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1 Introduction

As an example of a phenomenon to which geometric residue theorems can be
applied, Harvey and Lawson ([HL1], [HL2]) considered singular di�erential forms
comparing two almost complex structures on a real vector bundle. The set of
vectors in a �ber having the same image under either complex structure operator
forms a complex vector subspace; points where this subspace jumps in dimension
form the \coincidence locus" of the complex structures.

The formulas describing the cohomology class of the coincidence current are
naturally generalized in two ways. First, instead of two structures on one real
bundle, the structure on one vector bundle is compared with the structure on
another in which the �rst is mapped injectively. Geometrically, this corresponds
to comparing the almost complex structure of a manifold with that on complex
tangents inherited from an immersion in an ambient manifold. Second, if the
vectors over a coincidence locus form a bundle over a smooth, closed base space,
then its chern numbers are given by a universal polynomial formula. Then
the relationship between the complex coincidence locus of a map and the CR-
singular set of its graph is described, with real-analytic examples. The last
sections apply the theory to anticommuting complex structures, and to the
coincidence of several complex structures.

This paper represents unpublished lecture notes based on research conducted
at the University of Chicago, and presented in a talk in the Geometric Topology
seminar, February 1996. Some of these results are included in the author's 1997
dissertation ([C]), supervised by S. Webster.

2 The Linear Algebra of Coincidence

Consider two complex vector spaces, as real vector spaces together with complex
structure operators, V r = (V 2r

R
; JV ), Fn = (F 2n

R
; JF ), and an injective R-linear

map � : VR! FR. � is said to be C -linear with respect to JV and JF if

�JV ~v = JF�~v (1)

holds for all vectors ~v 2 VR. Since not all R-linear maps are C -linear, an
immediate query about � might regard the nature of the set of vectors satisfying

1



equation (1). Those vectors such that �JV ~v = JF�~v form a real vector space
K � VR, and K is a complex vector space with respect to JV :

~v 2 K ) �JV (JV ~v) = ��~v = JF (JF�~v) = JF�(JV ~v)) JV ~v 2 K:

The image �K is a complex subspace of F :

�~v 2 �K ) JF (�~v) = �JV ~v 2 �K:

The subspaceK can have complex dimension j, 0 � j � r. The map � restricted
to K is a C -linear isomorphism with respect to JV jK and JF j�K .

Example 2.1 If � is the identity map (VR = FR) and the complex structures
JV and JF agree, then K, V , and F are C -linearly isomorphic.

Example 2.2 If (VR; J
V ) = (FR;�JF ), thenK = f~0g. This is the \complex

conjugate," V = �F , and the complex structures JF and �JF map every ~v to
di�erent images.

The vector space K can also be interpreted in terms of the kernel of a C -
linear map of complexi�cations, V 
 C = VR
R C , and F 
 C = FR
R C . The
map � : VR ,! FR complexi�es as �C : V 
 C ,! F 
 C , and the vector spaces
break into eigenspaces as follows:

V 1;0 = f~v 2 V 
 C : JVC ~v = i~vg
V 0;1 = f~v 2 V 
 C : JV

C
~v = �i~vg

F 1;0 = f~v 2 F 
 C : JFC ~v = i~vg
F 0;1 = f~v 2 F 
 C : JF

C
~v = �i~vg

De�ne � to be the inclusion of V 0;1 in V 
 C and note that ' = 1
2
� i

2
JF
C
is the

projection of F 
 C onto F 1;0.
Consider the composite map '�C � : V

0;1 ! F 1;0. It is C -linear with respect
to i on V 0;1 and JF

C
= i on F 1;0. � = 1

2
+ i

2
JV
C
is the identity on V 0;1, and the

composition can then be expressed as

'�C � = (
1

2
� i

2
JF
C
)�C (

1

2
+

i

2
JV
C
) =

1

4
(�C + i�CJ

V

C
� iJF

C
�C + JF

C
�C J

V

C
): (2)

The kernel of this map is the preimage by �C of the intersection of �C V
0;1 with

F 0;1, the kernel of '. If �C~v is in this intersection, then

JFC �C~v = �i�C~v = �C (�i)~v = �C J
V

C ~v:

Conversely, if JF
C
�C~v = �C J

V

C
~v, then evaluating composition (2) shows that ~v is

in the kernel. The subspace K also complexi�es as K1;0�K0;1. These remarks
show that K0;1 = f~v 2 V 0;1jJF

C
�C �~v = �C J

V

C
�~vg is the kernel of '�C �, and

that it is isomorphic to the conjugate �K of the coincidence subspace K.
Remark: The map � need not be injective for this linear algebra to work|

the domain V may have any dimension and � may be singular. Vectors ~v in
the intersection of the subspaces K and ker � have the property �(JV ~v) =
JF�(~v) = ~0. However, to simplify the geometric constructions that follow, only

injective � will be considered.
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3 Grassmannian Constructions

