ne the cross ratio of four points a = [a0 : a1], b = [b0 : b1],

c = [c0 : c1], d = [d0 : d1] on the complex projective line by the following rational

map.

� : CP 1 � CP 1 � CP 1 � CP 1 ! CP 1 :

(a; b; c; d) 7! [(a1d0 � a0d1)(b1c0 � b0c1) : (a1c0 � c1a0)(b1d0 � b0d1)]:

The function � is well-de�ned except for those quadruples of points where three

coincide.

Notation 5.2. Any function f : CP 1 ! CP 1 induces the obvious product map,

denoted f4 : (a; b; c; d) 7! (f(a); f(b); f(c); f(d)).

The next two facts are well-known and each is proved by a short calculation.

Proposition 5.3. For any d 2 CP 1 , �(([0 : 1]; [1 : 0]; [1 : 1]; d)) = d.

Proposition 5.4. For any A 2 PGL(2; C ), � ÆA4 = �.

Theorem 5.5. If B : CP 1 ! CP 1 is induced by an invertible conjugate linear

map B : C 2 ! C
2 , then � ÆB4 = ~� Æ �.

Proof. This follows from B = ~� Æ A for some A, the easily checked identity

�Æ~�4 = ~�Æ�, and the above Proposition, applied to �Æ(~�ÆA)4 = �Æ~�4ÆA4.

Lemma 5.6. Given three distinct points a; b; c 2 CP 1 , there exists some A 2
PGL(2; C ) such that

A(a) = [0 : 1]; A(b) = [1 : 0]; A(c) = [1 : 1]:

Proof. Consider representative vectors a = (a0; a1)
T , b = (b0; b1)

T , c = (c0; c1)
T 2

C 2 nf0g for a, b, and c. Any two of these three representatives are linearly inde-
pendent because a, b, c are distinct, and there exists some complex linear map

A1 such that A1(a) = (0; 1)T , A1(b) = (1; 0)T , and A1(c) = (c00; c
0

1)
T , with

c00 6= 0 and c01 6= 0. Then let A2 =

�
1=c00 0

0 1=c01

�
, so that A = A2 ÆA1 is the

required map.

The following converse of Proposition 5.4, that maps preserving the cross

ratio must be projective transformations, is also well known.

Theorem 5.7. Given any map f : CP 1 ! CP 1 , if � Æ f4 = �, then f 2
PGL(2; C ).

Proof. First, f must be one-to-one; otherwise, let z; w 2 CP 1 be points such

that z 6= w and f(z) = f(w), and pick any point x 2 CP 1 such that x 6= z.

Then, �((x; z; z; w)) is de�ned, but �((f(x); f(z); f(z); f(w))) is not.

12



Since f is one-to-one, the points a = f([0 : 1]), b = f([1 : 0]), c = f([1 :

1]) are distinct. By Lemma 5.6, there is some A 2 PGL(2; C ) so that A Æ f
�xes each of the points [0 : 1], [1 : 0], [1 : 1]. By Proposition 5.4 and the

hypothesis, � Æ (A Æ f)4 = � ÆA4 Æ f4 = �, so for any point d 2 CP 1 , expanding

(� Æ (A Æ f)4)(([0 : 1]; [1 : 0]; [1 : 1]; d)) in two di�erent ways gives:

�(([0 : 1]; [1 : 0]; [1 : 1]; (A Æ f)(d))) = �(([0 : 1]; [1 : 0]; [1 : 1]; d))

= (A Æ f)(d) = d:

This shows f = A�1.

Corollary 5.8. Given any map f : CP 1 ! CP 1 , if � Æ f4 = ~� Æ �, then f is

induced by some invertible conjugate linear map C 2 ! C 2 .

Proof. If �Æf4 = ~�Æ�, then �Æ (~�Æf)4 = �Æ ~�4 Æf4 = ~�Æ�Æf4 = ~�Æ ~�Æ� = �,

so the previous Theorem applies to show ~� Æ f 2 PGL(2; C ).

