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For m < n, any real analytic m-submanifold of complex

n-space with a non-degenerate CR singularity is shown to

be locally equivalent, under a formal holomorphic coordinate

change, to a �xed real algebraic variety de�ned by linear and

quadratic polynomials. The situation is analogous to Whit-

ney's stability theorem for cross-cap singularities of smooth

maps. The formal coordinate change is obtained from a se-

quence of approximations whose norms are controlled only on

polydiscs shrinking to a point, so the analytic classi�cation

remains an open question.

1. Introduction

In [Wh43], H. Whitney described the parametrization (u; v) 7! (u2; v; uv)
of the \cross-cap" as an example of a di�erentiable map from R

2 to R
3

with a singular point at the origin. He further demonstrated that for any

suÆciently generic singularity of a map f from R
2 to R

3 , there exists a

local change of coordinates with respect to which f has exactly that normal

form: f(u; v) = (u2; v; uv). The coordinate change is Cr, smooth, or real

analytic in a neighborhood, as f is C4r+8, smooth, or real analytic. This

\stability theorem" was later generalized ([H]) to generic singularities of

maps f : Rm
! R

n for m � n, with an analogous normal form. A crucial

step in Whitney's argument was the use of his famous lemma that a smooth,

even function F (x) = F (�x) of one variable can be written as a smooth

function of x2: F (x) = g(x2).
The objects of study in this paper are real m-submanifoldsM of complex

n-space C n . The occurence of a complex line in a tangent space TxM when

m � n is called a \CR singularity," or \complex tangent," and some of

the local and global geometric properties of these objects have analogues

in the singularity theory of maps; the m = n case has been studied since

[Bishop]. Here the m < n case is examined and compared with Whitney's

normal form theorem.

Speci�cally, the local geometry ofM near the complex tangent is analyzed

by establishing some non-degeneracy conditions and arriving at a normal

form for the quadratic part of the de�ning equations. The main result is the

following Proposition:
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Proposition 1.1. Given m and n such that 2
3
(n + 1) � m < n, there

exists a real algebraic variety fMm in C
n de�ned by quadratic and linear

polynomials such that a germ of any real analytic m-submanifold Mm of C n

at a suitably non-degenerate complex tangent is equivalent to fMm under a

formal holomorphic coordinate change of C n .

The simplest case of the Proposition is m = 4, n = 5, which follows as

a consequence of Theorem 3.16. The generalization to higher dimensions is

outlined in Subsection 2.4. The result contrasts with the m = n case, where

there can be higher order invariants of real analytic embeddings ([MW]).

For 4-manifolds in C
5 , the corresponding variety fM4 is de�ned by these

equations in the variables z1 = x1 + iy1; : : : ; z5 = x5 + iy5:

fM4 = f~z : y2 = y3 = 0; z4 = (�z1 + x2 + ix3)
2; z5 = z1(�z1 + x2 + ix3)g:

Note there are no continuous invariants (again, unlike the m = n case,

where the normal form depends on the value of Bishop's invariant � � 0),

and the two quantities �L2 and z1 �L, where �L = �z1 + x2 + ix3, cannot be
simultaneously transformed into monomials by a holomorphic coordinate

change (unlike Whitney's normal form).

A strict analogy with Whitney's result would suggest that a change of

coordinates can be found which converges in a neighborhood of ~0, but there
are holomorphic normal form problems where the formal and analytic clas-

si�cations are di�erent | [V], for example. Here, the existence of formal

power series de�ning a coordinate change bringing the singularity to nor-

mal form is established by an iterative procedure, where the main step is

to solve a linearized equation. If the de�ning functions are quadratic plus

degree d and higher terms, a coordinate change de�ned using the solution

of the linear equation eliminates terms up to about twice the degree. How-

ever, control over a certain norm of this solution will only be established on

a polydisc signi�cantly smaller than that on which the de�ning equations

were given. Iterating the linearization makes this polydisc arbitrarily small,

and no conclusion can be drawn regarding the convergence of the formal

solution. Contributing to this shrinking is a rearrangement phenomenon

speci�c to the calculus of several variables. As in Whitney's calculations,

some real analytic functions are split into even and odd parts, but the Proof

of Theorem 3.16 will �rst rearrange series in z1, �z1, x2, x3 into series in z1,
�L, x2, x3, and then �nd the (even + odd) decomposition in the �L variable.

These even and odd parts may be real analytic on a smaller domain.

The e�ect of such a rearrangement on the polyradius of convergence of

a power series will be analyzed in Section 3, to the extent that the details

relate to the linearized normal form problem. Since the 4-manifold is not a

uniqueness set for holomorphic functions in C
5 , there are divergent solutions
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of the linear equation, but, after a choice of normalization, a unique solution

is constructed which converges on a small polydisc.

This paper is based on the main result of the author's 1997 dissertation,

[C], supervised by S. Webster.

Note: after this paper was accepted for publication, the author learned

that the m = 4, n = 5 case of Proposition 1.1 has also been considered by

[Beloshapka].

2. Coordinate changes, and normal forms for complex tangents

Attention will be focused on the m = 4, n = 5 case of a real m-submanifold

of a complex n-manifold. These are the lowest dimensions m < n where

complex tangents are \topologically stable"; for example, if a real surface in

C
3 has a complex tangent plane at some point, this property is not shared

with most nearby surfaces. When m < n, the real m-planes T such that

dimC T \ iT � j form a subvariety Dj of real codimension 2j(n � m + j)

inside the grassmannian of real m-planes in C
n �= R

2n . The occurence of

complex tangents of an immersion corresponds to the intersection of the

Gauss map with Dj, and the immersion could be called \generic" if the

immersed manifold's Gauss map meets each stratum Dj nDj+1 transversely.

So, generic immersions of M in C
n are \totally real" outside a codimension

2(n�m+1) subset of M , and if m < 2
3
(n+1), then M is generically totally

real everywhere. (This resembles the bounds in Whitney's embedding and

immersion theorems; see [Wh44].) The case addressed by this paper is
2
3(n+1) � m < n, and j = 1; only points where the tangent space contains

exactly one complex line will be considered. In the m = 4, n = 5 case,

the generic singularity is isolated. This Section establishes non-degeneracy

conditions for complex tangents and proposes quadratic normal forms in

the above dimension range. The initial assumption is that M = M4 is a

4-dimensional submanifold containing the origin of C 5 , de�ned as the zero

set of real analytic functions in a neighborhood of the origin.

2.1. Holomorphic coordinate changes. It can be assumed that the tan-

gent plane at the origin in C
5 , T = T~0M , has four real dimensions and

contains the complex line with coordinate z1 = x1 + iy1. The remain-

ing coordinates of C 5 can be chosen as z2; : : : ; z5, so that T is de�ned by

y2 = y3 = z4 = z5 = 0 and has coordinates z1, x2, and x3. The complex

linear transformations of C 5 that preserve T , written as 5�5 matrices acting
on column vectors, are of the form

A =

0
BBBB@

a11 a21 a31 a41 a51
0 r22 r32 a42 a52
0 r23 r33 a43 a53
0 0 0 a44 a54
0 0 0 a45 a55

1
CCCCA ;
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where the a entries are complex, and the entries of the blockR =

�
r22 r32
r23 r33

�
are real.

Since these entries will be used in a coordinate change transforming the

quadratic and cubic parts of the de�ning equations for M into a normal

form, det(A) 6= 0. If T is given some orientation, then the transformations

preserving that orientation also satisfy det(R) > 0. For example, the map

z3 7! �z3 is complex linear, but reverses the orientation of the real subspace.
Once the real submanifold M is placed with its tangent space at the

origin as described, the geometry of interest is its interaction with the ambi-

ent complex analytic structure. To �nd features which are invariant under

biholomorphic coordinate changes of C 5 , it suÆces to consider local biholo-

morphisms with linear part preserving T . The transformation from zs to ~zr
coordinates, r, s = 1; : : : ; 5, and its holomorphic inverse, will be written as

multivariable power series, using the summation convention:

~zr = asrzs + pstr zszt + pstur zsztzu + : : : ;(1)

zr = bsr~zs + qstr ~zs~zt + qstur ~zs~zt~zu + : : : ;(2)

where the linear coeÆcients form block matrices A = (asr) and A
�1 = (bsr),

�xing the tangent space as described above.

