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In inversive geometry, which deals with the space C [f1g and the group

of M�obius transformations, the properties of circles are well-known. In par-

ticular, the image of a line or circle under a M�obius transformation is another

line or circle. Some interesting questions arise when considering the actions

of M�obius transformations on ellipses. Of course the circle could be con-

sidered a special case, but do any of its inversive properties generalize to

non-circular ellipses? More speci�cally, the following Questions refer to E ,
an ellipse which is not a circle, contained in the subset C of the extended

complex plane, C [ f1g, and E 0 � C , another ellipse.

Questions:

I. What is the image of E under a M�obius transformation?

II. Which M�obius transformations are symmetries of E?

III. Which M�obius transformations T , if any, have the property T (E) �
E 0?

From this point, we use the term \ellipse" to mean only \non-circular

ellipse," and the term \circle" refers to both circles and extended lines (which

include the point 1). The Questions could be generalized to real conics in
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general, and we brie
y survey a few inversive properties of parabolas and

hyperbolas. However, the geometry of the ellipse turns out to be a little

more subtle, and it seems that the hyperbolas have already had their share

of attention in the literature, which is one reason for an expository article

focusing (!) on the ellipse. So, while the reader ponders these Questions

about ellipses, we summarize some facts about M�obius transformations.

M�obius transformations are maps T : C [ f1g ! C [ f1g, of the form

T (Z) =
aZ + b

cZ + d
; (1)

or

T (Z) =
a �Z + b

c �Z + d
; (2)

with complex coeÆcients that satisfy ad� bc 6= 0, and the usual conventions

for 1 input and output. Such transformations are all continuous, one-to-

one, and onto, and they form a group under composition. Transformations

of type (2) are the \indirect" transformations, which reverse orientation, and

those of type (1) are the \direct" M�obius transformations, which form the

subgroup of \linear fractional transformations." The transformations with

c = 0 �x the point 1, and form the subgroup of \similarities." There are

direct and indirect similarities, and the direct similarities form a subgroup,

consisting of functions of the form T (Z) = aZ + b, with a 6= 0.

In the group of similarities, there are four elements which preserve an

ellipse E : the identity, the half-turn around the center of the ellipse, and the

re
ections in the major and minor axes. Question II asks whether there are

any other M�obius transformations which are symmetries of the ellipse.

It is clear that a similarity transformation of C takes a conic curve (a

circle, ellipse, hyperbola, or parabola) into another conic curve of the same

eccentricity e � 0. A hyperbola has the same group of similarity symmetries

as an ellipse, and the parabola has only the identity and one re
ection.

If the extended complex plane is considered as the Riemann sphere, the

closure of a hyperbola or a parabola includes the point 1, so we just make

a convention that 1 is an element of every hyperbola and parabola (and,
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as usual in M�obius geometry, every straight line). This way, the image of

any conic curve under a M�obius transformation T is a closed curve in the

Riemann sphere. The images of a hyperbola are seen to have a point of

transverse self-intersection. The images of a parabola have a singular \cusp"

point. The ellipse is a \simple" closed curve, in the technical sense of having

no self-intersection.

Among the transformations that do not �x1, the \inversions" are of the

form

Tw;r(Z) =
r2

�Z � �w
+ w;

which �x the points on a circle with center w 2 C and radius r > 0. Some

references on inversive geometry ([7], [19], [28]), the literature on \special

plane curves" ([1], [9], [10], [13], [15], [16], [29], [32], [33], [36], [37]), and web

sites on graphics and mathematics ([8], [14], [21]) show that many famously

named curves are inverses of conics, including the lima�cons of E. Pascal.

Curve Eccentricity Center of

Inversion

Image

hyperbola e > 1 center hyperbolic lemniscate of Booth

= self-intersecting hippopede

hyperbola e > 1 focus self-intersecting lima�con

hyperbola e = 2 focus trisectrix

hyperbola e = 2 vertex trisectrix of Maclaurin

hyperbola e =
p
2 vertex right strophoid

hyperbola e =
p
2 center lemniscate of Bernoulli

parabola e = 1 focus cusped lima�con = cardioid

parabola e = 1 vertex cissoid of Diocles

ellipse 0 < e < 1 center elliptic lemniscate of Booth

= simple hippopede

ellipse 0 < e < 1 focus simple lima�con
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Figure 1: Two conics and their inverses with respect to a circle. Hyperbola

and lemniscate (left); parabola and cardioid (right).

The images of an ellipse

According to the above list, the ellipse seems to have fewer famous images

under inversion than the hyperbola. The simple lima�cons give one answer to

Question I, in the case where the M�obius transformation is an inversion Tw;r

with w at a focus.