Theorem 5.9. Given four points a; b; c; d 2 CP 1 , at least three distinct, there

exists a real involution B such that fa; b; c; dg � RB if and only if �((a; b; c; d)) =

(~� Æ �)((a; b; c; d)).

Proof. One direction is easy: if B4((a; b; c; d)) = (a; b; c; d), then by Theorem

5.5, �((a; b; c; d)) = (� ÆB4)((a; b; c; d)) = (~� Æ �)((a; b; c; d)).
Conversely, suppose �((a; b; c; d)) = (~� Æ �)((a; b; c; d)), and since the other

cases will be similar, suppose a, b, and c are distinct. Let A 2 PGL(2; C ) be

the map from Lemma 5.6, so that

A4((a; b; c; d)) = ([0 : 1]; [1 : 0]; [1 : 1]; [d0 : d1]):

Finding the cross ratio of both sides, and then using the hypothesis, gives

(� ÆA4)((a; b; c; d)) = �(([0 : 1]; [1 : 0]; [1 : 1]; [d0 : d1]))

= �((a; b; c; d)) = [d0 : d1]

= (~� Æ �)((a; b; c; d)) = ~�([d0 : d1]):

So, [0 : 1], [1 : 0], [1 : 1], and [d0 : d1] are all in the �xed point set R~�. Using

Theorem 3.8, a, b, c, d are in A�1(R~�) = RA�1
Æ~�ÆA.

To establish the last result, Theorem 5.12, we depart from our attempt to

use only complex projective geometry. We will need some facts about real

aÆne geometry, including the following real aÆne version of the Fundamental

Theorem. See [H], [Samuel].

Proposition 5.10. If f : R2 ! R2 is invertible and takes real aÆne lines to

real aÆne lines, then f is an aÆne transformation, of the form f(~x) = L(~x)+~t,

for some invertible real linear transformation L and vector ~t.
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The next Theorem will make a connection between complex projective geom-

etry and real aÆne geometry, using the usual identi�cation of C with R2 , so that

the complex number x+ iy corresponds to the ordered pair (x; y). C will also be

considered as an aÆne neighborhood of CP 1 , the complement of the singleton

set f[0 : 1]g, so any complex number z corresponds to [1 : z] 2 CP 1 n f[0 : 1]g.

Theorem 5.11. Given a real involution B of CP 1 , if [0 : 1] 2 RB, then the

intersection of RB with the aÆne neighborhood CP 1 n f[0 : 1]g = C = R2 is a

real aÆne line. Conversely, every real aÆne line is such an intersection.

Proof. Recall the de�nition of a real aÆne line, to be the set of points (x; y) in

R
2 satisfying an equation Ex+Fy+G = 0, for E;F;G 2 R, with E, F not both

0. Converting to the z coordinate system gives E z+�z

2
+ F z��z

2i
+G = E�iF

2
z +

E+iF

2
�z + G = 0, a self-conjugate inhomogeneous linear equation. Similarly

converting any equation of the form �z + ��z +G = 0, with �� = � = E+iF

2
6= 0

and �G = G, back to the (x; y) coordinate system gives the equation of a real

aÆne line.

Supposing B is induced by a conjugate linear map, it is of the form B([z0 :

z1]) = [a�z0+b�z1 : c�z0+d�z1], for complex numbers a; b; c; d such that ad�bc 6= 0.

Since B �xes [0 : 1], b = 0, a 6= 0, d 6= 0. (B Æ B)([z0 : z1]) = [a�az0 :

(c�a+d�c)z0+d �dz1], and since B is an involution, a�a = d �d and c�a+d�c = 0. Since

B is invertible, its restriction to the complement of f[0 : 1]g, [1 : z] 7! [a : c+d�z]

is also invertible, and can be written B : C ! C : B(z) = d

a
�z + c

a
. j d

a
j2 = 1, so

B can also be written B(z) = �ei��z + �, where �ei� �� + � = d

a

�c

�a
+ c

a
= 0.

The intersection of RB with the aÆne neighborhood C is the solution set of

z = �ei��z + �, and multiplying this equation by e�i�=2 gives

e�i�=2z + ei�=2�z � e�i�=2� = 0: (3)

Multiplying the equation �ei� �� + � = 0 by the same quantity gives �ei�=2 �� +

e�i�=2� = 0, so e�i�=2� 2 R, and (3) is the self-conjugate equation of a real

aÆne line.