The six real de�ning equations of M in C
5 can be expressed in the zs

coordinates as a graph, over a region in the tangent space:

M = f~z : y2 = H2; y3 = H3; z4 = h4; z5 = h5g:

The functions H2(z1; �z1; x2; x3) and H3(z1; �z1; x2; x3) are real-valued, the

functions h4(z1; �z1; x2; x3) and h5(z1; �z1; x2; x3) are complex-valued, and all

are real analytic, vanishing to second order at the origin. For example, h5
begins with quadratic terms:

h5 = �z21 + ��z21 + z1�z1 + cabxaxb + daxaz1 + eaxa�z1 +O(3);

where the summations are over 2 � a � b � 3 and O(3) denotes terms of
degree three or higher. This expression can be simpli�ed by a linear change

of coordinates.

Lemma 2.1. If j�j 6= jj=2, then there exist complex numbers a21 and a31,
such that in new variables ~z1 = z1 + a21z2 + a31z3, ~zs = zs for s = 2; : : : ; 5,
the above de�ning function h5 is transformed to:

~z5 = �~z21 + ��~z21 + ~z1�~z1 + ~cab~xa~xb + ~da~xa~z1 +O(3):

This Lemma appears as part of the calculations of [Bishop], so a proof is

not given here. Note that the coeÆcients cab and da may change, the eaxa�z1
terms are eliminated, and the coeÆcients �, �, and  are unchanged. The
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coordinate change may also change some coeÆcients in h5 of the higher-

order terms, and of some of the terms appearing in the other three de�ning

equations. Also note that no holomorphic coordinate change of the form

~z5 = z5 + pst5 zszt could eliminate the eaxa�z1 terms; transforming the z1
variable is necessary, and under the hypothesis of the Lemma, the e2, e3

coeÆcients can be transformed to any pair of complex numbers. The idea

of the Lemma, using a holomorphic transformation of z1 to eliminate terms
involving �z1, will be generalized to be the key idea for the solution of the

normal form problem (Theorem 3.16).

2.2. The quadratic normal form. The general form of the real functions

H2, H3, and complex functions h4, h5, which de�ne M in C
5 , is as follows:

z2 = x2 + iH2 = x2 + i(Re(ka2xaz1 + k2z
2
1) + rab2 xaxb + r2z1�z1) +O(3)

z3 = x3 + iH3 = x3 + i(Re(ka3xaz1 + k3z
2
1) + rab3 xaxb + r3z1�z1) +O(3)

z4 = h4 = �4z
2
1 + �4�z

2
1 + 4z1�z1 + cab4 xaxb + da4xaz1 + ea4xa�z1 +O(3)

z5 = h5 = �5z
2
1 + �5�z

2
1 + 5z1�z1 + cab5 xaxb + da5xaz1 + ea5xa�z1 +O(3):

The coeÆcients are all complex except for the real coeÆcients r on the

\conjugation-invariant" terms in H2 and H3.

The plan is to �nd a coordinate change (1 � 2) to convert these qua-

dratic quantities into a simpler \normal form." The linear and second-

order coordinate changes that a�ect the quadratic terms are of the form

~zr = adrzd + pstr zszt for 1 � d � 5 and 1 � s � t � 3. The linear coeÆcients

a41, a
5
1 and the nonlinear coeÆcients pst1 do not contribute quadratic terms.

The \�rst non-degeneracy condition" is that the matrix of coeÆcients�
�4 4
�5 5

�
is nonsingular. If the matrix has rank 1 or 0, this degeneracy

is preserved under any change of coordinates, and the degenerate normal

forms will be listed in the next Subsection. The case of main interest is

that the matrix has rank 2, so that the block

�
a44 a54
a45 a55

�
can be used to

normalize these coeÆcients to

�
1 0

0 1

�
. Then Lemma 2.1 applies to h5 to

eliminate the ea5xa�z1 terms, using the linear coeÆcients a
2
1, a

3
1.

Lemma 2.1 cannot be used again, on the h4 terms, without possibly re-

introducing xa�z1 terms into h5. (This problem will occur later, in the elimi-

nation of higher-order terms from both h4 and h5; the matter will be resolved
by transforming the xa variables to normalize h4.) The current state of the
quadratic terms is:

h4 = �z21 + �4z
2
1 + cab4 xaxb + da4xaz1 + ea4xa�z1 +O(3)

h5 = z1�z1 + �5z
2
1 + cab5 xaxb + da5xaz1 +O(3):
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The sum ea4xa�z1 can be rewritten as a matrix product:

�
1 i

�� Re(e24) Re(e34)
Im(e24) Im(e34)

��
x2
x3

�
�z1;

and the \second non-degeneracy condition" is that this real 2� 2 coeÆcient

matrix is non-singular. In this case, the real block R can transform the

x2, x3 coordinates so that these terms have the form x2�z1 + ix3�z1. The

remaining quadratic terms, for example, d24x2z1, do not involve �z1, and their
coeÆcients can be made to vanish, or to attain any complex value, by the

non-linear transformations of the form ~z4 = z4 + p124 z1z2, etc. Quadratic

transformations of z2 and z3 can eliminate most of the terms of H2 and

H3, except the z1�z1 terms. These terms, assuming the �rst non-degeneracy
condition holds, can be eliminated by linear transformations of the form

~z2 = z2 + a52z5, ~z3 = z3 + a53z5.
With as many terms as possible eliminated, the non-degenerate quadratic

normal form for M is:

fy2 = O(3); y3 = O(3); z4 = �z21 + x2�z1 + ix3�z1 +O(3); z5 = jz1j
2 +O(3)g:

To make a normal form more convenient for later calculations, \complete

the square" for h4, and use the same linear factor �L = �z1 + x2 + ix3 in h5:

h4(z1; �z1; x2; x3) = (�z1 + x2 + ix3)
2 +O(3) = �L2 +O(3)

h5(z1; �z1; x2; x3) = z1(�z1 + x2 + ix3) +O(3) = z1 �L+O(3):

If the linear coordinate change A is required to �x an orientation of the

real tangent plane, then the second non-degeneracy condition leads to two

alternatives for the new coeÆcients on xa�z1 terms: either x2�z1 + ix3�z1 or

x2�z1 � ix3�z1 in the �rst set of equations, or �L = �z1 + x2 � ix3 in the second

set. The � sign is not a biholomorphic invariant since it can change under

the previously mentioned transformation ~z3 = �z3. The two normal forms

are also related by complex conjugation of all �ve coordinates.

2.3. Degenerate cases of the normal form. Complex tangents where

the non-degeneracy conditions fail can still be put into a quadratic normal

form, with the possibility of continuous invariants. The quadratic terms of

the real-valued functions H2 and H3 can be made to vanish, or, if there is no

z1�z1 term in h4 or h5, then H2 = r2z1�z1+O(3) and H3 = r3z1�z1+O(3). The
quadratic normal forms (in the unoriented case) for h4 and h5, including the
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full rank case, are as follows:

h4 = (�z1 + e24x2 + e34x3)
2 +O(3);

h5 = z1(�z1 + e24x2 + e34x3) +O(3); (e24; e
3
4) 2 f(1; i); (1; 0); (0; 0)g;

h4 = �(z21 + �z21) + jz1j
2 +O(3); � 2 [0;

1

2
) [ (

1

2
;1];

h5 = e25x2�z1 + e35x3�z1 +O(3); (e25; e
3
5) 2 f(1; i); (1; 0); (0; 0)g;

h4 = e24x2�z1 +
1

2
(z1 + �z1)

2 +O(3);

h5 = e25x2�z1 + e35x3�z1 +O(3);

(e24; e
2
5; e

3
5) 2 f(1; 0; 1); (1; 0; 0); (0; 1; i); (0; 1; 0); (0; 0; 0)g;

h4 = e24x2�z1 +O(3);

h5 = e35x3�z1 +O(3); (e24; e
3
5) 2 f(1; 1); (1; 0); (0; 0)g:

For example, the de�ning functions z4 = �L2, z5 = L�L = (z1+x2� ix3)(�z1+
x2+ ix3) satisfy the �rst non-degeneracy condition, but not the second, and
can be transformed into the (0; 0) case of the �rst group.
The h4 functions in the second and third groups resemble the \elliptic",

\hyperbolic", and \parabolic" cases when m = n. If M2 = fz2 = h(z1; �z1)g
is a surface in C

2 with a complex tangent, then M2
�R

2
�f0g = fy2 = y3 =

z5 = 0; z4 = h(z1; �z1)g, contained inside C 4
� C

5 is not only degenerate (in

the sense that the �rst non-degeneracy condition is not satis�ed), but the

locus of complex tangents is two-dimensional.