Another special case of inversion of conics is the family of hippopedes of

Proclus ([25]), which are also known as the lemniscates of J. Booth ([2], [3],

apparently given this name by G. Loria [16]). The elliptic lemniscate seems

to be a little less famous than some other special plane curves, at least in

the English-language sources. However, it has many interesting applications,

for example, in mechanical linkages ([8], [37]) and 
uid physics ([27]). It also

appears in solid geometry as an intersection of a plane with a spindle torus,

or with Fresnel's elasticity surface ([30]).

References [13] and [36] rather vaguely refer to the central inversion of

an ellipse as an \oval." When the eccentricity of E is large, its image is a

non-convex curve, as in Figure 2.

The reader might also want try some graphical experimentation | the

web site [21] has an interactive demonstration, where the user can manipulate

an ellipse and a circle of inversion, to see various images of the ellipse in the

plane. When the eccentricity is small, E becomes nearly circular, and one
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E E

Figure 2: Ellipse E with a non-convex central inversion (left), and with a

convex central inversion (right).

might expect its image under a central inversion is also nearly circular. Figure

2, and experiments with [21], show an oval-shaped image, but it is hard to

tell just by looking whether the oval is or is not exactly an ellipse. However,

we claim that it is not, and that this fact is a Corollary of the following:

Theorem 1. If E is an ellipse centered at 0 2 C , and T (Z) = 1=Z, then the

image T (E) is not an ellipse.

Before stating a proof of the Theorem, we set up a convenient coordinate

system, and then mention a few interesting but inconclusive approaches to

the problem.

Given E centered at 0, it can be rotated by some similarity R(Z) = ei� �Z
into \standard position," so the major diameter lies on the real axis. Since

T = R Æ T Æ R, we can, without loss of generality, assume E is already in

this form, so in terms of the real coordinates (X; Y ) (the components of the

complex coordinate Z = X + iY ):

E = f(X; Y ) : X
2

A2
+
Y 2

B2
= 1g; (3)

with 0 < B < A. In terms of (X; Y ), the transformation T is given by

(X; Y ) 7!
�

X

X2 + Y 2
;

�Y
X2 + Y 2

�
: (4)
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C

T(E)

T(C)

(A,0)(− A,0) 0

Figure 3: Images of a particular ellipse E and circle C, along with their three

common points, under the central inversion T .

One elementary proof of the claim, following [34], works only for ellipses

with large eccentricity. If B < A=
p
2, it is easy to check that the circle with

center (X; Y ) = (A=2; 0) and radius A=2 meets E in exactly three points, one

of which is (A; 0). Since the circle also passes through the origin, the image

of the circle under T is a straight (extended) line, which meets T (E) at three
(distinct, �nite) points, but this is impossible if T (E) is an ellipse.

Another attempt at a proof would be to �nd an implicit equation which

holds for points on T (E); one such equation can be found by applying

the transformation (4) to the variables in Equation (3) (replacing X with

X=(X2 + Y 2) and Y with �Y=(X2 + Y 2)), and then clearing denominators

to get:

(X2 + Y 2)2 �
�
X2

A2
+
Y 2

B2

�
= 0: (5)

This certainly appears to be the equation of a quartic curve, but the solution

set always contains an isolated point (X; Y ) = (0; 0) = T (1). So, we see that

the locus de�ned by (5) contains at least one point not in the image T (E). A
further potential complication becomes evident when A = B, in which case
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the polynomial is not irreducible | it factors into two quadratics, and its zero

locus is the union of a circle with radius 1
A
, and the singleton set f(0; 0)g. So,

merely showing that the points on T (E) satisfy some equation with degree

four is not conclusive, since the geometric hypothesis of non-circularity (A 6=
B) must somehow be connected to the algebraic property of irreducibility.

Skeptical mathematicians would not consider the irreducibility of (5) proved

by the failure of a computer algebra system to factor it, especially since the

irreducibility apparently depends on the values of A and B. Even though

it can be shown that the quartic (5) is irreducible, and is the lowest degree

polynomial whose zero locus contains T (E), when A 6= B, some further

algebraic or geometric argument would be required to show that this set

does not contain any ellipse.

Proof of Theorem 1. The proof of the Theorem uses the re
ection and rota-

tion symmetry of the ellipse E given by Equation (3), and the fact that T

respects this symmetry. If R is any of the similarities Z 7! �Z, Z 7! � �Z, or

Z 7! �Z, then T = R ÆT ÆR, so whatever shape T (E) is, it also is invariant
under a half-turn centered at the origin, and has the same re
ection symme-

try as E . The curve T (E) passes through Z = X+ iY = � 1
A
+ i0 and 0� i 1

B
,

so if T (E) is an ellipse, then it must have a quadric implicit equation of the

form

g(X + iY ) = A2X2 +B2Y 2 � 1 = 0:

E can be represented parametrically, by a map

P : R [ f1g ! C : u 7! 2Au+ iB(1� u2)

1 + u2
; (6)

so T (E) has a parametric equation of the form

T Æ P : u 7! 1 + u2

2Au+ iB(1� u2)
:

