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1 Real vector spaces

Definition 1.1. Given a set V , and two operations + (addition) and · (scalar multiplication),
V is a “real vector space” means that the operations have all of the following properties:

1. Closure under Addition: For any u ∈ V and v ∈ V , u+ v ∈ V .

2. Associative Law for Addition: For any u ∈ V and v ∈ V and w ∈ V , (u + v) + w =
u+ (v +w).

3. Existence of a Zero Element: There exists an element 0 ∈ V such that for any v ∈ V ,
v + 0 = v.

4. Existence of an Opposite: For each v ∈ V , there exists an element of V , called −v ∈ V ,
such that v + (−v) = 0.

5. Closure under Scalar Multiplication: For any r ∈ R and v ∈ V , r · v ∈ V .

6. Associative Law for Scalar Multiplication: For any r, s ∈ R and v ∈ V , (rs) ·v = r · (s ·v).
7. Scalar Multiplication Identity: For any v ∈ V , 1 · v = v.

8. Distributive Law: For all r, s ∈ R and v ∈ V , (r + s) · v = (r · v) + (s · v).
9. Distributive Law: For all r ∈ R and u,v ∈ V , r · (u+ v) = (r · u) + (r · v).
The following theorems refer to a real vector space V . Theorems 1.2 through 1.11 use only

the first four axioms about addition.

Theorem 1.2 (Right Cancellation). Given u,v,w ∈ V , if u+w = v +w, then u = v.

Proof. u+w and v+w are elements of V by Axiom 1. Since w ∈ V , there exists an opposite,
also called an “additive inverse,” −w ∈ V . Adding this to both sides of u+w = v +w on the
right gives (u+w) + (−w) = (v+w) + (−w), and the associative law gives u+ (w+ (−w)) =

v + (w + (−w)), so u+ 0 = v + 0. By Axiom 3, u = v.

Theorem 1.3. Given u,w ∈ V , if u+w = w, then u = 0.

Proof. Since w ∈ V , there exists an additive inverse −w ∈ V . Adding this to both sides of
u + w = w on the right gives (u + w) + (−w) = w + (−w), and the associative law gives

u+ (w + (−w)) = w+ (−w), so u+ 0 = 0. By Axiom 3, u = 0.

Theorem 1.4. For any v ∈ V , (−v) + v = 0.

Proof. (−v) + v ∈ V by Axiom 1. The following steps use Axioms 2, 3, 4.

((−v) + v) + ((−v) + v) = (((−v) + v) + (−v)) + v

= ((−v) + (v + (−v))) + v

= ((−v) + 0) + v

= (−v) + v,

so the previous Theorem applies with u and w both equal to (−v)+v, to show (−v)+v = 0.
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Theorem 1.5. For any v ∈ V , 0+ v = v.

Proof. We use the fact that v has an additive inverse, the associative law, and the previous
Theorem.

0+ v = (v + (−v)) + v = v + ((−v) + v) = v + 0 = v.

Theorem 1.6 (Left Cancellation). Given u,v,w ∈ V , if w + u = w+ v, then u = v.

Proof. w + u and w + v are in V by Axiom 1. Since w ∈ V , there exists an additive inverse
−w ∈ V . Adding this to both sides of w + u = w + v on the left gives (−w) + (w + u) =
(−w) + (w+v), and the associative law gives ((−w) +w) +u = ((−w) +w) +v. By Theorem

1.4, 0+ u = 0+ v, and by the previous Theorem, u = v.

Theorem 1.7 (Uniqueness of Zero Element). Given u,w ∈ V , if w + u = w, then u = 0.

Proof. w = w+0 by Axiom 3, so if w+u = w, then w+u = w+0, and the previous Theorem
gives u = 0.

Theorem 1.8 (Uniqueness of Additive Inverse). Given v,w ∈ V , if v +w = 0 then v = −w
and w = −v.

Proof. v + (−v) = 0 by Axiom 4, so if v + w = 0, then v + w = v + (−v), and the Left
Cancellation theorem gives w = −v.

(−w) + w = 0 by Theorem 1.4, so if v +w = 0, then v +w = (−w) +w, and the Right

Cancellation theorem gives v = −w.

Theorem 1.9. −0 = 0.

Proof. 0+ 0 = 0 by Axiom 3, so the previous Theorem applies, with v = 0 and w = 0, to show
that 0 = −0.

Theorem 1.10. For any v ∈ V , −(−v) = v.

Proof. Since −v ∈ V and v + (−v) = 0 by Axiom 4, Theorem 1.8 applies, with w = −v, to

show v = −w = −(−v).

Theorem 1.11. Given u,x ∈ V , −(u+ x) = (−x) + (−u).