More generally, it can be shown that if a real manifold M has order of

contact higher than 2 with any smooth complex hypersurface, then the �rst

non-degeneracy condition fails.

However, in a neighborhood of a non-degenerate CR singularity, M is

contained in a singular complex hypersurface in C
5 , which could be con-

sidered as a complexi�cation of M . The normal form variety fM4, de�ned

by y2 = y3 = 0, z4 = �L2, z5 = z1 �L, is contained in the hypersurface H

de�ned by z21z4 � z25 = 0. Algebraically, this equation is obtained by elimi-

nating the �z1 variable. Geometrically, this hypersurface can be obtained by

replacing the �z variables in the de�ning equations for fM4 by new variables

w (see Section 5, and [W84]), to get a complex 4-submanifold of C 10 , and

then projecting this smooth manifold into the original C 5 so that its image

is the singular variety H. The containment of fM4 inside H exhibits some

interesting geometry (briey considered in [C] and possibly also in some fu-

ture paper), and resembles the parametrized cross-cap (u2; v; uv) inside the
Whitney umbrella variety xy2 � z2 = 0.
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2.4. m-manifolds in C
n , m < n. Neglecting the orientation issue, and

using the �L = �z1 + x2 + ix3 abbreviation, the generic complex tangent for

m-manifoldsM in C
n , for 2

3
(n+1) � m < n, has a normal form generalizing

them = 4, n = 5 case. The tangent space has exactly one complex direction,

with coordinate z1, and m� 2 real coordinates x2, . . . , xm�1. The 2n�m-

normal space has exactly n � m + 1 complex directions, zm, . . . , zn, and
m � 2 remaining real coordinates, y2, . . . , ym�1. The graphing functions

(H;h) can be put into the form:

ya=2;:::;m�1 = O(3)

zt=m;:::;n�2 = (x4+2(t�m) + ix5+2(t�m))�L+O(3)

zn�1 = �L2 +O(3)

zn = z1 �L+O(3):

This normal form again assumes that two non-degeneracy conditions on

the h functions are satis�ed, the �rst being a full rank condition on the

�z21 and z1�z1 coeÆcients, and the second being a full rank condition on the

real and imaginary parts of the xa�z1 coeÆcients, a = 2; : : : ;m � 1, in the

equations ht, t = m; : : : ; n� 2, and hn�1. The indices on the zt terms range
from zm = (x4 + ix5)�L + O(3) to zn�2 = (x2(n�m) + ix2(n�m)+1)�L + O(3).

This indexing scheme breaks down when m < 2
3 (n+ 1), but this is outside

the topological stability range under consideration. When m = n � 1, the

functions zt = ht in this normal form do not appear. When m = 2
3(n+ 1),

the complex tangents are isolated, but if m > 2
3(n + 1), the 3m � 2n � 2

variables x2(n�m+1), . . . , xm�1 do not appear in the above quadratic terms,

and in fact 3m�2n�2 is the real dimension of the locus N �M of complex

tangents. When N has positive dimension, the quadratic normal form has

the structure of a product of a totally real plane and a submanifold with an

isolated complex tangent. This geometry is comparable to the normal forms

of [Wh58] and [H].

3. A linearized CR normal form problem

3.1. The nonlinear functional equation. Finding a formal or analytic

transformation bringing a CR singularity ofM in C
5 to normal form requires

solving a system of functional equations. Starting with the non-degenerate

normal form,

fy2 = H2; y3 = H3; z4 = �L2 + e4(z1; �z1; x2; x3); z5 = z1 �L+ e5(z1; �z1; x2; x3)g;

where H2, H3, e4, e5 are vanishing to third order, the goal is to �nd a (for-

mal) holomorphic coordinate transformation of the form (1), with identity

linear part:

(3) ~zs = zs + ps(z1; z2; z3; z4; z5)
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for s = 1; : : : ; 5, so that the de�ning functions in the new coordinates are

f~y2 = ~y3 = 0; ~z4 = ~L
2
= (�~z1 + ~x2 + i~x3)

2; ~z5 = ~z1 ~L = ~z1(�~z1 + ~x2 + i~x3)g:

Notation 3.1. De�ne E to be the real vector space of quadruples of formal

power series ~e = (H2;H3; e4; e5), where H2, H3 are formally real-valued,

with terms of degree at least 2, and e4, e5 are complex-valued, with terms

of degree at least 3. De�ne P to be the complex vector space of quintuples

~p = (p1; : : : ; p5) of complex-valued formal power series in z1, . . . , z5 without
constant terms.

A normalizing transformation exists, if given ~e = (H2;H3; e4; e5) 2 E,
there exists a solution ~p 2 P of the following four equations:

0 = Im(~z2) = Im(z2 + p2(~z))

= H2(z1; �z1; x2; x3) + Im(p2)(4)

0 = Im(~z3) = Im(z3 + p3(~z))

= H3(z1; �z1; x2; x3) + Im(p3)(5)

0 = ~z4 � ~L
2

= h4(z1; �z1; x2; x3) + p4(~z)

�(�z1 + x2 + ix3 + p1(~z) + Re(p2(~z)) + iRe(p3(~z)))
2

= e4(z1; �z1; x2; x3) + p4 � 2�L(p1 +Re(p2) +iRe(p3))(6)

�(p1 +Re(p2) + iRe(p3))
2

0 = ~z5 � ~z1 ~L

= h5(z1; �z1; x2; x3) + p5(~z)

�(z1 + p1(~z))(�L+ p1(~z) + Re(p2(~z)) +iRe(p3(~z)))

= e5(z1; �z1; x2; x3) + p5 � �Lp1 � z1(p1 +Re(p2) + iRe(p3))(7)

�p1(p1 +Re(p2) + iRe(p3));

where the functions p1, . . . p5 appearing in Equations (4 � 7) are restricted

to the points ~z = (z1; x2 + iH2; x3 + iH3; h4; h5) on M . The action of the

coordinate change (3) on the series ~e can be described as a non-linear map

F : E � P ! E, taking the pair (~e; ~p) to the quantities (4� 7).

The analytic normal form problem is to start with ~e convergent on some

polydisc fjz1j < r1; jx2j < r2; jx3j < r3g, and to �nd ~p convergent on some

polydisc fjz1j < �1; jz2j < �2; : : : ; jz5j < �5g so that F (~e; ~p) = 0E . If ~p is

not an exact solution, F (~e; ~p) will have to be converted into the ~z variables,
using the inverse transformation (2), z = A�1~z+q(~z), to get the higher-order
terms in the de�ning functions in the ~z coordinate system.

3.2. The stabilizer of the polynomial normal form. Recall fM4 de-

notes the 4-manifold already exactly de�ned by quadratic and linear poly-

nomials, with H2, H3, e4, e5 all identically zero. There are some coordinate
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transformations (3) which preserve the form of the de�ning equations, for

example, if the �ve functions ps all vanish on fM4. However, these are not

the only such transformations in the \stabilizer" of the variety, de�ned to be

the set of formal transformations (3) with ~p 2 P such that F (0E ; ~p) = 0E .

Substituting ~e = 0E into Equations (4� 7) gives

0 = Im(p2) = Im(p3)

0 = p4 � 2�L(p1 +Re(p2) + iRe(p3))� (p1 +Re(p2) + iRe(p3))
2

0 = p5 � �Lp1 � z1(p1 +Re(p2) + iRe(p3))� p1(p1+Re(p2) + iRe(p3));

where all the functions ps are restricted to fM4. Since z4 = �L2 and z5 = z1 �L
are related by the expression z21z4 = z25 , any formal power series ps(~z) in the
ideal J � C [[z1 ; : : : ; z5]] generated by z21z4 � z25 is zero when restricted to

z4 = �L2 and z5 = z1 �L. Recall J de�nes a singular complex hypersurface H

in C
5 containing fM4.