The element 1 of the \extended real line" is mapped by P to �iB, and
by T Æ P to i=B, and the fraction (T Æ P )(u) is in C for all u since the
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image of P does not pass through 0. The real and imaginary parts of the

parametrization of T (E) are X + iY = (T Æ P )(u), with:

X =
2uA(1 + u2)

B2u4 + (4A2 � 2B2)u2 +B2
;

Y =
B(u4 � 1)

B2u4 + (4A2 � 2B2)u2 +B2
:

The image of the parametrization T Æ P must satisfy the implicit equation

g = 0 for all u 2 R [ f1g, but for u 2 R, the composition g((T Æ P )(u)) is
equal to:

4u2(u� 1)2(u+ 1)2(B � A)2(B + A)2

(B2u4 + (4A2 � 2B2)u2 +B2)2
;

which, if A 6= B, has non-zero values for some u. In this case, there are only

four points (at u = 0; 1;�1, and as u ! 1) where T (E) meets the ellipse

g(X + iY ) = 0.

For example, it is easy to check that the point A=
p
2 + iB=

p
2 is on E ,

but the point T ((A+ iB)=
p
2) =

p
2(A� iB)=(A2+B2) is not on the ellipse

A2X2 +B2Y 2 = 1 unless A = B.

The last paragraph of the proof is actually enough for the claim of the

Theorem. The parametric equations for E were able to show a little more

about T (E), and they appear again in the last section of this article.

Corollary 2. If E is an ellipse in C with center w, and r is any positive

number, then the image Tw;r(E) is not an ellipse.

Proof. The inversion Tw;r is equal to a composition S1ÆT ÆS2, where S2 is the

indirect similarity Z 7! Z � w, S1 is the direct similarity Z 7! r2 �Z+w, and

T is the reciprocal function of the Theorem. If the image of Tw;r(E) were an
ellipse, then the image S2(E) would be an ellipse centered at 0, whose image

under T must also be an ellipse, because it is mapped by the similarity S1

to an ellipse. This contradicts Theorem 1, so Tw;r(E) is not an ellipse.

8



So, central inversions have been ruled out as possible symmetries of the

ellipse E (Question II), or as maps from E to E 0 (Question III), and Corollary
2 could be restated as \no hippopede is an ellipse." Theorem 1 and Corollary

2 do not address all possible images of the ellipse under inversions. The

question of when such an image is convex was solved by [34]. In general, the

image of E under a M�obius transformation T is not an ellipse, lima�con, or

elliptic lemniscate, but it is always some real quartic curve (there is some

nonzero real polynomial p of degree at most 4 so that if X+ iY 2 T (E), then
p(X; Y ) = 0).

Instead of attempting any complete answer to Question I, we just intro-

duce another bit of terminology.

De�nition 3. A \real biquadratic curve" is a plane curve that satis�es an

implicit equation of the form

c22Z
2 �Z2+ c21Z

2 �Z + c12Z �Z2+ c20Z
2+ c11Z �Z + c02 �Z

2+ c10Z + c01 �Z+ c00 = 0;

where the complex coeÆcients satisfy cjk = ckj (so, in particular, cjj is real,

and the LHS is real-valued for all Z 2 C ).

The biquadratic curves, considered by [11], [22], [20], [23], [24], and [31],

form a subclass of the quartic curves, including the Ovals of Descartes:

mjZ � Cj+ njZ �Dj = 1, for m;n 2 R; C;D 2 C

and Cassini:

jZ � Cj � jZ �Dj = k2; k 2 R;

and some real cubic curves. The real conics are real biquadratics with c22 =

c21 = c12 = 0. For the ellipse, Equation (3) can be written in terms of

complex coordinates, Z = X + iY , �Z = X � iY :�
1

4A2
� 1

4B2

�
Z2 +

�
1

4A2
� 1

4B2

�
�Z2 +

�
1

2A2
+

1

2B2

�
Z �Z � 1 = 0: (7)
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Applying a M�obius transformation to Equation (7) gives a real biquadratic,

and in general, the images of real conics under M�obius transformations form

a proper subclass of the real biquadratics. References [11], [20], [23], and

[24] use the term \nodal biquadratic" to refer to inversive images of ellipses

and hyperbolas, and \cuspidal biquadratic" to refer to inversive images of

parabolas.

The \node" of an image of the hyperbola is, of course, the double point,

and it is interesting that the ellipse was put into the same class by the previ-

ously mentioned papers on the algebraic properties of biquadratics. A more

geometrically oriented article, [22], singles out the hyperbola and parabola

as special cases of biquadratics, but not the ellipse, possibly because of its

lack of a 
ashy singularity. (Some other articles on inverses of conics, which

put more emphasis on the hyperbola than the ellipse, are [18] and [26].) The

last section of this article shows that the point at in�nity, which inverted to

the isolated point observed in (5), is a \node" of the ellipse, where a certain

self-intersection can be seen using complex projective coordinates. Some old-

fashioned terminology ([7], [10]) classi�es nodes, calling a point with two real

tangent lines a \crunode," and a point which is isolated in the real plane,

but with two tangent lines in complex coordinates, an \acnode."