As a universal version of the linear construction, consider the set of all complex
r-subspaces of the complex vector space F 
 C (subspaces are with respect
to multiplication by i as the structure operator). Let V be the tautological
complex r-bundle over this grassmannian CG(r; F 
 C ). Then V is a subbundle
of the trivial complex 2n-bundle F 
 C , and ' is a projection on the trivial
n-bundle F 1;0. Those planes V 2 CG(r; F 
 C ) that intersect F 0;1 in at least j
complex dimensions form a subvariety, a degeneracy locus Dj , where the bundle
map 'jV has a kernel of complex dimension � j. These varieties are singular
except for D0 and Dr

�= CG(r; F 0;1 ). As a partial desingularization of Dj ,
form the complex grassmannian bundle �j : CG(j; V ) ! CG(r; F 
 C ). If U j

is the tautological bundle of j-planes in V (candidates for the kernel of '),
then the inclusion of U j in V , followed by the map ' : V ! F 0;1, de�nes a
section sj of Hom(U j ; ��

j
F 1;0). The zero locus of this section, corresponding

to a drop by j in the rank of ', has real codimension 2jn in the total space
CG(j; V ), and projects to the degeneracy locus Dj , which has real codimension
2jn� 2j(r � j) = 2j(n� r + j) in CG(r; F 
 C ).

This can be generalized to allow F to be a complex vector bundle over a
smooth base space X ; then CG(r; F 
 C ) is a grassmann bundle over X . A
real m-bundle Tm

R
! X , with m = 2r, and complex structure JT , and an

injective map � : TR ! FR determine a \conjugate Gauss map," 
T;� : X !
CG(r; F 
 C ), by 
T;�(x) = (�x)C T

0;1
x

� Fx 
 C .

Hom(U j ; ��
j
F 1;0)

��

V

��

F

��
CG(j; V )

sj

OO

�j // CG(r; F 
 C )
� //

X

T;�

oo

De�nition/Lemma 3.1 The \rank j coincidence locus" Qj of the triple
(F; T; �) is the set �(
T;�(X) \Dj) � X . (F; T; �) is \generic" if 
T;�(X) and
Cj := Dj nDj+1 intersect transversely for all 0 � j � r. In this case, Qj nQj+1 is
a smooth (possibly empty) submanifold of X , of real codimension 2j(n� r+ j).

Lemma 3.2 If Nj is the locus of \CR singularities" of the image �TR in
F , where �Tx \ JFx �Tx has complex dimension � j, then Qj � Nj .

Proof: Nj is de�ned independently of any complex structure on T . �Tx\
JF�Tx is the largest complex subspace of Fx contained in �Tx. For Tx to
contain a j-subspace where the coincidence relation is satis�ed, �Tx must at
least contain a j-subspace of Fx.

Over the set Qj n Qj+1, the set of coincidence subspaces Kj

x
, where �x is

C -linear, forms a bundle. In terms of the grassmannian construction, Kj is the
conjugate of a pullback of U j .

Example 3.3 If T = F (abbreviating � is the identity, JT = JF ), then

T;id(X) � Dr. Unless r = 0, this is not a generic situation.

Example 3.4 T and F can be isomorphic (by �, possibly the identity)
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as real bundles and have di�erent complex structures so that (T; JT ) de�nes a
Gauss map 
T;� transverse to the submanifolds Cj . The real codimension of Qj

in X is 2j2.
Example 3.5 If T is the conjugate bundle of F , then, since no complex

lines in T are complex in F , 
T;id(X) \ D1 = �, and the triple (F; T; id) is
generic.

Example 3.6 A \real structure" on the complex bundle F = (FR; J) is a
R-linear map C : F ! �F that is C -linear, i.e., CJ = �JC, and such that �CC is
the identity on F , where �C : �F ! F is the same real-linear map, but considered
as C -linear with respect to �J and J . In particular, C is a C -isomorphism of
F and �F , so it is not generic with respect to coincidence. However, the triple
(F; F; C) is generic, with Q1 = �. A bundle F with a real structure must have
odd chern classes all zero; this will also follow from the topological results of the
next section. In [Wakakuwa], (FR; J; C) is called an \almost complex-product
structure of the �rst kind," where C is an \almost product" structure. For
t 2 R, the operator Jt =

p
1 + t2J + tC is a complex structure on FR, agreeing

with J at t = 0, but coinciding on no vector with either J or �J for t 6= 0.
Similarly, J 0

t
= �J�t = �

p
1 + t2J + tC agrees with �J at t = 0, but coincides

on no vector with either J or �J for t 6= 0.
As a geometric application, let T be the tangent bundle TX of a smooth m-

manifold X , m = 2r, with complex structure JT . If f : X ! A is an immersion
into another almost complex 2n-manifold, then the tangent bundle (TA; JA)
pulls back to (F; JF ) = (f�TA; f�JA) over X . The map of T into F is the
di�erential map � = f�df .

Example 3.7 [Audin-Lafontaine] f is a \(JT ; JA)-holomorphic," or \pseu-
doholomorphic" immersion if df Æ JT = JA Æ df . Unless X is zero-dimensional,
(F; T; f�df) is not generic with respect to coincidence; 
T;f�df (X) � Dr.

Example 3.8 The codimension of the locus Q1 for a generic df is 2(n �
r + 1) = 2n�m+ 2. If m � n, then Q1 = �.