The �rst two equations imply p2 and p3 must be real-valued on fM4, and

the second two,

p4(z1; x2; x3; �L
2; z1 �L) = (2�L+ p1 + p2 + ip3)(p1 + p2 + ip3)(8)

p5(z1; x2; x3; �L
2; z1 �L) = �Lp1 + (z1 + p1)(p1 + p2 + ip3);(9)

show that p4 and p5 are determined by p1, p2, p3 in C [[z1 ; : : : ; z5]]=J , but

p1, p2, p3 cannot be arbitrary. For example, if p2 = rxa2x
b
3, with r real, then

2r�Lxa2x
b
3+r

2x2a2 x2b3 is not a function of the arguments z1; x2; x3; �L
2; z1 �L, and

Equation (8) cannot hold for any p4 unless r = 0.

Notation 3.2. Let Q � C [[z1 ; �L; x2; x3]] denote the subalgebra of formal

power series which can be rewritten as series in z1, x2, x3, �L
2, z1 �L.

The only monomials not in Q are those of the form xa2x
b
3
�Lodd. In particu-

lar, any expression f in z1, �z1, x2, x3, satis�es z1 �f 2 Q. This simpli�es the
conditions (8 � 9), so that p1, p2, p3 2 C [[z1 ; z2; z3; z4; z5]] are components
of a stabilizing transformation if their restrictions to y2 = y3 = 0, z4 = �L2,

z5 = z1 �L satisfy:

f2�L(p1 + p2 + ip3) + p1(p1 + 2(p2 + ip3)); (�L+ p1)p1g � Q:

It should be remarked that there are some linear transformations of C 5 which

preserve the normal form variety, for example, scaling z1, z2, z3 by � > 0

and z4 and z5 by �
2, but these will not be considered here.

3.3. The linear problem. A formal solution of the non-linear problem

F (~e; ~p) = 0E can be approximated by �nding a solution ~p of a related linear

equation. Such a ~p is an approximation in the sense that if the higher-order

terms of the de�ning equations, ~e, have lowest degree d � 3, then the co-

ordinate change (3) transforms the equations so that the lowest degree is
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approximately doubled. Iterating this procedure, and composing the coordi-

nate transformations, determines as many terms in an exact formal solution

as desired.

Equations (10 � 13) de�ne a real linear map dF : P ! E, formally a

derivative of F (restricted to f0Eg � P ) at the point (0E ; 0P ), acting on

~p 2 P to give a quadruple (H2;H3; e4; e5) of power series in z1, �z1, x2, and
x3:

H2 = Im(p2(z1; x2; x3; �L
2; z1 �L));(10)

H3 = Im(p3(z1; x2; x3; �L
2; z1 �L));(11)

e4 = p4(z1; x2; x3; �L
2; z1 �L)� 2�Lp1(z1; x2; x3; �L2; z1 �L)

�2�L(Re(p2(z1; x2; x3; �L
2; z1 �L)) + iRe(p3(z1; x2; x3; �L

2; z1 �L)));(12)

e5 = p5(z1; x2; x3; �L
2; z1 �L)� �Lp1(z1; x2; x3; �L

2; z1 �L)

�z1p1(z1; x2; x3; �L2; z1 �L)(13)

�z1(Re(p2(z1; x2; x3; �L
2; z1 �L)) + iRe(p3(z1; x2; x3; �L

2; z1 �L))):

This linearization idea was used by [M] in another CR normal form problem,

but with one equation instead of a system of equations. Note that the output

involves conjugation of functions of z1 and �L, so some rearrangement may be
needed to express the output as power series in E (variables z1, �z1, x2, x3)
or as power series in z1, �L, x2, x3. Also, the restriction of all the functions

ps to the values z2 = x2, z3 = x3, z4 = �L2, z5 = z1 �L motivates a de�nition

of the weight of their terms:

De�nition 3.3. The degree of a monomial za11 �za21 xa32 xa43 or za11
�La2xa32 xa43 is

the integer a1 + a2 + a3 + a4, and the order of a power series refers to the

smallest among the degrees of its monomials (with non-zero coeÆcients).

The weight of a monomial za11 za22 za33 za44 za55 is the integer a1 + a2 + a3 +
2a4 +2a5, and the weight of a power series is the smallest of its monomials'

weights.

If (H2;H3; e4; e5) are power series of order d� 1, d� 1, d, d, with d � 3,

then the power series (p1; p2; p3; p4; p5) in a solution of (10�13) are of weight
d � 1, d � 1, d � 1, d, and d. If ~p is a solution of the linear problem, then

comparing (10� 13) with (4� 7) shows that the output F (~e; ~p) of the non-
linear function is four power series with order 2d � 3 for the new H2 and

H3, and with order 2d� 2 for the new e4 and e5.
The existence of stabilizing transformations corresponds to a non-trivial

kernel S � P , de�ned by equations similar to those of the stabilizer: p2 and

p3 must be real-valued on fM4, and

p4(z1; x2; x3; �L
2; z1 �L) = 2�L(p1 + p2 + ip3)

p5(z1; x2; x3; �L
2; z1 �L) = �Lp1 + z1(p1 + p2 + ip3);
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which determines p4 and p5 mod J , and imposes on p1, p2, p3 the condition

that their restrictions to fM4 satisfy f�L(p1 + p2 + ip3); �Lp1g � Q.

3.4. Normalized transformations. Choosing a \normalization" for the

solution of the problem dF (~p) = ~e corresponds to choosing a subspace C of

P complementary to the kernel S. To prove the claim that dF is surjective,

the approach will be to start with ~e and construct an element ~p 2 C.
Motivated by the de�ning conditions for the kernel, the following nor-

malization is considered for the transformation functions ps. The idea is to
decompose each ps into a sum of functions of fewer than �ve variables:

p1 = z21p
H
1 ((z1 + z2 � iz3)

2; z2; z3) + pA1 (z2; z3; z4)(14)

pa = pRa (z2; z3) + pIa(z1; z2; z3; z4; z5)(15)

p4 = pE4 (z1; z2; z3; z4) + z5p
O
4 (z1; z2; z3; z4)(16)

p5 = pE5 (z1; z2; z3; z4) + z5p
O
5 (z1; z2; z3; z4);(17)

where for a = 2; 3, pRa (z2; z3) has real coeÆcients. The terms p
I
a are of the

following form:

pIa = pEa (z1; z2; z3; z4) + z5p
O
a (z1; z2; z3; z4) + p0a(z1; z2; z3)(18)

with pEa + z5p
O
a being (formally) purely imaginary when restricted to fM4,

and p0a(z1; x2; x3) equal to a sum of monomials Loddxa2x
b
3 with complex co-

eÆcients. In some sense, the conditions on the functions p1, p2, p3 are com-
plementary to the conditions de�ning the kernel. The pE(z1; z2; z3; z4) +

z5p
O(z1; z2; z3; z4) decomposition in (16�18) de�nes a vector space comple-

ment of J in C [[z1 ; : : : ; z5]], formed by remainders r in applying the Division
Theorem to p = (z25 + z21z4)q + r.
The capital superscripts are not multiindices but rather denote the roles

of each term in the solution. The pRa is a function of \real" variables, and

the \imaginary" part of pIa will eliminate the Ha functions. The p4 and

p5 functions, when decomposed into parts pE and pO, have \even" and

\odd" powers of �L, and can eliminate all the Q monomials in the h4 and h5
functions. The remaining monomials are of the form xa2x

b
3
�Lodd in h4 and h5,

and can be handled in the same way as in Lemma 2.1. pH1 , a \holomorphic"

function in z1, eliminates non-Q monomials when conjugated in (12), and pA1
becomes an \antiholomorphic" expression when z4 is equal to �L2, eliminating

non-Q monomials in (13). The z21 factor in z
2
1p

H
1 means it has no monomials

in common with pA1 , and it is in Q when restricted to fM4. Without this

z21 , p
H
1 and pA1 would both introduce xa2x

b
3
�L1 terms in h4 and h5; this is

why Lemma 2.1 could not be used twice on the quadratic terms. Although

p1, as normalized, can eliminate xa2x
b
3
�L1 terms only from h5, these terms

can be eliminated from h4 by the �L(pR2 + ipR3 ) appearing in (12), without

re-introducing any in (13).
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Supposing that ~e is of the form where H2 and H3 are homogeneous of

degree d � 1, and e4 and e5 are homogeneous of degree d, the normalized

solution of dF (~p) = ~e should have pH1 with degree d� 3, pA1 , p
R
2 , p

R
3 , p

I
2, p

I
3

with weight d � 1, pE4 , and pE5 with weight d, and pO4 and pO5 with weight

d� 2. It can be checked that such polynomials form a real vector subspace

of P exactly equal in (real) dimension to the subspace of E de�ned by

homogeneous polynomials with the stated degrees.