To begin to address Questions II and III, we �rst consider their analogues

for the hyperbola and the parabola. If a hyperbola in C is mapped to some

other hyperbola in C by a M�obius transformation, then its double point at

in�nity must be a �xed point, since the only double point in the image is

also at in�nity. Similarly, if the image of a parabola is a smooth curve in

C , then, since M�obius transformations take smooth (or singular) points of a

curve to smooth (or singular) points, the cusp at 1 must be �xed. We can

conclude that only similarities can map a parabola onto another parabola,

or a hyperbola onto another hyperbola, which must therefore have the same

eccentricity.

Ellipses, on the other hand, have no \distinguished" points in a di�erential-

topological sense: they are smoothly embedded in C . The family of ellipses
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also has no \conformal" invariants, in the sense that any ellipse is equivalent

to the unit circle under some conformal transformation. However, the next

sections show that some points associated to the ellipse (the vertices and the

node) are distinguished with respect to inversive geometry. This leads to

complete answers to Questions II and III.

The vertices of an ellipse

The following Theorem is the answer to Question III, and it is given sev-

eral di�erent proofs. These di�erent arguments represent di�erent ways of

thinking about both ellipses and inversive geometry, from the points of view

of synthetic, analytic, and algebraic geometry. After a few Lemmas, the

�rst proof involves only some elementary properties of curves and circles in

inversive geometry.

Theorem 4. Given ellipses E, E 0 � C , if the M�obius transformation T maps

E into E 0, then T is a similarity.

In particular, such a transformation exists if and only if E and E 0 have
the same eccentricity. Before proving the Theorem, we state a few Lemmas

which are quite plausible, but given quick and elementary proofs anyway.

Lemma 5. A circle C and a conic L which does not contain C can have at

most four points of intersection, and at most two points of tangency.

Proof. We recall that \circle" includes straight lines, but we take for granted

that lines have the claimed properties. The circle, with �nite radius r > 0

and center (U; V ), admits a parametric equation of the form

P : R ! R
2 : t 7!

�
2rt

1 + t2
+ U;

r(1� t2)

1 + t2
+ V

�
: (8)

The image P (R) covers the whole circle except one point, (U; V � r). If this

point happens to be an element of L, there is some rotation transformation

R which �xes the circle, so that R((U; V � r)) =2 L. R Æ P is still given by
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quadratic rational functions of t, so if necessary we can replace P by R Æ P
to get a parametrization of C which contains all the points of intersection. If

q(X; Y ) = 0 is a quadratic implicit equation for L, the composition (q ÆP )(t)
is zero exactly at the points where P (t) meets L. Expanding q Æ P gives a

rational function
N(t)

D(t)
whose denominator is never zero, and whose numerator

has degree at most 4. Since lim
t!1

P (t) exists and is not in L,

lim
t!1

q(P (t)) = q( lim
t!1

P (t)) 6= 0;

so N is not identically zero, and there are at most four points of intersection.

A point of intersection P (t0) is a point of tangency exactly when dP

dt
(t0) is

orthogonal to the gradient, (rq)(P (t0)). By the chain rule,�
d

dt
(q Æ P )

�
(t0) = (rq)(P (t0)) �

�
dP

dt
(t0)

�
;

so the curve is tangent to L when t0 is a root of both (q Æ P )(t) and d

dt
(q Æ

P )(t) = N
0(t)

D(t)
� N(t)D0(t)

(D(t))2
, which implies t0 is a root of N(t) and N 0(t), and

therefore a double root of the quartic N(t); there can be at most two such

double roots.

The next Lemma shows that, in Theorem 4, it is not necessary to assume

that E 0 is non-circular.

Lemma 6. Given any M�obius transformation T , the image T (E) is not con-
tained in any circle.

Proof. Supposing that there is a circle C containing T (E), the M�obius trans-

formation T�1 takes C to another circle, T�1(C), which contains E . E and

T�1(C) meet at in�nitely many points, so by the previous Lemma, E con-

tains, and therefore is equal to, T�1(C), contradicting the assumption that

E is not a circle.
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Lemma 7. If a M�obius transformation T satis�es T (E) � E 0, then T (E) =
E 0.

Proof. There are many quick proofs of the fact that T restricted to E is

\onto" E 0, using some topology. One argument is that if T : E ! E 0 were not
onto, then T : C [f1g ! C [f1g would be a homeomorphism which takes

the disconnected complement of E to the connected complement of T (E).
Another proof uses the Borsuk-Ulam theorem for topological 1-spheres ([17],

x5.9): any continuous map from E to a proper subset of E 0 cannot be one-to-
one. Since the restriction T : E ! E 0 is one-to-one and continuous, it must

be onto.