Proof. Note −x and −u are in V by Axiom 4, and u + x and (−x) + (−u) are in V by
Axiom 1. Consider the sum (u + x) + ((−x) + (−u)). Using the associative law, it simplifies:
u+(x+((−x)+(−u))) = u+((x+(−x))+(−u)) = u+(0+(−u)) = (u+0)+(−u) = u+(−u) = 0.
So, Theorem 1.8 applies, with v = u + x and w = (−x) + (−u), to show w = −v, and

(−x) + (−u) = −(u+ x).

The previous results only used Axioms 1 – 4, about “+,” but the next result, even though
its statement refers only to +, uses a scalar multiplication trick, together with the distributive
axioms, which relate scalar multiplication to addition.
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Theorem 1.12 (Commutative Property of Addition). For any v,w ∈ V , v +w = w + v.

Proof. We start with (1 + 1) · (v +w), which is in V by both closure axioms, set LHS=RHS,
and use both distributive laws:

(1 + 1) · (v +w) = (1 + 1) · (v +w)

((1 + 1) · v) + ((1 + 1) ·w) = (1 · (v +w)) + (1 · (v +w))

((1 · v) + (1 · v)) + ((1 ·w) + (1 ·w)) = (v +w) + (v +w)

(v + v) + (w +w) = (v +w) + (v +w).

Then, the associative law gives v + (v + (w +w)) = v + (w + (v +w)), and Left Cancellation
leaves v+(w+w) = w+(v+w). Using the associative law again, (v+w)+w = (w+v)+w,

and Right Cancellation gives the result v +w = w + v.

Theorem 1.13. For any v ∈ V , 0 · v = 0.

Proof. 0 ·v ∈ V by Axiom 5. The distributive law is needed. 0 ·v = (0+0) ·v = (0 ·v)+ (0 ·v).
Theorem 1.3 applies, with u and w both equal to 0 · v, to show 0 · v = 0.

Theorem 1.14. For any v ∈ V , (−1) · v = −v.

Proof. (−1)·v ∈ V by Axiom 5. Using Axiom 7, the distributive law, and the previous Theorem,
v + ((−1) · v) = (1 · v) + ((−1) · v) = (1 + (−1)) · v = 0 · v = 0. Theorem 1.8 applies, with

w = (−1) · v, to show −v = w = (−1) · v.
Theorem 1.15. For any r ∈ R, r · 0 = 0.

Proof. r · 0 ∈ V by Axiom 5. Using the distributive law, r · 0 = r · (0 + 0) = (r · 0) + (r · 0).
Theorem 1.3 applies with u = w = r · 0, to show r · 0 = 0.

Theorem 1.16. For any r ∈ R and u ∈ V , (−r) · u = −(r · u).
Proof. (−r) · u and r · u are in V by Axiom 5. Using the distributive law, and Theorem 1.13,
(r · u) + ((−r) · u) = (r + (−r)) · u = 0 · u = 0. Theorem 1.8 applies, with v = r · u and

w = (−r) · u, to show w = −v, so (−r) · v = −(r · v).
Theorem 1.17. Given r ∈ R and u ∈ V , if r · u = 0, then r = 0 or u = 0.

Proof. There are two cases: given r ∈ R, either r = 0, in which case the Theorem is proved
already, or r �= 0. So, supposing r �= 0, multiply both sides of r·u = 0 by 1

r , to get
1
r ·(r·u) = 1

r ·0.
By Axioms 6 and 7, the LHS simplifies to (1r r) · u = 1 · u = u, and by Theorem 1.15, the RHS

simplifies to 0, proving u = 0.
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Theorem 1.18. For any v ∈ V , the following are equivalent: (1) v + v = 0, (2) v = −v, (3)
v = 0.

Proof. (1) =⇒ (2) by Theorem 1.8. To show (2) =⇒ (1), start with v = −v and add v to
both sides on the left to get v + v = v + (−v) = 0. (3) =⇒ (1) just by Axiom 3: 0+ 0 = 0,
so if v = 0, then v + v = 0. Note that so far, we have only used the axioms and theorems for
addition, but to show (1) =⇒ (3), which establishes the equivalences of the Theorem, we need
properties of scalar multiplication. If 0 = v+v, then 0 = (1 ·v) + (1 ·v) = (1+ 1) ·v. Theorem
1.17 applies, and since (1 + 1) �= 0 ∈ R, v must be 0.

Definition 1.19. It is convenient to abbreviate the sum v+(−w) as v−w. This defines vector
subtraction, so that “v minus w” is defined to be the sum of v and the additive inverse of w.