It is convenient to think of the transformation (3) having \identity linear

part," but if the function h4 contains a cubic term �z31 , it can only be elim-

inated by a linear transformation of the form ~z1 = z1 + a41z4, which could

be considered as a term in pA1 of weight 2. This is the only exception that

needs to be made when thinking of the functions ps as order � 2.

Inspecting the form of Equations (10�13), each ps function appears with
terms involving �L, but �z1 also appears by itself (not collected into �L fac-

tors), when the p1, p2, and p3 functions undergo complex conjugation. The

normalization for pH1 , as a power series in z2, z3, and L2, is chosen so that
�L2 appears in pH1 . At this point, it seems natural to rearrange the ~e com-
ponents as power series in z1, �L, x2, x3, so that like terms can be compared

on both sides of Equations (10 � 13). However, this rearrangement has se-

rious consequences; if the rearranged series is decomposed into a sum, and

each subseries expanded back into the original variables, the domain can

shrink signi�cantly. Nonetheless, the strategy for constructing an inverse of

dF : C ! E will be to rearrange ~e, and de�ne the ps series using the coeÆ-
cients of the rearranged ~e. The ps series will be shown to converge on a small

polydisc, using a Banach space norm suited to this type of construction.

3.5. Preliminary lemmas on power series and change of variables.

Some standard notions ([GF], [Walter]) about power series in real and

complex variables will be used in analyzing the functional equation.

Notation 3.4. For r = (r1; : : : ; rn) 2 R
n , with all rk > 0, de�ne a polydisc

in C
n by D r = f(z1; : : : ; zn) : jzkj < rkg.

Notation 3.5. For multi-indexed formal power series centered at ~0 2 C
n ,

c(z1; : : : ; zn) = �c�z� = �c�1:::�nz�11 : : : z�nn , c� 2 C , de�ne

jcjr = �jc�jr� = �jc�1:::�n jr�11 : : : r�nn :

Lemma 3.6. If jcjr < 1 then �c�z� converges absolutely for all z 2 D r ,

and c(z1; : : : ; zn) de�nes a bounded, holomorphic function on D r . The set

of formal power series c such that jcjr <1 is a complex (and real) Banach

space.

Lemma 3.7. If jcjr <1, then any power series d = �d�z� with jd�j � jc�j

for each � satis�es jdjr � jcjr.
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For example, this Lemma includes subseries d of c, meaning d� = c� for

some indices and d� = 0 for the rest.

Lemma 3.8. jz1 � cjr = r1jcjr, and in general jb � cjr � jbjr � jcjr.

Notation 3.9. In C � R
2 , de�ne the polydisc DR = f(z1; x2; x3) : jz1j <

R; jx2j < R; jx3j < Rg, and let A be the space of formal power series in z1,
�z1, x2, x3 with complex coeÆcients. De�ne AR to be the subspace of power

series c such that jcjR := �jcabcdjRa+b+c+d <1.

Using the coeÆcients of c = �cabcdza1 �z
b
1x

c
2x

d
3 2 AR as coeÆcients in a

power series c(z1; w; z2; z3) de�nes a complex analytic function on D (R;R;R;R)

in C
4 , by Lemma 3.6. The restriction of this function to the real 4-plane

fw = �z1, z2 = �z2, z3 = �z3g is a function whose power series c(z1; �z1; x2; x3)
is convergent on DR. In particular, (AR; j jR) is a Banach algebra.

Lemma 3.10. If c = �cabcdza1 �z
b
1x

c
2x

d
3 2 AR, then c(z1; �z1; x2; x3) can be

rearranged into a power series k(z1; �L; x2; x3) = �kabcdza1 (�z1+x2+ix3)
bxc2x

d
3,

where the coeÆcients kabcd satisfy

(19) �jkabcdj3b(R=9)a+b+c+d � jc(z1; �z1; x2; x3)jR;

and the sum �kabcdza1
�Lbxc2x

d
3 converges on the polydisc DR=9.

Proof. The transformation from w toW = w+z2+iz3 \shears" the polydisc
D (R;R;R;R) in C

4 . The norm j�kabcdza1W
bxc2x

d
3j(R=9;R=3;R=9;R=9) can be esti-

mated in terms of the norm jc(z1; �z1; x2; x3)jR by comparing the coeÆcients

kabcd to the coeÆcients cabcd. Some trinomial coeÆcients appear, having the
following properties ([Aigner]) for whole numbers b, j, k, l:�

b
jkl

�
=

�
b!

j!k!l! if b = j + k + l

0 otherwise

�
;
X
j;k;l

�
b
jkl

�
= 3b:

The degree n terms of the power series c can be expanded:X
a+b+c+d=n

cabcdza1 �z
b
1x

c
2x

d
3 =

X
a+b+c+d=n

cabcdza1(
�L� x2 � ix3)

bxc2x
d
3

=
X

a+b+c+d=n

cabcdza1

0
@X

j;k;l

(�1)j+kik
�

b
jkl

�
�Llxc+j2 xd+k3

1
A

=
X

a0+b0+c0+d0=n

ka
0b0c0d0

za
0

1
�Lb0xc

0

2 x
d0

3 ;

where the coeÆcients k are formed by collecting like terms:

ka
0b0c0d0

=
X
b0 � b

c � c0

d � d0

ca
0bcd(�1)b�b

0

id
0
�d

�
b

c0 � c d0 � d b0

�
:
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By the triangle inequality, and then an interchange of summation, the degree

n terms of the LHS of Inequality (19) sum toX
a0+b0+c0+d0=n

jka
0b0c0d0

j
3b

0

Rn

9n
�

X
a0+b0+c0+d0=n

(
X
b0 � b

c � c0

d � d0

jca
0bcd
j

�
b

c0 � c d0 � d b0

�
)
3b

0

Rn

9n

�

X
a+b+c+d=n

jcabcdj(
X
b0 � b

c � c0

d � d0

�
b

c0 � c d0 � d b0

�
3b

0

)
Rn

9n

�

X
a+b+c+d=n

jcabcdj(
X

b0+c0+d0=n�a

�
b

c0 � c d0 � d b0

�
)
3bRn

9n

�

X
a+b+c+d=n

jcabcdj3b � 3b
Rn

9n
�

X
a+b+c+d=n

jcabcdjRn;

and the absolutely convergent sum of these collections over all n is inde-

pendent of the order of terms and gives the inequality. This argument ac-

tually shows that �kabcdza1W
bzc2z

d
3 has �nite (R;R=3; R=9; R=9) norm, but

the intersection of the polydisc D (R;R=3;R=9;R=9) and the real 4-plane fW =

�z1+ x2+ ix3, z2 = x2, z3 = x3g contains DR=9, so the (R=9; R=3; R=9; R=9)

norm is considered instead.

Notation 3.11. For formal power series in the variables z1, �L, x2, x3, de�ne
j j
0

r by

j�kabcdza1
�Lbxc2x

d
3j
0

r = �jkabcdj3bra+b+c+d:

This is the r = (r; 3r; r; r) norm on the complex polydisc D r .

If jkj0r < 1, then k(z1; �L; x2; x3) converges for (z1; x2; x3) 2 Dr, because

j�Lj � j�z1j+ jx2j+ jx3j < 3r. Lemma 3.10 can be restated for the rearrange-

ment k(z1; �L; x2; x3) of c(z1; �z1; x2; x3) in terms of this norm: jkj0R=9 � jcjR.

The polyradius (R=9; R=3; R=9; R=9) chosen in Lemma 3.10 is convenient

for calculations, but also is small enough so that using the Weierstrass Di-

vision Theorem as a step in the main Theorem will not further shrink the

domain.

Note that the \prime" notation will always signify the presence of the

\rearranged" variable �L. A disadvantage of the j j0r norm, and with the z1,
�L, x2, x3 coordinates in general, is the bad behavior with respect to complex
conjugation. The conjugate of a power series k(z1; �L; x2; x3) in general re-

quires a rearrangement to be expressed as another power series in the same

variables. However, if a power series is independent of the holomorphic vari-

able z1, then its conjugate does not involve �z1. The following Lemma shows
that the rearrangement of the conjugate does not increase the primed norm.
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Lemma 3.12. If the power series k(z1; �L; x2; x3) =
P

k0abc �Laxb2x
c
3 has �nite

j j
0

r norm, and
P

qa
00b0c0za

0

1 x
b0

2 x
c0

3 is obtained by expanding L = z1+ x2� ix3
in the conjugate expression �k =

P
k0abcLaxb2x

c
3, then jqj

0

r � jkj0r.