First Proof of Theorem 4. If T (E) � E 0, and R is a re
ection symmetry of

E 0, then R Æ T also takes E into E 0. So, without loss of generality we can

assume T is a direct transformation of the form (1), and we want to show

that c = 0.

An ellipse has four points lying on its axes of re
ective symmetry. We

call these points \vertices," and any similarity transformation of the plane

takes the vertices of an ellipse to the vertices of the image ellipse.

Since the similarities form a subgroup of the group of linear fractional

transformations, we can also assume that E is in standard position, Equa-

tion (3). Its vertices are the points (�A; 0) and (0;�B), or in complex

coordinates, �A and �iB.
Let C be a circle tangent to an ellipse L at a point Z0. We say that C

is bitangent at Z0 if there is some point Z1 6= Z0 so that C is tangent to L
at Z1. From Figure 4, it is easy to see that at any point Z0 which is not a

vertex, there are at least two bitangent circles: one interior, centered on the

major axis, and one exterior, centered on the minor axis.

At a vertex of an ellipse, there is only one bitangent circle: if the other

point of tangency were any point besides the opposite vertex, then by the

re
ection symmetry of the ellipse and circle, there would be a third point of

tangency, contradicting Lemma 5.
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Z0

Figure 4: Bitangent circles (dashed) with a common point of tangency.

Let Z0 be a vertex of E , but, suppose toward a contradiction that T (Z0)

is not a vertex in E 0 (since E 0 is not a circle, not every point is a vertex).

Then, at T (Z0), E 0 has two bitangent circles, and by Lemma 7, there are

distinct points Z1; Z2 2 E so that these circles are tangent to E 0 at T (Z0)

and T (Z1), and T (Z0) and T (Z2), respectively. Since the linear fractional

transformation T�1 preserves circles and the tangency of curves, these two

bitangent circles of E 0 at T (Z0) are transformed to two bitangent circles of

E at Z0, contradicting the assumption that Z0 is a vertex of E . So, T (A),

T (�A), T (iB), and T (�iB) must be the vertices of E 0.
The images of the axes of E must therefore be circles orthogonal to the

ellipse E 0 at its vertices. Again using the fact that E 0 is non-circular, an easy

argument shows that they must coincide with the axes of E 0; that is, the

circles are straight lines.

Now suppose by way of contradiction that c 6= 0. By the previous para-

graph, the point �d=c which T maps to 1 must lie on both the major and

minor axes of E , so d = �d=c = 0. Hence T has the form T (Z) = a + b=Z,

with b 6= 0. Since Z 7! a+ bZ is a similarity, the image of E under the map

Z 7! 1=Z must be an ellipse. However, this contradicts Theorem 1.

Bitangent circles of ellipses are also considered by [19], and [19] and [22]

call the vertices the \apses" of the curve. From a calculus point of view,

the vertices of an ellipse are the four points where its curvature has a lo-

cal extreme value. This suggests a more analytic (or di�erential-geometric)
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approach to Theorem 4, which might be less elementary because it involves

higher derivatives instead of only tangent circles.

Second Proof of Theorem 4. The key point in the �rst proof was that M�obius

transformations must take the vertices of one ellipse to the vertices of another.

More generally, the \vertices" of any smooth curve in the plane are points

where the curvature has a local extreme value ([30]). We won't prove it here,

but it is known ([22], [4]) that a M�obius transformation takes the vertices

of a curve to the vertices of its image. The second half of the �rst proof

proceeds without changes.

The following Corollary is just the special case of Theorem 4 where E = E 0.
It appears as a statement without proof in [35], and it answers Question II.

Corollary 8. The only M�obius transformations T which are symmetries of

an ellipse (T (E) � E) are similarities.

The Corollary could be proved directly, using the methods of either of

the above proofs of Theorem 4. If one is willing to assume Corollary 8, then

it could be used to prove the more general Theorem 4.

Third Proof of Theorem 4. Let C1 2 C be the center of E , and C2 the center

of E 0, so that H(Z) = �Z + 2C2 is the half-turn around the center of E 0.
Assuming, as in the �rst proof, that T is given by (1), the composition

T�1 ÆH Æ T is of the form

Z 7! (2C2cd� ad� bc)Z + 2d(C2d� b)

2c(a� C2c)Z + ad+ bc� 2C2cd
:

Since (H Æ T )(Z) 2 E 0 for Z 2 E , and T�1(W ) 2 E for W 2 E 0 by Lemma

7, T�1 Æ H Æ T is a symmetry of E , so Corollary 8 applies. The coeÆcient

2c(a�C2c) must be zero, so either c = 0 (proving the claim of the Theorem),

or c 6= 0 and C2 =
a

c
= T (1). In this second case, the composition becomes

(ad�bc)Z+2d(ad�bc

c
)

bc�ad
= �Z � 2d

c
; so this symmetry of E is the half-turn centered

at C1 = �d

c
= T�1(1).
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To show that the c 6= 0 case leads to a contradiction, note that T can be

written as a composition of a translation T1(Z) = Z�C1, a map T2(Z) =
1
Z
,

and a similarity transformation, T3:

aZ + b

cZ + d
= (T3 Æ T2 Æ T1)(Z) =

1

Z � (�d

c
)
� bc� ad

c2
+
a

c
:

T1(E) and T�13 (E 0) are both ellipses centered at the origin, and related by the

transformation T2. However, this contradicts Theorem 1, so the case c 6= 0

is ruled out.