Notation 1.20. Considering the associative law for addition, it is convenient to write the sum
of more than two terms without all the parentheses: u + v +w can mean either (u + v) +w,
or u+ (v+w), since we get the same result either way. In light of Theorem 1.16, we can write
−r ·v to mean either (−r) ·v or −(r ·v), since these are the same. We can also drop the “dot” for
scalar multiplication, when it is clear which symbols are scalars and which are vectors: instead
of 3 ·u, just write 3u. It is also convenient to establish an “order of operations,” so that just like
with arithmetic, scalar multiplication is done before addition or subtraction. So, 4v+u− 3w is
a short way to write (4 · v) + (u+ (−(3 ·w))).
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2 Subspaces

The general idea of the statement “W is a subspace of V ” is that W is a vector space contained
in a bigger vector space V , and the + and · operations are the same in W as they are in V .

Definition 2.1. Let (V,+V , ·V ) be a vector space. A set W is called a subspace of V means:

• W ⊆ V , and

• There are operations +W and ·W such that (W,+W , ·W ) is a real vector space, and

• For all x, y ∈ W , x+V y = x+W y, and

• For all x ∈W , r ∈ R, r ·V x = r ·W x.

Theorem 2.2. If W is a subspace of V , where V has zero element 0V , then 0V is an element
of W , and is equal to the zero element of W .

Proof. By the second part of Definition 2.1, W is a vector space, so by Property 3. of Definition
1.1 applied to W , W contains a zero element 0W ∈ W . By the first part of Definition 2.1,
W ⊆ V , which implies 0W ∈ V . By part 3. of Definition 1.1 applied to W , 0W +W 0W = 0W ,
and by Definition 2.1, 0W +V 0W = 0W +W 0W . It follows that 0W +V 0W = 0W ∈ V , and then
Theorem 1.3 implies 0W = 0V .

Theorem 2.2 can be used in this way: if W is a set that does not contain 0V as one of its
elements, then W is not a subspace of V .

Theorem 2.3. If W is a subspace of V , then for every w ∈ W , the opposite of w in W is the
same as the opposite of w in V .

Proof. Let w be an element of W ; then w ∈ V because W ⊆ V .
First, we show that an additive inverse of w in W is also an additive inverse of w in V . Let

y be any additive inverse of w in W , meaning y ∈ W and w +W y = 0W . (There exists at
least one such y, by Definition 1.1 applied to W .) W ⊆ V implies y ∈ V . From Theorem 2.2,
0W = 0V , and w +W y = w +V y by Definition 2.1, so w +V y = 0V , which means y is an
additive inverse of w in V .

Second, we show that an additive inverse of w in V is also an additive inverse of w inW . Let
z be any additive inverse of w in V , meaning z ∈ V and w+V z = 0V . (There exists at least one
such z, by Definition 1.1 applied to V .) Then w +V z = 0V = w+V y, so by Left Cancellation
in V , z = y and y ∈ W , which imply z ∈ W and w +W z = w +W y = 0W , meaning z is an
additive inverse of w in W .

By uniqueness of opposites (Theorem 1.8 applied to either V or W ), we can refer to y = z

as “the” opposite of w, and denote it y = −w.

Theorem 2.3 also implies that subtraction inW is the same as subtraction in V : by Definition
1.19, for v, w ∈W , v −W w = v +W y = v +V y = v −V w.

Theorem 2.3 can be used in this way: if W is a subset of a vector space V and there is an
element w ∈W , where the opposite of w in V is not an element ofW , then W is not a subspace
of V .
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Theorem 2.4. Let (V,+V , ·V ) be a real vector space, and let W be a subset of V . Then W ,
with the same addition and scalar multiplication operations, is a subspace of V if and only if:

(1) x ∈W , y ∈W imply x+V y ∈ W (closure under +V addition), and
(2) r ∈ R, x ∈ W imply r ·V x ∈W (closure under ·V scalar multiplication), and
(3) W �=Ø.

Proof. Let V have zero element 0V .
First suppose W is a subspace, so that as in the Proof of Theorem 2.2, W contains a zero

element 0W , which shows W �=Ø, and (3) is true. From Property 1. of Definition 1.1, x ∈ W ,
y ∈W imply x+W y ∈W , and from the definition of subspace, x+W y = x+V y, so x+V y ∈ W ,
establishing (1). Similarly, from Property 5. of Definition 1.1, r ∈ R implies r ·W x ∈ W , and
from the definition of subspace, r ·W x = r ·V x, so r ·V x ∈W , establishing (2).