Proof.

qa
00b0c0 =

X
a0
� a

b � b0

c � c0

k0abc(�i)c
0
�c

�
a

b0 � b c0 � c a0

�

X
a0+b0+c0=n

jqa
00b0c0

jrn �

X
a+b+c=n

jk0abcj(
X
a0
� a

b � b0

c � c0

�
a

b0 � b c0 � c a0

�
)rn

�

X
a+b+c=n

jk0abcj3arn:

Notation 3.13. In analogy with Notation 3.1, let E0 denote the space of

formally real-valued and complex-valued power series (H2;H3; e4; e5) in the

variables z1, �L, x2, x3. E and E0 are isomorphic (as real vector spaces)

by the rearrangement. De�ne Er (and E0

r) to be the real vector subspace

of E (E0) where all four components have order at least 3, and �nite j jr
(j j0r) norms, de�ning real-valued functions H2 and H3 and complex-valued

functions e4 and e5 on Dr. The maximum norms are denoted

j~ejr = maxfjH2jr; jH3jr; je4jr; je5jrg; j~ej
0

r = maxfjH2j
0

r; jH3j
0

r; je4j
0

r; je5j
0

rg;

so that (Er; j jr) and (E0

r; j j
0

r) are Banach spaces.

By Lemma 3.10, rearrangement is a continuous, one-to-one map ER ! E0

R=9.

Notation 3.14. Recall P is the complex vector space of quintuples ~p of

formal power series (p1; p2; p3; p4; p5) in the variables z1, . . . , z5. Let �r

denote the polydisc D (r;r;r;9r2 ;3r2) � C
5 . The r = (r; r; r; 9r2 ; 3r2) norm for

power series ps(~z) and the maximum norm for quintuples ~p = (p1; : : : ; p5)
are denoted

jjpsjjr = j�pabcdes za1z
b
2z

c
3z

d
4z

e
5j(r;r;r;9r2;3r2) = �jpabcdes j9d3era+b+c+2d+2e;

jj~pjjr = max
s=1;:::;5

fjjpsjjrg:

This superscript notation for the coeÆcients of ps is di�erent from that used

in Section 2.



FORMAL STABILITY OF THE CR CROSS-CAP 17

This polyradius is chosen so that a power series ps, when restricted tofM4, de�nes a function of z1, �L, x2, x3 with controlled norm:

jps(z1; x2; x3; �L
2; z1 �L)j

0

r = jjps(z1; z2; z3; z4; z5)jjr:

Notation 3.15. De�ne Pr as the subspace of P composed of quintuples

~p = (p1; p2; p3; p4; p5) so that each ps has weight at least 2, and the norm

jj~pjjr is �nite, so that (Pr; jj jjr) is a Banach space, and ~p 2 Pr de�nes a

complex analytic map �r ! C
5 .

3.6. A convergent solution, after the rearrangement. Recall the sub-

manifold M was de�ned as the graph of real analytic functions H and h in

the variables z1, �z1, x2, x3, over a region in C � R
2 , which can be assumed

to contain a polydisc DR. The following Theorem constructs the functions

~p approximating a solution of the normal form problem, and by estimating

the norm of ~p in terms of the norm of ~e, shows that ~p is convergent. How-

ever, ~p is de�ned in terms of the rearranged functions e(z1; �L; x2; x3), so its

polyradius of convergence in C
5 is small compared to R.

Theorem 3.16. If ~e 2 ER, then there is a solution ~p of the equation

dF (~p) = ~e such that ~p 2 PR=9. This ~p is the unique solution satisfying

the normalization conditions.

Proof. Let r = R=9. By Lemma 3.10, the components of ~e can be rearranged
to power series ~e = (H2;H3; e4; e5) 2 E0

r, vanishing to third order in the

rearranged variables, and converging on Dr = DR=9 � C � R
2 . The idea

is to �nd ~p = (p1; p2; p3; p4; p5) by constructing the components pH1 , . . . ,
in terms of ~e. At one point, the Weierstrass Division Theorem is required,

with estimates on quotients and remainders ([GF] xIII.2.). The point of

calculating these estimates is primarily to show that there is no further

shrinking after the initial rearrangement.

The real-valued function H2(z1; �L; x2; x3) can be decomposed into its Q

and non-Q monomials:

H2 =
X
b even

Habcd
2 za1

�Lbxc2x
d
3 +

X
a > 0

b odd

Habcd
2 za1

�Lbxc2x
d
3 +

X
b odd

H0bcd
2

�Lbxc2x
d
3:

Adding and subtracting the conjugate of the non-Q part gives two real-

valued sums:

H2 =
X
b even

Habcd
2 za1

�Lbxc2x
d
3 +

X
a > 0

b odd

Habcd
2 za1

�Lbxc2x
d
3 �

X
b odd

H0bcd
2 Lbxc2x

d
3

+
X
b odd

H0bcd
2 Lbxc2x

d
3 +

X
b odd

H0bcd
2

�Lbxc2x
d
3:
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By Lemma 3.7, j
X
b odd

H0bcd
2

�Lbxc2x
d
3j
0

r � jH2j
0

r � j~ej0r, and by Lemma 3.12,

if
X
b odd

H0bcd
2 Lbxc2x

d
3 is formally expanded as q2 =

P
qbcd2 zb1x

c
2x

d
3, then

jq2(z1; x2; x3)j
0

r � j

X
b odd

H0bcd
2

�Lbxc2x
d
3j
0

r:

De�ne pI2 = p02 + p002 on �r, by

p02(z1; z2; z3) = 2i
X

qbcd2 zb1z
c
2z

d
3 ;

p002 = i(
X
b even

Habcd
2 za1z

b=2
4 zc2z

d
3+z5

X
a > 0

b odd

Habcd
2 za�11 z

(b�1)=2
4 zc2z

d
3�

X
qbcd2 zb1z

c
2z

d
3):

Then, by Lemma 3.7 applied to the Q part of H2, jjp
00

2 jjr � jH2j
0

r+ jq2j
0

r. By

construction, H2 = Im(pI2(z1; x2; x3;
�L2; z1 �L)), and jjp

I
2jjr � 4jH2j

0

r � 4j~ej0r:

pI3 similarly has bounded norm and is convergent on �r. These p
I func-

tions are normalized as in (18). The other functions p1, p4, p5, p
R
a will also,

by construction, be of the form (14� 17).

Equation (13), when using the normalized ~p,

e5 = pE5 (z1; x2; x3;
�L2) + z1 �Lp

O
5 (z1; x2; x3;

�L2)

��L(z21p
H
1 (L

2; x2; x3) + pA1 (x2; x3;
�L2))

�z1(�z
2
1p

H
1 + pA1 + pR2 + ipR3 +Re(pI2) + iRe(pI3));

can be solved next, by comparing coeÆcients of e5(z1; �L; x2; x3) on the LHS:

e5=
X
b=2r

eabcd5 za1
�L2rxc2x

d
3+z1

�L�
X
a > 0

b = 2s+ 1

eabcd5 za�11
�L2sxc2x

d
3+

�L
X

b=2t+1

e0bcd5
�L2txc2x

d
3;

to the RHS, where the only non-Q terms are those of �LpA1 . This decom-

position of e5 determines the coeÆcients of the series for pA1 (z2; z3; z4) =P
p��z�2 z

�
3 z


4 , with p�� = �e0;2+1;�;�

5 . The estimate follows:

3rjjpA1 jjr = 3r
X

jp�� j9r�+�+2 = 3r
X

b=2t+1

j � e0bcd5 j9trb�1+c+d

=
X

je0bcd5 j3brb+c+d � je5j
0

r � j~ej0r

=) jjpA1 jjr �
1

3r
j~ej0r:

An estimate for the conjugate pA1 (x2; x3;
�L2) will also be necessary. Formally

expanding

pA1 =
X

p��L2x�2x
�
3 =

X
qabc1 za1x

b
2x

c
3
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gives, by Lemma 3.12, jq1j
0

r � jpA1 (x2; x3;
�L2)j0r �

1
3r
j~ej0r.