Example 3.9 ([Eells-Lemaire]) If f is a harmonic map from a Riemann
surface X to a K�ahler manifold, then it is either holomorphic (Q1 = X) or Q1

is discrete (codimension � 2).

4 Thom-Porteous Formulas and Examples

Theorem 4.1 IfX is a compact, oriented, smooth manifold with real dimension
2j(n� r + j), and (F; T; �) is generic, then

X
x2Qj

ind(x) =

Z
X

�
(j)

n�r+j(c(F � �T ));

where ind(x) is the oriented intersection number of 
T;�(X) and Cj at 
T;�(x).

Proof: The symbol �
(a)

b
, applied to a graded sum c0 + c1 + c2 + : : :,

stands for the determinant of the a � a matrix with p; q entry cb�p+q . In this
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case, the entries are the graded components of the (formal) quotient c(F � �T ) =
(cF )=(c �T ).

Pushing forward the current Zero(sj) and the chern form of the bundle
Hom(U j ; ��

j
F ) gives an equation of cohomology classes on CG(r; F 
 C ):

�j�[Div(sj)] = �
(j)

n�r+j(c(F
1;0 � V )):

Such formulas are due to Giambelli, Thom, and [Porteous1], and are considered,
together with useful determinantal identities, in [Fulton] and [HL2].

By the lemma on transversality of generic maps, 
T;�(X) and Cj meet
transversely at isolated points. The pushforward current �j�[Zero(sj)], when
restricted to CG(r; F 
 C ) nDj+1 , is equal to the restriction of the current [Dj ],
since the projection �j is a local di�eomorphism of Zero(sj) over the set Cj .

The chern class formula pulls back by 
T;� to X by functoriality.
The quotient c(F � �T ) = cF=c �T of total chern classes is calculated using the

given complex structures: cF = c(FR; J
F ), and c �T = c(TR;�JT ). A real vector

bundle may admit �nitely or in�nitely many complex structures with di�erent
chern classes, as examples of [Thomas], [Hiller], and [Nash] show. However,
there are some relations restricting which chern classes can occur. A given
complex structure induces an orientation on the real vector bundle; then the
top chern class crT is equal to the euler class �T of the oriented bundle. The
opposite complex structure �JT induces the same orientation as JT if r is even,
and reverses the orientation if r is odd. The pontrjagin class of the real bundle
does not depend on its orientation. The following familiar relations hold, if
cT = 1 + c1 + c2 + : : :+ cr and p(TR) = 1 + p1 + : : :+ pr.

c �T = 1� c1 + c2 � c3 + : : :� cr

cT c �T = 1� p1 + p2 � : : :� pr (3)

= 1 + (2c2 � c21) + (2c4 � 2c1c3 + c22) + : : :

The �rst few terms of the quotient cF=c �T are

cF

c �T
= 1 + (c1F + c1T )

+(c21T � c2T + c1Fc1T + c2F )

+(c31T � 2c1Tc2T + c3T + c1Fc
2
1T � c1Fc2T + c2Fc1T + c3F )

+(c41T � 3c21T + c22T + 2c1Tc3T � c4T + c1Fc
3
1T � 2c1Fc1Tc2T

+c1Fc3T + c2Fc
2
1T � c2Fc2T + c3Fc1T + c4F ) + : : :

Example 4.2 ([HL2]) If TR and FR are equal as real (unoriented) bundles,
with relatively generic complex structures, the coincidence currents satisfy the
cohomological relation

[Qj ] = �
(j)
j
(c(F � �T )):

T and F have symmetric roles in this scenario, and the equality �
(j)
j
(c(F� �T )) =

�
(j)
j
(c(T � �F )) also follows from a determinantal identity. In this example,
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di�eomorphisms f : X ! X of an almost complex manifold (X; JX) induce a
complex structure f�JX ; some of the di�eomorphisms are such that the triple
((TX; JX); (TX; f�JX); f�df) is generic. (This example was correctly analyzed,
but stated with incorrect conclusion in [HL2].)

Example 4.3 The case where JT = �JF is generic and the numerator and
denominator are equal in the quotient cF=c �T = 1 + 0 + : : :+ 0. For j > 0, the

locus Qj = �, and �
(j)
j
(c(F � �T )) = 0 in the cohomology ring.

Example 4.4 Suppose f : X ! A is a pseudoholomorphic immersion; then
X admits a complex normal bundle � such that TX � � = F = f�TA. The
triple (F; TX; df) is generic and Qj = � for j > 0. Computing the coincidence
cohomology class,

�
(j)
n�r+j(c(F � TX)) = �

(j)
n�r+j(c(�)):

Since � has complex rank n�r, �(j)

n�r+j(c(�)) is a determinant of a matrix with
zeroes on and above the diagonal. So, these formulas are not a new obstruction
for pseudoholomorphic immersions.