Conversely, it follows from (1), (2), and (3) that W is a subspace of V , as follows: W is a
subset of V by hypothesis. Define +W and ·W by x +W y = x +V y, and r ·W x = r ·V x —
these define operations on W by (1) and (2) (the closure Properties 1. and 5. from Definition
1.1, and also parts of Definition 2.1), but it remains to check the other properties to show that
(W,+W , ·W ) is a vector space. SinceW �=Ø by (3), there is some x ∈ W , and by (2), 0 ·V x ∈ W .
By Theorem 1.13, 0 ·V x = 0V , so 0V ∈W , and it satisfies x+W 0V = x+V 0V = x for all x ∈ W ,
so 0V is a zero element for W . The scalar multiple identity also works: 1 ·W x = 1 ·V x = x.
Also by (2), for any x ∈ W , (−1) ·V x ∈ W , and it is easy to check (−1) ·V x is an additive
inverse of x in W : x+W ((−1) ·V x) = (1 ·V x) +V ((−1) ·V x) = (1 + (−1)) ·V x = 0 ·V x = 0V .
The other vector space properties, (2,6,8,9) from Definition 1.1, follow immediately from the
facts that these properties hold in V and the operations in W give the same sums and scalar
multiples.
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3 Additive Functions and Linear Functions

Let U and V be real vector spaces.

Definition 3.1. A function f : U → V is “additive” means: f has the property that f(a+b) =
f(a) + f(b) for all a,b ∈ U .

Definition 3.2. A function f : U → V is “linear” means: f is additive and also has the “scaling
property”: f(r · a) = r · f(a) for all r ∈ R and all a ∈ U .

Exercise 3.3. If f : U → V is additive, then: f(0U ) = 0V , and for all a ∈ U , f(−a) = −f(a).
Lemma 3.4. If f : U → V is additive, then for every integer n ∈ Z, f(n · a) = n · f(a).
Proof. The n = 0 case follows from Exercise 3.3 and vector space properties. The n = 1 case
follows from the vector space axiom for 1·a. If the claim holds for a positive integer n, then it also
holds for the negative integer−n: f((−n)·a) = f(−(n·a)) = −f(n·a) = −(n·f(a)) = (−n)·f(a),
using Exercise 3.3 and Theorem 1.16.

To prove the claim for positive integers by induction on n, suppose f(n · a) = n · f(a), and
we want to show f((n+ 1) · a) = (n+ 1) · f(a).

f((n+ 1) · a) = f((n · a) + (1 · a)) = f(n · a) + f(1 · a) = n · f(a) + 1 · f(a) = (n+ 1) · f(a).

Lemma 3.5. If f : U → V is additive, then for every rational number r ∈ Q, f(r ·a) = r ·f(a).
Proof. (The set Q of rational numbers is the set of fractions with integer numerator and non-zero
integer denominator — their decimal expansions are repeating or terminating, so Q is contained
in, but not equal to, the set R.)

Let r = p
q with p, q ∈ Z, q > 0. Using the previous Lemma applied to both p and q,

p · f(a) = f(p · a) = f((q · p
q
) · a) = f(q · (p

q
· a)) = q · f(p

q
· a) =⇒ p

q
· f(a) = f(

p

q
· a).

Example 3.6. It is not so hard to construct a function which has the scaling property but
which is not linear because it is not additive. Define a function f : R2 → R by the piecewise
formula: f(x, y) = x if y �= 0, and f(x, y) = 0 if y = 0. Then, to show f(r · (x, y)) = r · f(x, y)
for any r ∈ R, there are three cases to check:

y �= 0, r �= 0 =⇒ f(r · (x, y)) = f(rx, ry) = rx = r · f(x, y).
y = 0, r �= 0 =⇒ f(r · (x, y)) = f(rx, 0) = 0 = r · 0 = r · f(x, y).
r = 0 =⇒ f(r · (x, y)) = f(0, 0) = 0 = r · f(x, y).
However, f is not additive: let �a = (1, 1) and �b = (1,−1). Then f(�a) = 1 and f(�b) = 1, so

f(�a) + f(�b) = 2, while f(�a+�b) = f(2, 0) = 0.
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There also exist non-linear functions f : U → V which are additive but do not have the
scaling property for all real scalars; however, these are more difficult to construct. One reason it
can get messy is that Lemma 3.5 shows the scaling property must work for all rational scalars,
so in such an example, the scaling property could only fail for some irrational scalars.

One can conclude from the Lemma that if we restrict the field of scalars to rationals only,
Q, then every additive function is linear. However, for fields of scalars (such as R or C) that
contain but are not equal to Q, there may be an additive function that does not have the scaling
property. The following construction gives an example of an additive map f : R → R which
does not satisfy f(r · �a) = r · f(�a) for all r,�a ∈ R (continuing to use the vector notation �a even
though �a is just a number).

Example 3.7. Step 1. R is a vector space over the field Q. Use the usual addition on the group
R. Also, for any scalar r ∈ Q, use the usual real number multiplication to define r ·�a ∈ R. All the
vector space axioms are satisfied (Definition 1.1 with V = R, but R in the scalar multiplication
axioms replaced by Q).

Step 2. There exists a basis β for R, as a vector space over Q. Such a basis is called a “Hamel
basis” in number theory; the existence requires the Theorem that any vector space over any field
has a basis, which is a consequence of the Axiom of Choice from set theory. In particular, any
real number is uniquely expressible as a finite sum of rational multiples of elements of β.