Theorem 4 can also be applied to curves which are images of ellipses

under M�obius transformations, such as the elliptic lemniscates or lima�cons.

Corollary 9. Curves of the form T (E) and T 0(E 0) in C [ f1g are related

by some M�obius transformation if and only if E and E 0 have the same eccen-

tricity.

The node of an ellipse

Our �nal approach to Theorem 4 is to �nd yet another way to describe the

ellipse, this time as the \real part" of a complex curve. We should point out

now that there is more than one way to add \points at in�nity" or \complex

points" to the real plane of Euclidean geometry. One method, which is used

by many both old and new books on plane curves (for example, [10]), is to put

the real plane inside the \complex projective plane." This coordinate system

introduces a \line at in�nity," which contains some so-called \circular points

at in�nity," and authors using these coordinates call our real biquadratic

curves \bicircular quartics." Another approach, which is described in this

section, is to use the product of two Riemann spheres, where ordered pairs of

(extended) complex numbers form a coordinate system which contains, as a

\real diagonal" subset, an image of the inversive plane. So, our construction

is somewhat di�erent from the complex equations for ellipses described by
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[12], or from projective coordinate systems involving a \line at in�nity." See

[23] for a comparison of the two coordinate systems.

As in the previous section, it is useful to put the ellipse in standard

position, (3), but it is also convenient to choose just one ellipse of each

eccentricity, by scaling an ellipse in standard position so that its foci are at

�1 + 0i. This family of ellipses depends on only one real parameter, instead

of two (the radii A and B).

A nice way to write a parametric equation for such an ellipse is

Pk : R ! C : u 7! 2(k2 + 1)u+ i(k2 � 1)(1� u2)

2k(1 + u2)
; (9)

for k > 1. This is just Equation (6), with coeÆcients chosen so the Euclidean

invariants of the ellipse are rational functions of k: the major radius is A =
k
2+1
2k

> 1, the minor radius is B = k
2
�1
2k

> 0, the eccentricity is e = 2k
k2+1

,

0 < e < 1, and Equation (7) in complex coordinates becomes

E = fZ : Z2 + Z
2 �

�
k4 + 1

k2

�
ZZ +

(k4 � 1)2

4k4
= 0g: (10)

What might seem to be a straightforward approach to Theorem 4 or

Corollary 8 would be to use the composite T Æ Pk to parametrize T (E),
and then see if it satis�es the implicit equation of some ellipse | this was

the technique of Theorem 1 and Lemma 5. (For more about curves in the

inversive plane parametrized by rational functions, see [7], [19], and [5].)

However, for an arbitrary linear fractional transformation T , plugging (T Æ
Pk)(u) into an implicit equation, say (10), gives such a complicated expression

that this method is impractical.

Instead, the maps taking one ellipse to another can be characterized using

the isolated singular point, which was observed in Equation (5). This \node"

was useful in detecting which M�obius transformations take one hyperbola

to another, but for an ellipse, the singularity of the implicit equation is \at

in�nity," and not in the image of the real parametric map, or even its closure.

Both of these properties suggest that it could be useful to view Theorem 4

in the setting of complex projective geometry.
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So, we very brie
y review the homogeneous coordinate system. De�ne

the projective space C P n as the set of one-dimensional subspaces of C n+1 .

Denote by [z0 : : : : : zn] the line spanned by the non-zero vector (z0; : : : ; zn),

so for a non-zero scalar � 2 C , [� � z0 : : : : : � � zn] = [z0 : : : : : zn].

The map C n ! C P n de�ned by (z1; : : : ; zn) 7! [1 : z1 : : : : : zn] is

one-to-one, and its image is an example of an \aÆne neighborhood." The

complement of this aÆne neighborhood is the set f[0 : z1 : : : : : zn]g, a
complex projective space of one lower dimension. The complex number line

we have been working with in the previous sections, which contained E , is
the aÆne neighborhood f[1 : Z]g in C P 1 , the Riemann sphere. The point1
is the element [0 : 1].