Example 4.5 ([HL1]) If J1 and J2 are two relatively generic complex
structures on a vector bundle over the compact 2-manifold X , then Q1 is a
�nite set, and the theorem gives the countX

x2Q1

ind(x) =

Z
X

c1(J
1) + c1(J

2):

Let X = (C =(Z � iZ); i =

�
0 �1
1 0

�
); then f(x; y) = (x + y; y) is an

orientation-preserving di�eomorphism of the torus, and c1TX = 0. The dif-

ferential in the x; y coordinates is df =

�
1 1
0 1

�
: At no point on X does the

equality i Æ df = df Æ i hold.
Example 4.6 If F = (TX; J1) and T = (TX; J2) are two relatively generic

complex structures on the compact 8-manifold X , then Q2 is a �nite set, and
the theorem gives the formula (again, symmetric in F and T ):X
x2Q2

ind(x) =

Z
X

�
(2)
2 (c(F � �T ))

=

Z
X

c22T � c3Tc1F + c2Tc
2
1F � c1Tc3T + c1Tc2Tc1F

+c22F � c3Fc1T + c2Fc
2
1T � c1Fc3F + c1Fc2Fc1T � 2c2Tc2F:

Theorem 4.7 If X is compact, (F; T; �) is generic and Qj+1 = �, then Qj

is a submanifold of real codimension 2j(n� r+ j) in X . The chern numbers of
the bundle Kj ! Qj can be computed by applying the kernel bundle formula
of [Pragacz] to the conjugate bundle K0;1: If

Q
ci(K

0;1)�i =
P

mJsJ(K
0;1),

where mJ 2 Z and
P

i�i =
1
2
dimR(Qj) = d, thenY

i

ci(K
0;1)�i [Qj ] = (�1)d

X
J

mJsjn�r+j ;~J(F � �T ):
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~J denotes the conjugate multiindex (i1; i2; : : :), ia = cardfh : jh � ag. The
subscript jn�r+j ; ~J denotes the concatenation of n�r+j j's and the multiindex
~J. The symbol s(i1;:::;ik) is the determinant of a k � k matrix with p, q entry
sip�p+q . In this case, 1 + s1 + : : : denotes the segre class.

The determinants in this formula could immediately be rewritten in terms
of chern classes using the determinantal identity sI(E � F ) = c~I(E � F ). The
segre class is often more natural in enumerative constructions ([Fulton]); in this
case, the �rst few terms of s(F � �T ) are:

s = 1 + s1 + s2 + s3 + : : :

= 1 + c1F + c1T

+c21F + c1Fc1T + c2T � c2F

+c31F + c21Fc1T + c1Fc2T � 2c1Fc2F � c1Tc2F + c3T + c3F + : : :

Example 4.8 Suppose the same real four-plane bundle F 4
R
over the compact

4-manifold X has two complex structures, F 2 = (FR; J
F ) and T 2 = (FR; J

T ).
If the triple (F; T; id) is generic, the coincidence locus Q1 is a real surface in
X , and its cohomology class [Q1] is equal to the class c1F + c1T by Theorem
4.1. The complex line bundle K1 over Q1 of vectors where JF = JT has the
following chern number:Z

Q1

c1K = �
Z
Q1

c1K
0;1

=

Z
X

s1;1(F � �T ) =

Z
X

���� s1 s2
1 s1

����
=

Z
X

c2(F � �T )

=

Z
X

c21T � c2T + c1Fc1T + c2F

For example, if F = �T , then Q1 = � and the cohomology classes c1F + c1T and
c21T � c2T + c1Fc1T + c2F are both zero. So far, this formula does not appear
to be symmetric in F and T , however, using relation (3) gives:Z

Q1

c1K =

Z
X

p1FR+ c2T + c1Fc1T + c2F: (4)

Example 4.9 Suppose the sphere S6 admits a relatively generic pair of
complex structures, T = (TS6; JT ) and F = (TS6; JF ). The chern classes are
of the form cT = 1+c3T and cF = 1+c3F , where c3T and c3F are equal to the
euler class, up to a sign depending on the orientation induced by JT and JF .
Q1 is a real 4-submanifold of S6, with

R
Q1

c21K =
R
X
c3T + c3F . This number is

�4 if T and F have the same orientation, and 0 if they are oppositely oriented.
Example 4.10 Consider an immersion f : X16 ! A18, where X and A

are almost complex manifolds (r = 8; n = 9). If f is generic with respect to
complex tangency, then H = TX \ (f�JATX) has j0 = 7 complex dimensions,
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except at isolated points where TX is a complex subspace of k = 8 dimensions in
F = f�TA. If f is generic with respect to complex coincidence, then the smooth
locus of Q1 is codimension 4 in X , and Q2 is a 4-dimensional (codimension 12)
submanifold of X . For X compact, the bundle K2 over Q2 has the same chern
numbers as K0;1:

Z
Q2

c2K
2 =

Z
X

��������
s2 s3 s4 s5
s1 s2 s3 s4
1 s1 s2 s3
0 1 s1 s2

��������
;

Z
Q2

c21K
2 =

Z
X

��������
s2 s3 s4 s5
s1 s2 s3 s4
1 s1 s2 s3
0 1 s1 s2

��������
+

����������

s2 s3 s4 s5 s6
s1 s2 s3 s4 s5
1 s1 s2 s3 s4
0 0 1 s1 s2
0 0 0 1 s1

����������
:

Example 4.11 Tsanov and [Pontecorvo] consider a pair of complex struc-
tures on a twistor space Z constructed as follows: Let M = (M4; g) be a
compact oriented riemannian manifold. The twistor space Z is the total space
of the �ber bundle t : SO(TM; g)=U(2) ! M , where local sections correspond
to almost complex structures. The tangent space TzZ is split by the metric
into a vertical part TzCP