Step 3. β is non-empty (since R is not the trivial space {0}), and β contains more than 1
element, since β1 ∈ β =⇒ β1 �= 0 and span({β1}) = {r · β1 : r ∈ Q}, and this is not all of R
because it does not contain the number

√
2 · β1.

Step 4. Let β = {β1, β2, . . .} be a basis. To define a function f : R → R, we first define
the values of f on the basis elements. Define f(β1) = 1 and f(βj) = 0 for all j �= 1. (I picked
this to get a simple example, other than the zero map or the identity map. There could be lots
of other choices.) Then, define f for an arbitrary element �a in R by expanding �a as a rational
linear combination of basis elements: �a = c1β1 + . . . cnβn, and treating f as if it were additive:

f(�a) = f(c1β1+c2β2+. . .+cnβn) = c1f(β1)+c2f(β2) . . .+cnf(βn) = c1 ·1+c2·0+. . .+cn ·0 = c1.

The uniqueness of the coefficients c1, . . . , cn is crucial, for f to be a well-defined function.
Step 5. Then it is easy to check that f really is additive: if �a = c1β1 + . . . cnβn and

�b = b1β1 + . . .+ bNβN , then �a+�b = (c1β1 + . . . cnβn) + (b1β1 + . . .+ bNβN ) = (c1 + b1)β1 + . . .,

and f(�a+�b) = c1 + b1 = f(�a) + f(�b).
Step 6. The above steps define a map f : R → R. It actually is linear when R is considered

as a vector space over Q (allowing only rational scalar multiples), but it is not linear when R is
considered as a vector space over R. That is, it does not have the scaling property for all real
scalars, as the following example shows. Consider r =

√
2 ∈ R and �a = β1 ∈ R. Since

√
2β1

is a real number, it is equal to c1β1 + . . .+ cnβn for some rational coefficients c1, . . . , cn. Then
r · f(�a) = √

2 · f(1 · β1) =
√
2 · 1 =

√
2, but f(r · �a) = f(

√
2β1) = f(c1β1 + . . . + cnβn) = c1.

Since c1 ∈ Q and
√
2 /∈ Q, f is not linear.

Remark: The above Step 2 does not actually construct the basis β, it merely asserts its
existence. So, the definition of f doesn’t say explicitly what number would result from plugging
in a specific number x into f , for example: f(

√
5 + 2π) =???

Exercise 3.8. Considering R as a vector space over the field Q, show that
√
3 /∈ span({1,√2}).

Hint: you may assume that
√
3,

√
2 /∈ Q, and

√
3 /∈ span({√2}).
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4 Distance functions

The following notion of distance measurement applies to any set (like a sphere, plane, or vector
space).

Definition 4.1. A “distance function” on a set P is a function d : P × P → R such that

• d(x, y) ≥ 0

• x = y =⇒ d(x, y) = 0.

• d(x, y) = 0 =⇒ x = y.

• d(x, y) = d(y, x).

• d(x, z) ≤ d(x, y) + d(y, z).

Example 4.2. Let P = Rn; then for column vectors �x = (x1, x2, . . . , xn)n×1, �y = (y1, y2, . . . , yn)n×1,
the following is a distance function:

d(�x, �y) =
√
(y1 − x1)2 + . . .+ (yn − xn)2

=
√
(�y − �x) · (�y − �x) =

√
(�y − �x)T (�y − �x),

where �a · �b is the “dot product,” equal to the matrix multiplication of the row (�a)T and the

column �b.

This particular distance function in the Example is not unique, but its simple formula makes
it convenient, and it is the same as the “Euclidean” distance familiar from pre-calculus in R1

and R2, and from multivariable calculus in R3. One way in which it is not unique, for example,
is that multiplying the above function d by any positive constant gives another function which
still satisfies all five properties. This corresponds to a “choice of scale” of the vector space P ,
and our choice is that the vector (1, 0, 0, . . . , 0) has length 1.

Exercise 4.3. Given any set P and any distance function d, suppose α : P → P is a function
such that d(α(x), α(y)) = d(x, y) for all x, y ∈ P . Show α must be one-to-one. Give an example
of a set P and a function α which satisfies the equality, but which is not “onto.”

Definition 4.4. A function α : P → P such that α is onto, and d(α(x), α(y)) = d(x, y) for all
x, y ∈ P , is called a “motion of P .” The set of all such functions is denoted M(P, d).

Exercise 4.5. Any motion of P must be an invertible function (why?), and the inverse function
is also a motion of P . If α : P → P and β : P → P are motions of P , then so is the composite
function β ◦ α : P → P .
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Definition 4.6. Given a real vector space V , a function n : V → R is a “norm” means: n has
the following properties:

• n(v) ≥ 0

• n(k · v) = |k|n(v).
• n(u+ v) ≤ n(u) + n(v).