Equation (12), again using the normalization, and expanding z21p
H
1 as

(�L� (x2 + ix3))
2pH1 , becomes

e4 = pE4 (z1; x2; x3;
�L2) + z1 �Lp

O
4 (z1; x2; x3;

�L2)

�2�L((�L2 + (x2 + ix3)
2)pH1 (L

2; x2; x3) + pR2 (x2; x3) + ipR3 (x2; x3))

+4�L2(x2 + ix3)p
H
1 (L

2; x2; x3)� 2�LpA1 (x2; x3;
�L2)

�2�L(Re(pI2(z1; x2; x3;
�L2; z1 �L)) + iRe(pI3(z1; x2; x3;

�L2; z1 �L))):

This is handled by adding the known quantity 2�L(pA1 + Re(pI2) + iRe(pI3))
to both sides, and collecting the resulting LHS intoX
b=2r

kabcdza1
�L2rxc2x

d
3+z1

�L�
X
a � 1

b = 2s+ 1

kabcdza�11
�L2sxc2x

d
3+

�L
X

b=2t+1

k0bcd �L2txc2x
d
3:

Expressing LHS in terms of z1, �L, x2, x3 means rearranging p
A
1 (x2; x3;

�L2)

as a function of z1, x2, x3, so that the previous estimate applies. Then pI2
(and similarly pI3) can be expressed in terms of p02, whose norm was already

bounded, and p002, which is imaginary and does not contribute to Re(pI2):

e4+2�L(p
A
1 +Re(p

I
2)+iRe(p

I
3)) = e4+2�L(pA1 +

1

2
(p02�2i

X
b odd

H0bcd
2

�Lbxc2x
d
3)

+
i

2
(p03 � 2i

X
b odd

H0bcd
3

�Lbxc2x
d
3))

je4 + 2�L(�pA1 +Re(pI2) + iRe(pI3))j
0

r � je4j
0

r + 2 � 3r(
1

3r
j~ej0r + 4j~ej0r)

� (3 + 24r)j~ej0r:

Considering
X

b=2t+1

k0bcd �L2txc2x
d
3 as a function of variables �L2, x2, and x3,

by the Weierstrass Division Theorem there exist unique analytic functions

q(�L2; x2; x3) and r(x2; x3) such thatX
b=2t+1

k0bcd �L2txc2x
d
3 = (�L2 + (x2 + ix3)

2)q(�L2; x2; x3) + r(x2; x3);

with q =
P

q
rst �L2rxs2x

t
3 and r =

P
r
stxs2x

t
3. Let

pH1 (z1; z2; z3) = �
1

2

X
qrst(z1 + z2 � iz3)

2rzs2z
t
3;

and then the coeÆcients of pR2 and pR3 are the real and imaginary parts of the

coeÆcients of �1
2
r(x2; x3). This is exactly where the second non-degeneracy
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condition is used; without both the x2�z1 and ix3�z1 terms in h4, not all the
higher-order terms could be eliminated.

The estimates from the Division Theorem are

j(x2 + ix3)
2
j
0

r = 4r2 <
1

2
j�L2
j
0

r =
1

2
� 9r2;

j�L
X

b=2t+1

k0bcd �L2txc2x
d
3j
0

r � (3 + 24r)j~ej0r;

jq(�L; x2; x3)j
0

r �
1

9r2
j

X
b=2t+1

k0bcd �L2txc2x
d
3j
0

r �
1

1� 1
2

�
2

9r2
3 + 24r

3r
j~ej0r;

jr(x2; x3)j
0

r � 2
3 + 24r

3r
j~ej0r:

The remaining functions pE4 , p
O
4 can be estimated by solving (12):

jjp4jjr = jpE4 (z1; x2; x3;
�L2) + z1 �Lp

O
4 (z1; x2; x3;

�L2)j0r

= je4 + 2�L(pA1 +Re(pI2) + iRe(pI3))

+2�L((�L2 + (x2 + ix3)
2)pH1 + pR2 + ipR3 )� 4�L2(x2 + ix3)p

H
1 j

0

r

� ((3 + 24r) + (3 + 24r) + 4 � 9r2 � 2r �
1

9r2
�
3 + 24r

3r
)j~ej0r

= (14 + 112r)j~ej0r:

The estimates for the other components of ~p follow from Lemma 3.12 and

the Banach algebra properties:

jjpH1 (z1; z2; z3)jjr �
1

9r2
3 + 24r

3r
j~ej0r =

1 + 8r

9r3
j~ej0r;

jjp1jjr = jjz21p
H
1 + pA1 jjr �

1 + 8r

9r
j~ej0r +

1

3r
j~ej0r = (

8

9
+

4

9r
)j~ej0r;

jjp2jjr = jjpI2 + pR2 jjr � (12 +
1

r
)j~ej0r;

jjp3jjr = jjpI3 + pR3 jjr � (12 +
1

r
)j~ej0r:

Returning to Equation (13) to control p5,

jjp5jjr = jpE5 (z1; x2; x3;
�L2) + z1 �Lp

O
5 (z1; x2; x3;

�L2)j0r

= je5+�Lp1�2z1 �L(x2+ix3)p
H
1

+z1(p
A
1 +Re(pI2)+iRe(p

I
3)+(

�L2+(x2+ix3)
2)pH1 +pR2 +ip

R
3 )j

0

r

� (1 + 3r(
8

9
+

4

9r
) + 12r3(

1 + 8r

9r3
) + r(

1

3r
+ 4) +

r

3r
(3 + 24r))j~ej0r

= (5 +
76

3
r)j~ej0r:
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Similar calculations, which appear in [C], solve the analogous linear prob-

lem for the m < n normal form.

3.7. The new de�ning equations. If the solution ~p to the linear prob-

lem, obtained in Theorem 3.16, is substituted into the nonlinear expressions

(4 � 7), the resulting quadruple of formal series F (~e; ~p) has its �rst two

components with order at least 2d � 3, and the last two components with

order at least 2d � 2. If ~p converges on a small polydisc �r, then F (~e; ~p)
must be considered on even smaller polydisc, D�, � < r, so that the compo-
sition of ~p and x2 + iH2, etc., in Equations (4� 7) is well-de�ned. Further,

F (~e; ~p) involves z1, �z1, L and �L, and even if these are rearranged to series

in E or E0, the new de�ning equations are ready for another approximate

coordinate change only after conversion to the ~z1, ~x2, ~x3 coordinates using
the inverse transformation (2). Since there was also some exibility in the

normalization of the solution ~p, the existence of a convergent solution of

F (~e; ~p) = 0E remains an open question.

4. An explicit example of the solution

As a demonstration of the small radius of the the normalized solution of the

linearized Equations (10� 13), consider the following real algebraic variety

in C
5 , with R > 0 and odd degree d � 5:

M = f~z : y2 = y3 = 0; z4 = �L2 +
�Ld

R� �z1
; z5 = z1 �L+

�Lxd�12

R� x2
g:

Clearly, for any � < R the variety is a graph over D�, with e4 and e5
expressible as power series in A�. The linearized functional equation for a

coordinate change ~z + ~p(~z) taking this variety to the normal form varietyfM4 becomes:

0 = Im(p2(z1; x2; x3; �L
2; z1 �L)) = Im(p3(z1; x2; x3; �L

2; z1 �L));

�Ld

R� �z1
= p4(z1; x2; x3; �L

2; z1 �L)� 2�Lp1(z1; x2; x3; �L2; z1 �L)

�2�L(Re(p2(z1; x2; x3; �L
2; z1 �L)) + iRe(p3(z1; x2; x3; �L

2; z1 �L)));

�Lxd�12

R� x2
= p5(z1; x2; x3; �L

2; z1 �L)

��Lp1(z1; x2; x3; �L
2; z1 �L)� z1p1(z1; x2; x3; �L2; z1 �L)

�z1(Re(p2(z1; x2; x3; �L
2; z1 �L)) + iRe(p3(z1; x2; x3; �L

2; z1 �L))):
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In terms of the expressions (14� 18), the normalized solution is:

pA1 =
�zd�12

R� z2

pH1 =
�(R+ z2 � iz3)L

2

2((R + z2 � iz3)2 � L2)
�

0
@(d�5)=2X

k=0

(�1)kLd�5�2k(z2 � iz3)
2k

1
A

�
(�1)(d�3)=2(R+ z2 � iz3)