1 and a horizontal part Tt(z)M| the horizontal part
is given the complex structure operator de�ned by the point z. The direct sum
of the two complex structure operators de�nes the tautological twistor almost
complex structure, (Z; J) which is integrable if and only if g is anti-self-dual. If
M is also a complex surface, a di�erent description of Z as the projectivization
of a holomorphic bundle gives a di�erent almost complex structure (Z; I), which
is integrable without requiring g to be anti-self-dual. The two almost complex
structures I and J may have di�erent chern classes. The cohomology ring of Z
is a module over H�(M ;R), generated by the cohomology class h over the �ber
and subject to the relation 4h2 = c21, where t

�c(TM) = 1 + c1 + c2.

c(TZ; I) = (1 + 2h)(1 + c1 + c2) = 1 + 2h+ c1 + c2 + 2hc1 + 2hc2

c(TZ; J) = (1 + 2h)(1 + 2h+ c2) = 1 + 4h+ c2 + c21 + 2hc2

The invariance relation (3) holds, and c3(I) = c3(J), but the other chern num-
bers may disagree:Z

Z

c31(I) =

Z
Z

8h3 + 6hc21 =

Z
M

8c21Z
Z

c1c2(I) =

Z
Z

2hc2 + 2hc21 =

Z
M

2(c2 + c21)Z
Z

c31(J) =

Z
Z

64h3 =

Z
M

16c21Z
Z

c1c2(J) =

Z
Z

4h(c2 + c21) =

Z
M

4(c2 + c21)
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So, if I and J have the same chern classes, the chern numbers c21 and c2 of TM
must be zero. [Pontecorvo] uses this to conclude that if g is anti-self-dual, then
I and J cannot be homotopic.

Perturbing I and J so that they are relatively generic, the locus Q2 is
expected to be empty, and the locus Q1 is expected to be a codimension 2
submanifold in Z. Its current of integration represents the cohomology class
c1(I) + c1(J) = 6h + c1. The chern number of the line bundle K over Q1 is
given by the formulaZ

Q1

c21K =

Z
Z

�
(1)
3 (c(J)=c(�I)) =

Z
Z

s111 =

Z
Z

s31 � 2s1s2 + s3

=

Z
Z

c3(J) + c2(J)c1(I)� c1(J)c2(I) + c1(J)c
2
1(I)

+c3(I) + c31(I)� 2c1(I)c2(I) (5)

=

Z
Z

24h3 + 12h2c1 + 8hc21 � 2hc2 + 2c31 � c1c2

=

Z
M

14c21 � 2c2

Again, equation (5) is not symmetric in I and J until relation (3) is used:Z
Q1

c21K =

Z
Z

c3(I) + c3(J) + c1(I)c2(J) + c2(I)c1(J) + (c1(I) + c1(J))p1TZ:

Question: The geometric symmetry of the roles of I and J in the pre-
vious example and Example 4.8 does not seem to be exhibited until relation
(3) is taken into account. Is there a purely combinatorial explanation of this

phenomenon, for example, some identity among symmetric functions?

5 Coincidence as CR-Singularities of a Graph

The map � : TR! FR de�nes its graph � as a real-linear inclusion of the image
�T in TR� FR of the map ~v 7! (~v; �(~v)). TR� FR has the direct sum complex
structure, J�

x
(~v; ~w) = (JT

x
~v; JF

x
~w). Denote T � F = (TR� FR; J

�).
Lemma 5.1 Kx

�= �Tx \ J�x �Tx.
Proof: The claim is that �

x
is a C -linear isomorphism when restricted to

Kx, and that its image is the maximal J�
x
-complex subspace of �Tx.

~v 2 K () (JT~v; JF�~v) = (JT~v; �JT~v) () J�(~v; �~v) 2 �T

() (~v; �~v) 2 �T \ J��T:

If, in addition to � being generic with respect to coincidence, �T is a sub-
bundle of real rank m = 2r in the complex bundle T �F of complex rank n+ r,
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which is generically included with respect to loci Nj of CR-singularities, then a
cohomological version of formula (10:5) of [HL2] applies:

[Nj ] = �
(j)

(n+r)�2r+j(c(T � F � T 
 C ))

= �
(j)
n�r+j(

cT cF

cTc �T
) = �

(j)
n�r+j(c(F � �T )) = [Qj ]:

This shows that, for suÆciently general maps �, Theorem 4.1 can be derived as
a corollary to cohomological formulas for CR singularities. (These formulas are
investigated in more detail and generalized in [C].)

The relationship between complex coincidence and the CR structure of the
graph seems to be well-known, but not formulated as explicitly as this in the
literature. (cf [Freeman] and x4:2, [Chirka])

Example 5.2 The graph of a smooth map f : X ! A (not necessarily an
immersion) de�nes an embedding f : X ! X �A. The coincidence locus Qj of
df is the same as the locus Nj of complex tangents of the image of df = df in
X � A.