• n(v) = 0 =⇒ v = 0.

Proposition 4.7. Given a real vector space V and a norm n, the function

d(u,v) = n(v − u)

is a distance function on V .

It is often convenient to allow complex numbers in linear algebra. Let C denote the set of
all complex numbers, C = {x + iy : x, y ∈ R, i2 = −1}, which includes the set of real numbers
R as a subset (numbers with y = 0). The “complex conjugation” function C → C is denoted by
a “bar,” so if z = x+ iy, then z̄ = x+ iy = x− iy. Complex conjugation satisfies the following
identities for z, w ∈ C: z + w = z̄ + w̄, zw = z̄w̄.

Definition 1.1, of a “real vector space,” can be modified to define a “complex vector space,”
in which scalar multiplication allows complex numbers as scalars. The first four properties
listed in Definition 1.1, on addition, are the same, and the remaining properties involving scalar
multiplication can be modified only by changing the set of scalars R to the new set of complex
scalars, C.

Definition 3.2 can also be modified: where U and V are both complex vector spaces, an
additive map f : U → V is “linear over C” means: f(z · a) = z · f(a) for all z ∈ C.

Let Cn denote the set of vectors with n complex components — it is an example of a complex
vector space.

In later statements which could apply to either Rn or Cn, I’ll use Kn to denote either the
real vector space Rn or the complex vector space Cn, and K for the set of scalars (either R or
C).

The definition of “norm” can also be adapted to complex vector spaces; the input is an
element of a complex vector space, but the output is still a nonnegative real number. The only
modification to Definition 4.6 is that the “absolute value” refers to the complex number version
of absolute value: if z = x + iy, then |z| is defined by the formula |z| =

√
x2 + y2 (the same

quantity appearing as the radius in the polar coordinate formula). Proposition 4.7 also can be
applied to a complex vector space V , so that a norm on V defines a distance function on the set
V using the same formula.
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5 Bilinear forms and sesquilinear forms

The “dot product” in Rn was useful for understanding the connections between the geometry
and the algebra of vectors. It is called a “product” because it takes two vectors and calculates
a scalar. This idea can be generalized by considering other functions which take two vectors as
input and give one scalar as output.

The notation for the dot product, �x · �y, could be replaced by the “bracket” notation, 〈�x, �y〉.
However, to emphasize that we are working with a multivariable function that takes two input
vectors �x ∈ V , �y ∈ V , and gives scalar output (in K = R or K = C), we call the function “g,”
and use the function notation g : V × V → K, and the expression 〈�x, �y〉 = g(�x, �y).

Definition 5.1. A function g : V × V → K is “bi-additive” means: g satisfies both identities:

• g(x,y + z) = g(x,y) + g(x, z),

• g(x+ z,y) = g(x,y) + g(z,y).

Definition 5.2. A function g : V × V → K is “bilinear” means: g is bi-additive, and g also
satisfies these two identities for any k ∈ K:

• g(k · x,y) = k · g(x,y),
• g(x, k · y) = k · g(x,y).
A function which is bilinear is also called a “bilinear form.”

Exercise 5.3. Given a bi-additive function g on a vector space V , for all vectors x ∈ V ,
g(x,0) = g(0,x) = 0. Also, g(k · x,y) = g(x, k · y) = k · g(x,y) for all rational scalars k ∈ Q. It
further follows that g(x,y − z) = g(x,y) − g(x, z) and g(x− z,y) = g(x,y)− g(z,y).

Exercise 5.4. Any bi-additive function g satisfies the following identity:

g(u+ v −w,u+ v −w)

= g(u−w,u−w) + g(v −w,v −w)− g(u− v,u− v) + g(u,u) + g(v,v) − g(w,w).

Exercise 5.5. Any bilinear function g satisfies the following identity, for vectors u,w ∈ V and
scalars λ ∈ K:

g(λ · u−w, λ · u−w) = (1− λ)(g(w,w) − λg(u,u)) + λg(u−w,u−w).

The following Theorem deals with the special case that the vector space V is Kn, so its
elements are column vectors. Then any bilinear form can be expressed as a certain kind of
matrix product.

Theorem 5.6. If g is a bilinear form on Kn, then there exists a matrix Gn×n with entries in
K such that

g(x,y) = yT
1×nGn×nxn×1.
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Proof. Recall the standard basis of column vectors {e� = (0, . . . , 0, 1, 0, . . . , 0)n×1}, for � =
1, . . . , n. Define the entries of G by the formula Gj� = g(e�, ej). For column vectors x =

∑
x�e

�

and y =
∑
yje

j, the bilinearity properties give

g(x,y) =

n∑
j=1

yj

(
n∑

�=1

x�g(e
�, ej)

)
=

n∑
j=1

yj

(
n∑

�=1

Gj�x�

)
= yTGx,

where yT is a row vector (the transpose of the column vector y).