A map F : C m+1 ! C n+1 induces a \well-de�ned" map F : C Pm ! C P n

if it takes lines to lines, i.e., for every non-zero vector ~z 2 C m+1 , F has the

following two properties: �rst, F (~z) 6= ~0, and second, for any non-zero scalars

�1, �2 2 C , there exist non-zero scalars �1, �2 2 C so that

�1 � F (�1 � ~z) = �2 � F (�2 � ~z):

As an example of a well-de�ned map from C P 1 to C P 1 , a linear fractional

transformation of the form (1) acts as a linear map on the homogeneous

coordinates:

T : C P 1 ! C P 1 :

"
Z0

Z1

#
7!
 

d c

b a

!
�
"
Z0

Z1

#
: (11)

There is no need to treat the point at 1 separately in this coordinate

system; for example, T ([0 : 1]) = [c : a], which equals [1 : a=c] if c 6= 0,

consistent with the earlier observation T (1) = a=c.

Another well-de�ned map is a complex homogeneous version of Equation

(9), depending on the real parameter k > 1:

Pk : [z0 : z1] 7! [2k(z20 + z21) : 2(k
2 + 1)z0z1 + i(k2 � 1)(z20 � z21)];
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which, as in the previous example, takes C P 1 to C P 1 , but Pk is not one-

to-one. Points of the form [1 : u], for u 2 R, have an image in the aÆne

neighborhood f[Z0 : Z1] : Z0 6= 0g, so this map Pk restricts to the one-to-one,

real parametric curve (9). The homogeneous coordinates again conveniently

handle the point at in�nity: Pk([0 : 1]) = [2k : �i(k2 � 1)] = [1 : �iB], as in
(6).

At this point, we need some terminology from algebraic geometry, and al-

though some of the rigorous de�nitions are technical, terms like \irreducible"

and \dimension" correspond to intuitive concepts, and we refer the reader to

[6] for an accessible account of the details. For the rest of this section, the

term \dimension" refers to the complex dimension of a complex projective

algebraic variety, as de�ned in [6] x9.3.
The following maps are needed to describe a \complexi�cation" of the

ellipse: the involution of C P 1 induced by complex conjugation,

C([Z0 : Z1]) = ([ �Z0 : �Z1]);

the \totally real diagonal" embedding,

� : C P 1 ! C P 1 � C P 1

[Z0 : Z1] 7! ([Z0 : Z1]; C([Z0 : Z1]));

and the Segre embedding,

s : C P 1 � C P 1 ! C P 3

([Z0 : Z1]; [W0 : W1]) 7! [Z0W0 : Z0W1 : Z1W0 : Z1W1]:

The �xed point set of C is the real projective line, RP 1 � C P 1 . The image

of � is exactly the real submanifold

�(C P 1) = f(Z;W ) : W = C(Z)g:

The image of s is exactly the set

s(C P 1 � C P 1) = f[�0 : �1 : �2 : �3] : �0�3 � �1�2 = 0g;
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and this is a smooth hypersurface ([6] x8.6) in C P 3 , and therefore an irre-

ducible variety of dimension 2 ([6] x9.4).
The following parametric map, Gk, \complexi�es" E � C P 1 , in the sense

that its image and its target space, Gk(C P
1) � C P 1�C P 1 , are both complex

varieties, which contain, respectively, as real subvarieties, the images of the

real ellipse and the inversive plane, �(E) � �(C P 1). The use of complex

curves described by pairs of homogeneous coordinates to study real curves

in the inversive plane is an old idea ([11], [23]), but we give a perhaps more

modern presentation, following [31].

Gk : C P
1 ! C P 1 � C P 1

[z0 : z1] 7! (Pk([z0 : z1]); (C Æ Pk Æ C)([z0 : z1])
= ([2k(z20 + z21) : 2(k

2 + 1)z0z1 + i(k2 � 1)(z20 � z21)];

[2k(z20 + z21) : 2(k
2 + 1)z0z1 � i(k2 � 1)(z20 � z21)]):

This map is well-de�ned because Pk is well-de�ned. Note that if [z0 : z1] 2
RP 1 , then Gk([z0 : z1]) is in the image of �, and �(E) = Gk(RP

1). So, the

image of Gk contains in�nitely many points, but it is not an onto map: for

example, ([1 : 0]; [0 : 1]) is not in the image.

The interesting property of Gk is that it is one-to-one, except for a double

point. The map Pk : C P
1 ! C P 1 is generically two-to-one: for any z = [z0 :

z1], the point

z0 = [�i(1� k2)z0 + (1 + k2)z1 : (1 + k2)z0 + i(1� k2)z1]

has the same image, Pk(z) = Pk(z
0). Similarly, the map C ÆPk ÆC is generi-

cally two-to-one, where

z00 = [i(1� k2)z0 + (1 + k2)z1 : (1 + k2)z0 � i(1� k2)z1]

satis�es (C Æ Pk Æ C)(z) = (C Æ Pk Æ C)(z00). If Gk(z) = Gk(w), then either

w = z, or w = z0 = z00, and the only solutions of z0 = z00 are [1 : i] and

[1 : �i], so, independent of k,

Gk([1 : i]) = Gk([1 : �i]) = ([0 : 1]; [0 : 1]):
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This \double point" of the complex curve Gk corresponds to the real ellipse's

isolated point at in�nity, which inverted to 0 in Equation (5).