Example 5.3 ([Eells-Wood]) If f is a smooth map between connected,
compact, oriented Riemannian surfaces, f : (X; gX) ! (A; gA), the degree of f
is an integer. Giving X and A complex structures compatible with the metrics,
and using [Webster]'s formula for the image of the graph of f in (X �A; J�),

X
x2N1

ind(x) =

Z
X

c1(TX � f�TA) = �X + (deg f)�A:

Reversing the orientation and complex structure on A changes the index sum to
�X� (deg f)�A, and similarly, reversing the orientation and complex structure
on X gives index sum ��X+(deg f)�A. The sign of the index di�ers from the
[Eells-Wood] formulas, which use the complexi�ed bundle map T 1;0X ! T 0;1A

instead of (2).
If f is a generic perturbation of a holomorphic map, with rami�cation v(q) >

1 at �nitely many branch points q 2 X , then the Riemann-Hurwitz theorem
applies ([GriÆths-Harris]),

�X = (deg f)�A�
X

(v(q)� 1);

so the number of points where f is C -linear is 2�X +
P
(v(q)� 1):

It is well-known that in this two-dimensional case, f is conformal (angle-
preserving) at points where df is C -linear, and indirectly conformal (angle-
reversing) at points where df is C -antilinear. ([Ahlfors])

Example 5.4 If X is the almost complex manifold (XR; J) and �X =
(XR;�J), then the graph of the identity di�eomorphism f : X ! �X is the
diagonal embedding f : X ! X � �X . The image is totally real in the \com-

plexi�cation" X � �X (cf [Eastwood]); again, for j > 0, this is consistent with
the cohomological obstruction to total reality:

�
(j)
j
(c(f�TX � T �X � TX 
 C )) = 0:

10



Example 5.5 Something similar holds for the kernel bundle formulas: in
the scenario of Example 4:8, equation (4) can be rewritten:Z

Q1

c1K = p1FR+ c2(T � F ):

This is [Webster]'s formula for the complex tangent locus N1 of a real 4-plane
subbundle FR of a complex 4-bundle, T � F .

6 Cartographic Applications

Example 6.1 Considering CP 1 as the sphere S2 with the usual complex
structure, the graph of the identity di�eomorphism embeds CP 1 as the di-
agonal complex submanifold of CP 1 � CP 1 , or as a totally real submanifold of
CP 1 � CP 1 . Perturbing the identity map to a generic map gives a di�eomor-
phism f : CP 1 ! CP 1 with four points of complex coincidence by Example
4.5. Equivalently, the graph of f is a sphere S2 with four complex tangents in
CP 1 � CP 1 .

The coordinate charts for CP 1 are two complex lines. A smooth map be-
tween one of these charts and the unit sphere in R

3 is given by stereographic
projection:

z =
x1 + ix2

1� x3

(x1; x2; x3) = (
z + �z

z�z + 1
;

z � �z

i(z�z + 1)
;
z�z � 1

z�z + 1
)

Figure 1.

In particular, the complex structure operator J = i on the complex plane induces
the complex structure on S2, and if the di�eomorphism f is written in terms of
the local coordinates x; y so that z = x+ iy 7! u(x; y)+ iv(x; y), the coincidence
relation J Æ df = df Æ J is the pair of Cauchy-Riemann equations for complex
functions:

df Æ J =

�
ux uy
vx vy

�
�
�

0 �1
1 0

�
=

�
uy �ux
vy �vx

�

J Æ df =

�
0 �1
1 0

�
�
�

ux uy
vx vy

�
=

�
�vx �vy
ux uy

�
=) ux = vy; uy = �vx:

This condition is equivalent to f being conformal (angle-preserving) [Ahlfors].
The best-known di�eomorphisms of the sphere are conformal at every point.

The following composition gives a generic di�eomorphism of the sphere, one
expected to satisfy the Cauchy-Riemann equations only on a �nite set. First,

stretch the unit sphere in R
3 into the ellipsoid x2 + y

2

a2
+ z

2

b2
= 1 by a linear

transformation, with 1 < a < b. (In Figure 2, a = 2, b = 3 are used.)

11



Figure 2.

Second, a radial projection maps the ellipsoid back onto the unit sphere.

Figure 3.

In terms of the coordinates z = x + iy, the composite f is given by the real
analytic equations

u(x; y) =
2xp

b2(x2 + y2 � 1)2 + 4x2 + 4a2y2(1� b(x2+y2�1)p
b2(x2+y2�1)2+4x2+4a2y2

)
;

v(x; y) =
2ayp

b2(x2 + y2 � 1)2 + 4x2 + 4a2y2(1� b(x2+y2�1)p
b2(x2+y2�1)2+4x2+4a2y2

)
:

A computer-assisted calculation �nds exactly four points (x; y) in the plane
where the Cauchy-Riemann relations hold:

(�

q
b2 + a2b2 � 2a2 � 2a

p
(b2 � 1)(b2 � a2)

b
p
a2 � 1

; 0):

Corresponding to the symmetry of f , the four-element subset Q1 of S2 in R
3

forms a rectangle with sides parallel to the x1- and x3-axes.
With the conformal structure on the ellipsoid induced by the ambient eu-

clidean metric, the stretching map from the sphere preserves angles at the four
\umbilic points" of the ellipsoid. ([Boehm-Prautzsch], [Porteous2])