Theorem 5.7. Given a bi-additive function g on a vector space V , the following are equivalent:

1. For all vectors x ∈ V , g(x,x) = 0;

2. For all x, y ∈ V , g(x,y) = −g(y,x).
Proof. To show 2 . =⇒ 1 ., just plug y = x into 2 . to get g(x,x) = −g(x,x), which implies 1 .

For 1 . =⇒ 2 ., expand using the bi-additive property:

g(x+ y,x + y) = g(x,x) + g(y,x) + g(x,y) + g(y,y)

=⇒ 0 = 0 + g(y,x) + g(x,y) + 0,

and 2 . follows.

Definition 5.8. A function g : V × V → K which is bi-additive and satisfies g(x,x) = 0 for all
x ∈ V , and also g(λ · y,x) = λg(y,x) for all x, y ∈ V , λ ∈ K, is called “alternating.”

Theorem 5.9. If g : V × V → K is alternating, then it is a bilinear form.

Proof. Applying Theorem 5.7 to the bi-additive function g, for all x, y ∈ V , g(x,y) = −g(y,x).
So, for any scalar λ ∈ K, g(x, λ·y) = −g(λ·y,x) = −(λg(y,x)) = −(λ(−g(x,y))) = λg(x,y).

So, a bi-additive function which is alternating can be called an alternating bilinear form or
an “alternating form.”

Theorem 5.10. Given a complex vector space V and a bi-additive function g : V × V → C

satisfying g(λ · y,x) = λg(y,x) for all x, y ∈ V , λ ∈ C, the following are equivalent:

1. For all vectors x ∈ V , g(x,x) = 0;

2. For all x, y ∈ V , g(x,y) = −g(y,x);
3. g is an alternating form;

4. g is a bilinear form and g(x,x) is real for all x ∈ V .

Proof. The equivalence 1 . ⇐⇒ 2 . was established in Theorem 5.7, and 1 . ⇐⇒ 3 . is Definition
5.8. For the implication 1 . =⇒ 4 ., if g(x,x) = 0, then obviously g(x,x) is real, and the bilinear
property was proved in Theorem 5.9.

To show 4 . =⇒ 1 ., consider any x ∈ V , so g(x,x) is real. The number g((1+i) ·x, (1+i) ·x)
is also real, and using the bilinearity property:

g((1 + i) · x, (1 + i) · x) = (1 + i)2g(x,x) = 2ig(x,x),
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so we can conclude ig(x,x) is real. However, the only complex number which is real and whose

product with i is also real is 0, so g(x,x) = 0.

Definition 5.11. A function g : V × V → K is “sesquilinear” means: g is bi-additive, and g
also satisfies these two identities for any k ∈ K:

• g(k · x,y) = k · g(x,y),
• g(x, k · y) = k · g(x,y).
Note that the first identity is the same as in Definition 5.2, and the second one involves the

complex conjugate of the scalar k on the RHS. A function which is sesquilinear is also called a
“sesquilinear form.”

If K = R, that is, in the case where V is a real vector space and g is a real-valued function,
then only real scalars k are allowed, and the complex conjugate of the real scalar k is equal
to k itself (k = k + 0i = k − 0i = k). So in the real case, bilinear and sesquilinear mean the
same thing. In either the real or complex case, the Definition is consistent with the result from
Exercise 5.3 that g(x, k · y) = k · g(x,y) for rational k, since all rational numbers are real and
satisfy k = k.

Theorem 5.12. Given a complex vector space V , and a function g : V × V → C, the following
are equivalent:

1. g is sesquilinear and for all vectors x ∈ V , g(x,x) = 0;

2. g is sesquilinear and for all x, y ∈ V , g(x,y) = −g(y,x);
3. g is both alternating and sesquilinear;

4. g is both bilinear and sesquilinear;

5. g is the constant function zero.

Proof. Since sesquilinear functions are bi-additive, 1 . ⇐⇒ 2 . by Theorem 5.7. Since sesquilin-
ear functions also satisfy g(k ·x,y) = k ·g(x,y), 1 . ⇐⇒ 3 . by Definition 5.8, and also Theorem
5.9 applies, so g is bilinear and 1 . =⇒ 4 .

To show 4 . =⇒ 5 ., for any x, y ∈ V , g(x, i · y) = ig(x,y) by the bilinear property, but
g(x, i · y) = (−i)g(x,y) by the sesquilinear property. Dividing by i gives g(x,y) = −g(x,y), so
g(x,y) = 0.

Finally, 5 . =⇒ 1 . is obvious.