Conversely, given any real aÆne line, with equation �z+���z+G = 0, � 6= 0,

G = �G, de�ne B : CP 1 ! CP 1 by B([z0 : z1]) = [���z0 : G�z0 + ���z1]. B is a

real involution that �xes [0 : 1], and restricts to B(z) = �
��

�
�z � G

�
on C . The

equation for the �xed point set in C is z = �
��

�
�z� G

�
() �z+���z+G = 0.

Theorem 5.12. Given an invertible map f : CP 1 ! CP 1 , the following are

equivalent.

1. For every real involution B, there exists some real involution B0 such that

f(RB) � RB0 .

2. For every quadruple of points (a; b; c; d), if �((a; b; c; d)) 2 R~�, then (� Æ
f4)((a; b; c; d)) 2 R~�.

3. Either f or ~� Æ f is a projective transformation.
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Proof. The equivalence of 1 : and 2 : follows from Theorem 5.9. 3 : =) 2 : by

Proposition 5.4 and Theorem 5.5, and 3 : =) 1 : by Theorem 3.8. Showing 1 :

and 2 : imply 3 : is enough for the claimed equivalence.

As in the Proof of Theorem 5.7, since f is one-to-one, the points a = f([0 :

1]), b = f([1 : 0]), c = f([1 : 1]) are distinct, and by Lemma 5.6, there is some

A 2 PGL(2; C ) so that A Æ f �xes each of the points [0 : 1], [1 : 0], [1 : 1].

A Æ f also satis�es 1 : and 2 : by Theorem 3.8 and Proposition 5.4. Let g denote

the restriction of A Æ f to the aÆne neighborhood CP 1 n f[0 : 1]g, so g is an

invertible map C ! C .

Given any real aÆne line in C , there is, by Theorem 5.11, some real involution

B such that RB is the union of the line and the point [0 : 1]. By 1 :, (A Æ
f)(RB) � RB0 for some real involution B0, and since A Æ f is one-to-one and

�xes [0 : 1], the restriction g takes the given line to the complement of [0 : 1] in

RB0 , which by Theorem 5.11 again, is another real aÆne line. Proposition 5.10

applies, and since g �xes 0 = (0; 0) and 1 = (1; 0) in C = R2 , it is of the form

g((x; y)) = (x+ py; qy), for some p; q 2 R, with q 6= 0.

For any � 2 C such that ��� = 1, � 6= �1, it is easy to check that the points

[1 : 1], [1 : �], [1 : �1], [1 : ��] are distinct �xed points of the real involution

B([z0 : z1]) = [�z1 : �z0]. It can also be checked directly that the four points in

that order have cross ratio in R~�. In terms of the complex aÆne neighborhood,

the four points are 1, �, �1, and ��, and g �xes 1 and �1. By 2 :, the following

cross ratio should also be in R~�:

�(([1 : 1]; [1 : g(�)]; [1 : �1]; [1 : g(��)]))

= [(1 + g(�))2 : 4g(�)]

= [1 :
4g(�)(1 + g(�))2

(1 + g(�))2(1 + g(�))2
];

which is equivalent to g(�) + jg(�)j2g(�) 2 R. Let � = r+ is, with r2 + s2 = 1,

s 6= 0, so g(�) = r + ps + iqs. The imaginary part of g(�) + jg(�)j2g(�) is
qs(1� ((r + ps)2 + (qs)2)), which is zero if and only if

(r + ps)2 + (qs)2 = 1: (4)

This equation holds for � = i, so r = 0, s = 1, and p2 + q2 = 1. Expanding (4)

gives r2 + 2rps + (p2 + q2)s2 = 1, which is equivalent to 2rps = 0. Since this

holds for some � with non-zero r and s, p must be 0, and it follows that q = �1.
The conclusion is that g(z) is either the identity function on C , or complex

conjugation, so AÆf is either the identity function on CP 1 , or ~�, and 3 : follows.
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