Example 6.2 As another application of Example 5.3, consider the degree
0 map f : S2 ! R

2 , given by projecting the unit sphere in R3 orthogonally onto
a plane. The equations

f(z) = (
z + �z

z�z + 1
;

z � �z

i(z�z + 1)
)

f(x+ iy) = (u(x; y); v(x; y)) = (
2x

x2 + y2 + 1
;

2y

x2 + y2 + 1
)

for f are smooth, and fold along a great circle. Evidently, f is directly conformal
at one pole, z = 0, and indirectly conformal at the opposite pole z =1. Since
a degree 0 map from S2 is expected to have two points where it is directly
conformal, this projection f is not generic and ([z = 0]; 0) is a complex tangent
with index 2 in the sphere graphed inside CP 1 � C .

The shear A(s) =

�
1 s

0 1

�
is holomorphic C ! C only for s = 0. A

simple perturbation of f is A(s) Æ f , and this composition is conformal when

12



J ÆA(s) Æ df = A(s) Æ df Æ J :

J ÆA(s) Æ df =

�
0 �1
1 0

�
�
�

1 s

0 1

�
�
�

ux uy
vx vy

�

=
2

(1 + x2 + y2)2

�
2xy �x2 + y2 � 1

�x2 + y2 � 2sxy + 1 sx2 � sy2 � 2xy + s

�

A(s) Æ df Æ J =

�
1 s

0 1

�
�
�

ux uy
vx vy

�
�
�

0 �1
1 0

�

=
2

(1 + x2 + y2)2

�
sx2 � sy2 � 2xy + s x2 � y2 + 2sxy � 1

x2 � y2 + 1 2xy

�
:

The two real solutions (x; y) of the Cauchy-Riemann equations are

�(

s
�s(s�

p
s2 + 4)

2(s2 + 4)
;

s
�2s

(s2 + 4)(s�
p
s2 + 4)

), if s � 0;

and

�(

s
�s(s+

p
s2 + 4)

2(s2 + 4)
;

s
�2s

(s2 + 4)(s+
p
s2 + 4)

), if s � 0:

Example 6.3 The unit sphere in R
3 can also be projected radially onto

the x; y-plane from the point (0; 0; 2), again giving a degree zero map with one
(index �2) point each of direct and indirect conformality.

Varying the point of projection along the line f(r; 0; 2)g projects the sphere
onto an ellipse. Not too surprisingly, the map is conformal at exactly those
points projected onto the foci of the ellipse. The four points are the intersections
of the sphere with the lines connecting the poles to the vertex of the cone.

Figure 4.

The minor semiaxis of the ellipse, parallel to the y-axis, has constant length
2=
p
3. The major semiaxis has length 2

3

p
r2 + 3, and the ellipse meets the x-axis

at coordinates �r� 4
p
r2+3

(r+
p
r2+3)2+3

< 0 and �r+ 4
p
r2+3

(r�
p
r2+3)2+3

> 0. The foci are

at r=3 and �r.
It is a well-known theorem that, in this case, the ellipses de�ned by the

intersections of the planes z = 1 and z = �1 with the cone have two of their
foci at the poles of the sphere, and that they are similar (and so conformal) to
any parallel ellipse on the cone.

7 Anticommuting Complex Structures

Suppose I and J are two complex structures on a vector space or bundle F that
anticommute: IJ + JI = 0. Then their product IJ is a new complex structure,
as well as real-linear combinations of the form aI + bJ + cIJ such that a2 +
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b2+ c2 = 1. F , together with the anticommuting complex structures I , J , could
be called \quaternionic;" there are examples of manifolds with anticommuting
almost complex structures: [Joyce]. I and J never coincide and so are relatively
generic with respect to coincidence.

The geometry of real subspaces of a quaternion vector space is more com-
plicated than the complex vector space situation. ([Dlab-Ringel]) However, the
complex subspaces of a quaternion vector space are studied with familiar con-
structions.

Let F be a complex vector space (FR; I) of even complex dimension n = 2s,
and suppose F admits another complex structure J so that I and J anticom-
mute. Let CG(r; F ) be the grassmannian of I-complex subspaces of complex
dimension r in F . Given a plane V 2 CG(r; F ), the intersection V \ JV is
a quaternionic vector space: V \ JV is invariant under I and J , and their
restrictions form a pair of anticommuting complex structures on V \ JV .

Denoting by V the tautological complex r-bundle over CG(r; F ), the real
bundle VR can be considered as a real 2r-subbundle of the trivial complex vec-
tor bundle (FR; J). If this inclusion were generic, the CR-singular set Nr �
CG(r; F ), where VR is a J-complex subspace, would have real codimension
2r(n � r), and so be isolated. However, for r even, Nr is not isolated; those
planes which are simultaneously I-complex and J-complex in (F; I; J) form the
quaternionic grassmannian HG(r=2; F ), of real dimension r(n � r). If further,
2r � n, since the quaternionic subspace V \JV must be at least 4-dimensional,
the �rst-order CR-singular set N1 n N2 is empty, although generically of codi-
mension 2(n� 2r + 1).