3(z2 � iz3)
d�3

2((R+ z2 � iz3)2 � L2)((R + z2 � iz3)2 + (z2 � iz3)2)

pR2 =
xd�12

R� x2
�
1

2
Re(

(�1)(d�1)=2(x2 + ix3)
d�1(R + x2 + ix3)

(R+ x2 + ix3)2 + (x2 + ix3)2
)

pR3 = �
1

2
Im(

(�1)(d�1)=2(x2 + ix3)
d�1(R+ x2 + ix3)

(R + x2 + ix3)2 + (x2 + ix3)2
)

pE4 =
2(z2 + iz3)(R + z2 + iz3)z

2
4

(R+ z2 + iz3)2 � z4
�

0
@(d�5)=2X

k=0

(�1)kz
(d�5)=2�k
4 (z2 + iz3)

2k

1
A

+
(�1)(d�3)=22(R + z2 + iz3)

3(z2 + iz3)
d�2z4

((R + z2 + iz3)2 � z4)((R + z2 + iz3)2 + (z2 + iz3)2)

+
z
(d+1)=2
4

(R+ z2 + iz3)2 � z4

pE5 =
�z1(R+ z2 + iz3)z

(d�1)=2
4

2((R + z2 + iz3)2 � z4)

pO5 =
(z2 + iz3)(R+ z2 + iz3)z4

(R + z2 + iz3)2 � z4
�

0
@(d�5)=2X

k=0

(�1)kz
(d�5)=2�k
4 (z2 + iz3)

2k

1
A

+
(�1)(d�3)=2(R+ z2 + iz3)

3(z2 + iz3)
d�2

((R + z2 + iz3)2 � z4)((R + z2 + iz3)2 + (z2 + iz3)2)
+ z1 � p

H
1 :

The quantities pI2, p
I
3, and pO4 are identically zero. All the p components

should be functions of the z variables; in pR2 and pR3 , the xa variables should
be replaced by za, after calculating the real and imaginary parts. Also, the

\L" appearing in pH1 should be considered as L = z1+z2�iz3. The functions
are evidently holomorphic in a region around the origin of C 5 , outside the

union of complex hypersurfaces where the denominators vanish. The linear

factors in the denominator of pH1 arising from the rearrangement are:

(R + z2 � iz3)
2
� L2 = (R� z1)(R+ z1 + 2(z2 � iz3)):
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The factors in the denominators occurring from applying the Weierstrass

Theorem to �nd q, r, and their conjugates, are:

(R+z2+iz3)
2+(z2+iz3)

2 = (R+(1+i)z2�(1�i)z3)(R+(1�i)z2+(1+i)z3);

(R+z2�iz3)
2+(z2�iz3)

2 = (R+(1�i)z2�(1+i)z3)(R+(1+i)z2+(1�i)z3):

(The zero locus of the last two linear factors is the same pair of hyperplanes

as de�ned by the �rst two.) Finally, the (R + z2 + iz3)
2
� z4 appearing in

the denominators of p4 and p5 is irreducible, and if z2 and z3 are bounded
on the order of magnitude of R, then z4 must be bounded by some fraction

of R2. By inspection, all �ve components of ~p are convergent on �R=9 =

D (R=9;R=9;R=9;R2 =9;R2=27), as predicted by the estimates, and also on any other

polydisc D r not intersecting these complex hypersurfaces.

5. Analogy with singularity theory

If the equations given as a graph over the tangent space are considered as a

real analytic map R
m
! R

2n , they can be complexi�ed by replacing each �zs
by an independent holomorphic variable ws. The graphing equations then

become a holomorphic parametrization of a complex submanifold: C
m
!

C
2n . If the real manifold has complex tangents, then the composition of the

embedding with the projection C
2n
! C

n which forgets the new w variables

is a singular map C
m
! C

n (cf [W84]). (To be more precise, these graphing

equations and parametrizations should be considered as germs of mappings.)

Example 5.1. In the m = n = 2 case, Bishop ([Bishop]) normalized the

de�ning equation to z2 = �(z21 + �z21) + z1�z1 + O(3) with � � 0, where

the parameter � is a holomorphic invariant, and describes the geometry of a

complex tangent. The complexi�cation and then projection of the quadratic

terms is a map (z; w) 7! (z; �(z2 + w2) + zw). For � > 0, this is a rami�ed

two-to-one map ([W84]), and is analogous to Whitney's \fold" singularity

(z; w) 7! (z; w2).

Example 5.2. The � = 0 case, where a cubic normal form is z2 = z1�z1+�z31
([M]), is similarly analogous to Whitney's \cusp", (x; y) 7! (x; xy + y3).

Example 5.3. For the normal form variety fM4 in C
5 , a parametrization

C
4
! C

10
! C

5 of the complexi�cation H is

(z1; w1; z2; z3) 7! (z1; z2; z3; (w1 + z2 + iz3)
2; z1(w1 + z2 + iz3)):

A normal form more likeWhitney's would be possible using a larger group,

where the z and w variables could be transformed independently. Under the

subgroup used to normalize the CR singularity, one expects equivalence

classes of maps to be smaller, and continuous parameters (\moduli") to

appear \sooner" (for more and for lower-order terms). However, invariants

which distinguish maps under the larger group will still distinguish them
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under the smaller group. Invariants of the complexi�cation, such as the

intrinsic derivative, the Boardman sequence, Jacobian extensions, etc., could

provide a coarse but general beginning to a classi�cation of CR singularities

([GG], [Porteous]).

Under the even smaller subgroup of transformations which preserve a

given orientation of the tangent space at an isolated CR singularity, the +

or � sign appearing in the quadratic normal form (Subsection 2.2) indi-

cates a chirality near the complex tangent that is reversed by a change of

orientation, and which corresponds to a notion of a topological intersection

number, an \index" �1. From a global viewpoint, isolated complex tan-

gents of generic immersions of compact manifolds in C
n can be enumerated

by characteristic class formulas which relate the sum of indices to topolog-

ical invariants. For example, when C P 2 is smoothly embedded in C
5 , the

expected sum of the indices of the complex tangents is p1CP
2 = 3. This

is reminiscent of the appearance of cross-caps in maps from RP 2 to R
3 ,

except that the real cross-caps can be eliminated in pairs to give a smooth

immersion, and the CR cross-caps cannot be eliminated to give a totally

real immersion. (For illustrations and explicit parametrizations of surfaces

with real cross-cap singularities, see [Ap�ery], [CSS].) More generally, enu-

merative formulas hold for a real subbundle T of a complex vector bundle

(F; J) over a real manifold M ([Wells], [L], [HL93], [HL95], [D1], [D2]). If

the locus of complex tangents Nj = fx 2M : dimC Tx \ JxTx = jg forms a

codimension 2j(n�m+j) real submanifold, Nj+1 = �, and Hj
x = Tx\JxTx

forms a bundle over Nj , then characteristic numbers of H
j
! Nj are related

to the pontrjagin classes of T and the chern classes of (F; J). Formulas of

[W85], [W86] were shown in [C] to be special cases of degeneracy loci for-

mulas of [Pragacz].

Formulas are also known which describe obstructions to the absence of

complex tangent points with j > 1. There may also be topological obstruc-

tions for the non-degeneracy conditions (Subsection 2.2), so that degenerate

points occur as a subset of the locus of complex tangents N1 � M , gener-

ically of lower dimension. The assumptions on the rank, made in arriving

at the normal form, represent the most common and most important case;

both non-degeneracy conditions were used in the formal stability Theorem,

but there may be similar stability results in some degenerate cases.

Another phenomenon related to complex tangents generalizes the \coin-

cidence of complex structures" of [HL95]. A smooth map f : M1 ! M2

between complex manifolds (M1; J1), (M2; J2), may respect the complex

structures, that is, df(J1(vx)) = J2(df(vx)), for some tangent vectors vx at

some points x 2M1. The generic behavior of this construction, which more

generally applies to real linear maps between complex vector bundles, can be

described by enumerative formulas in chern classes; see [EW], [HL95], [C].

The graph of a smooth map f insideM1�M2 (or the graph of a bundle map
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inside the direct sum) has complex tangents exactly at points of coincidence

of the complex structures. For example, the di�erential of a smooth map

from a complex surface to a complex 3-manifold generically will commute

with the complex structure only at isolated points x, and only for a complex
line of vectors in Tx. The graph is a real 4-manifold with isolated complex

tangents inside a product space of �ve complex dimensions, and again the

cross-cap singularity of real surfaces in 3-space comes to mind.
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