The implicit equation of the curve Gk(C P
1) in C P 1� C P 1 is given in the

bi-homogeneous coordinates ([Z0 : Z1]; [W0 : W1]) by

Z2
1W

2
0 +W 2

1Z
2
0 �

�
k4 + 1

k2

�
Z1W1Z0W0 +

(k4 � 1)2

4k4
Z2
0W

2
0 = 0: (12)

This is just Equation (10), with �Z replaced byW1, and made bi-homogeneous

by introducing Z0 and W0. Equation (12) is also one of the \normal forms"

of [11], representing a \Species IIa" biquadratic curve.

Even if the [Z0 : Z1] and [W0 : W1] variables separately undergo complex

linear transformations (as in (11)), the above expression remains quadratic

in each pair (explaining the term \biquadratic"). We recover a real curve,

as in De�nition 3, when [Z0 : Z1] and [W0 : W1] are replaced by [1 : Z] and

[1 : �Z] | this is the intersection of the complex biquadratic with the product

of aÆne neighborhoods and the real diagonal set fW = C(Z)g.
The composition sÆGk : C P

1 ! C P 3 is well-de�ned, so the image of this

parametrized space curve is an irreducible variety ([6] x8.5 | comments on

the irreducibility appear after the last proof). It has in�nitely many points

(it includes the image of the ellipse, (s Æ �)(E)) but since Gk is not onto,

(sÆGk)(C P
1) is not all of the Segre variety s(C P 1�C P 1), so it has dimension

1 ([6] x9.4). Since s is one-to-one, the map s Æ Gk has exactly one double

point, at [0 : 0 : 0 : 1] in C P 3 . The existence and uniqueness of the singular

point of the image could be double-checked by a long but straightforward

computation with its implicit equations.

Fourth Proof of Theorem 4. We are actually only going to prove Corollary

8, for linear fractional transformations T , but it was already shown that

this is enough. Now that the geometry of the complexi�ed ellipse has been

considered, the action of the direct M�obius transformations can also be com-

plexi�ed.
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Given a linear (fractional) transformation as in (11), de�ne

Tc : C P
1 � C P 1 ! C P 1 � C P 1

(Z;W ) 7! (T (Z); (C Æ T Æ C)(W )):

Note that Tc is well-de�ned, one-to-one, and algebraic (involving only Z and

W , and not �Z or �W ), and Tc Æ� = � Æ T . The composition s Æ Tc ÆGk has

exactly one double point, and, as previously, its image is an irreducible, one-

dimensional subvariety of C P 3 . If T is a symmetry of E as in the hypothesis of

Corollary 8, and Z 2 E , then T (Z) 2 E , and (TcÆ�)(Z) = (�ÆT )(Z) 2 �(E).
So, the image of s Æ Tc ÆGk contains (s Æ�)(E), an in�nite set which is also

a subset of the image of s Æ Gk. Since the intersection of these two images

is a variety of positive dimension, the images must coincide ([6] x9.4). In

particular, the images of Gk and Tc ÆGk must have the double point at the

same place,

([0 : 1]; [0 : 1]) = Tc([0 : 1]; [0 : 1]) = (T ([0 : 1]); (C Æ T Æ C)([0 : 1]));

which implies T �xes the point [0 : 1].

The conclusion is that c = 0, so T is a similarity.

We can also conclude from this construction that, since Tc �xes �(C P 1),

any M�obius transformation of an ellipse, T (E), has a real biquadratic implicit

equation with an acnode at T (1).

The crucial step in the above proof was the irreducibility of the curves,

which allowed us to conclude that if the two complex curves intersect on

the real ellipse, then they coincide everywhere. So, we needed the theorem

from [6], which states that a well-de�ned polynomial map from one complex

projective space to another has an image equal to an irreducible variety.

This is a great way to establish the irreducibility of a locus, since checking

a parametric map is \well-de�ned" is often easier than attempting to �nd,

and then factor, an implicit equation. We already saw, in Equation (5), that
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this theorem does not hold for real parametric maps, where the image might

be contained in, but not equal to, a real variety.

The last interesting point is to see how this same argument fails when

applied to circles, which have many symmetries that are not similarities. If

we extend the parametric equation of a circle (8) to complex homogeneous

coordinates, to get

P : [z0 : z1] 7! [z20 + z21 : 2rz0z1 + U(z20 + z21) + i(r(z20 � z21) + V (z20 + z21))];

it is not well-de�ned: every point on the line spanned by (1;�i) is mapped

to (0; 0). In fact, the components have a common factor:

P : [z0 :z1] 7! [(z0+iz1)(z0�iz1) : ((U+V +ir)z0+(r+i(U+V ))z1)(z0�iz1)];

and if we cancel o� the factor z0�iz1, then the map P : C P 1 ! C P 1 extends

to a linear fractional transformation. So, the circle does not have a node,

even in this complex coordinate system.
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