Example 7.1 The I-complex 2-planes in F = H
2 form a complex manifold

of complex dimension 4. Any plane containing a J-complex line must actu-
ally be J-complex, and so a quaternionic line in H

2 . These planes form the
quaternionic projective space HP 1 , a real 4-sphere. This construction appears
in twistor geometry ([Eastwood], [Ward-Wells]), where CG(2; 4) is the compact-
i�ed complexi�ed Minkowski space, CP 3 is the projective twistor space, and a
projection � is induced by the C -isomorphism C

4 ! H
2 :

CP 3
� //

HP 1 �
� // CG(2; H 2 )

so that � has �ber CP 1 = CG(1; H 1 ) and the inclusion is totally real. This is
another example of Webster's formula, where 0 =

R
S4
c2(T CG(2; 4)jS4 )+p1TS4.

The restriction of the complex bundle to S4 is essentially the complexi�cation
of TS4, so c2 = p1 = 0.

Example 7.2 If F is a bundle with anticommuting complex structures I
and J , it is known (cf [Vaisman]) that the complex vector bundle (F; I) has all
odd chern classes zero. The easy proof is that J is a C -linear isomorphism of
F = (FR; I) and �F = (FR;�I). The �rst coincidence current [Q1] is zero, so
applying Theorem 4.7 to the chern form c

q

1K
1 simpli�es to the expression

0 = �
(1)
q+1(

c(FR; I)

c(FR;�J)
);

14



for q � 0, so c(FR; I) = c(FR;�J). The same argument holds for the complex
structure IJ , which does not coincide with I or J :

c(FR; I) = c(FR;�J) = c(FR; IJ) = c(FR;�I):

More generally, this shows that the odd chern classes of (FR; I) are zero when
I and any other two complex structures on FR are mutually non-coincident.

8 Several Complex Structures

The graph of a R-linear map � can be generalized to the graph of �nitely many
maps �i : T

m=2r ! (Fi; Ji) = Fni

i
, i = 1 : : : p. Then the subspace of vectors in

T where all the maps �i are C -linear corresponds to a complex subspace in the
graph � of �1 � : : :� �p in T � F1 � : : :� Fp:

�iJ
T~v = Ji�i~v 8i () J��~v

= (JT~v; J1�1~v; : : : ; Jp�p~v)

= (JT~v; �1J
T~v; : : : ; �pJ

T~v)

= �JT~v 2 �T:

Qj(�1; : : : ; �p), the locus where all the maps �i are C -linear on the same j-
subspace, generically has codimension 2j(n1+ : : :+np�r+ j), and is contained
in, but not equal to, Qj(�1)\ : : :\Qj(�p). Using the complex tangent formula
gives

[Qj(�1; : : : ; �p)] = �
(j)
r+n1+:::+np�2r+j(c(T � F1 � : : :� Fp)� c(T 
 C ))

= �
(j)
n1+:::+np�r+j(cF1 � : : : � cFp � c �T ):

Example 8.1 A manifold M of real dimension m = 2r > 0 with three
relatively generic almost complex structures has no tangent vectors where all
three agree. The expected codimension of Q1(idTM ; idTM ) is 2(r+ r� r+1) =
m+ 2.

Example 8.2 A complex line bundle T , with generic maps to two other
complex line bundles, �i : T ! (Fi; Ji), will have a coincidence locus Q1 of
codimension 2(1 + 1� 1 + 1) = 4. The cohomology formula is

[Q1] = �
(1)
2 (cF1 � cF2 � c �T )

= c21T + (c1F1 + c1F2)c1T + c1F1c1F2:

Example 8.3 Consider the 4-manifold CP 2 of complex lines in C
3 , with

respect to the usual complex structure i. Inside C 3 , let F1 and F2 be a pair of
real planes, which have their own complex structure but are totally real with
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respect to i. Also let p1 and p2 be projections of C
3 onto these planes:

F1 = (f(x; 0; y; 0; 0; 0)g; J1 =

0
BBBBBB@

0 0 �1
0 0 0 0
1 0 0

0 0

1
CCCCCCA
); p1 =

0
BBBBBB@

1
0

1
0

0
0

1
CCCCCCA
;

F2 = (f(0; 0; 0; x; 0; y)g; J2 =

0
BBBBBB@

0 0

0 0 �1
0 0 0 0

1 0 0

1
CCCCCCA
); p2 =

0
BBBBBB@

0
0

0
1

0
1

1
CCCCCCA
:

The inclusion of the tautological line bundle T in the trivial bundle C 3 !
CP 2 , followed by the projections p1 and p2, gives two R-linear maps to the
trivial line bundles, T ! F1 and T ! F2. The coincidence locus Q1 in CP 2

is the set of complex lines in C
3 on which both the projections p1 and p2 are

C -linear. The equations p1i~v = J1p1~v and p2i~v = J2p2~v have solution set
f(x; y; y;�x;�x;�y)g, which is the complex line C � (1;�i;�1). So, Q1 is a
point, consistent with the formula

X
x2Q1

ind(x) =

Z
CP 2

c21T = 1:

Of course, this is equivalent to the coincidence geometry of p1�p2 : T ! F1�F2.
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