In analogy with Theorem 5.6, any sesquilinear form on the vector spaceKn can be represented
by a combination of complex conjugation and matrix multiplication.

Theorem 5.13. If g is a sesquilinear form on Kn, then there exists a matrix Gn×n with entries
in K such that

g(x,y) = yT
1×nGn×nx.
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Proof. Use the same standard basis vectors as the previous Theorem: {e� = (0, . . . , 0, 1, 0, . . . , 0)},
for � = 1, . . . , n. Define the entries of G by the formula Gj� = g(e�, ej). For x =

∑
x�e

� and
y =

∑
yje

j , the sesquilinear properties give

g(x,y) =

n∑
j=1

yj

(
n∑

�=1

x�g(e
�, ej)

)
=

n∑
j=1

yj

(
n∑

�=1

Gj�x�

)
= yTGx,

where yT denotes the row vector listing the complex conjugates of the entries of y: (y1, . . . , yn).

In the real case, this gives the same real matrix G as Theorem 5.6.
Here are three properties which a bilinear form or a sesquilinear form g : V × V → K could

have:

Definition 5.14. g is “non-degenerate” means: for each non-zero vector x ∈ V , x �= 0, there
exists a vector y ∈ V so that g(x,y) �= 0.

Definition 5.15. g is “positive semidefinite” means: for all x ∈ V , g(x,x) ≥ 0.

Definition 5.16. g is “positive definite” means: for every non-zero x ∈ V , g(x,x) > 0.

Example 5.17. The function which always gives output 0 (g(x,y) = 0 for all x,y ∈ V ) is
both bilinear and sesquilinear (as in Theorem 5.12), and it is positive semidefinite. However,
unless V is a zero-dimensional vector space, the zero function is neither positive definite nor
non-degenerate.

The following Theorem applies to the case where the vector space V is Kn.

Theorem 5.18. Given a bilinear or sesquilinear form g on Kn, let G be the matrix from the
corresponding Theorem (5.6 or 5.13). g is non-degenerate if and only if G is invertible.

Proof. G is not invertible if and only if there is some element x �= 0 in the nullspace of G. In
the sesquilinear case, for any y ∈ Kn,

g(x,y) = yTGx = yT0 = 0,

which is equivalent to g not being non-degenerate. The equation for the bilinear case is similar
(delete the bar).

Theorem 5.19. For any real or complex vector space V , if a bilinear or sesquilinear form g is
positive definite, then it is non-degenerate and positive semidefinite.

Proof. The non-degeneracy follows immediately from the definitions — just choose y = x in
the definition of non-degenerate. For positive semidefinite, it remains only to check g(0,0) = 0,

which follows from Exercise 5.3.

Example 5.20. The converse of the above Theorem does not hold; a bilinear form can be
non-degenerate and positive semidefinite without being positive definite. For V = R2, and

�x =

(
x1
x2

)
, �y =

(
y1
y2

)
, define

g(�x, �y) = x1y1 + 2x2y1 + x2y2 = (y1 y2)1×2

(
1 2
0 1

)
2×2

(
x1
x2

)
2×1

.
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It is easy to check that g is bilinear, and since the coefficient matrix is non-singular, g is non-
degenerate by Theorem 5.18. Further, g is positive semidefinite, since

g(�x, �x) = x21 + 2x1x2 + x22 = (x1 + x2)
2 ≥ 0,

but not positive definite, since if �x =

(
1
−1

)
, then g(�x, �x) = 0.

Theorem 5.21. Given a non-degenerate bilinear or sesquilinear form g on V , and vectors x,
z ∈ V , if g(x,y) = g(z,y) for all y ∈ V , then x = z.

Proof. If g(x,y) = g(z,y) for all y ∈ V , then g(x − z,y) = g(x,y) − g(z,y) = 0 for all y ∈ V

Since x−z �= 0 would contradict the definition of non-degenerate, we can conclude x−z = 0.

Theorem 5.22. Given a non-degenerate bilinear or sesquilinear form g on V , suppose H : V →
V is any function which is “onto” (for any y ∈ V , there exists w ∈ V such that H(w) = y),
and which satisfies the equation

g(H(x), H(y)) = g(x,y)

for all x,y ∈ V . Then H is a linear function.

Proof. There are two parts from the definition of linear to check. Suppose x ∈ V and λ ∈ K.
Then, for any y ∈ V , there exists w ∈ V such that H(w) = y, and

g(H(λ ·x),y) = g(H(λ ·x), H(w)) = g(λ ·x,w) = λg(x,w) = λg(H(x), H(w)) = g(λ ·H(x),y).

By the previous Theorem, this shows H(λ · x) = λ ·H(x).
Given x, z ∈ V , and H(w) = y as above,

g(H(x+ z),y) = g(H(x+ z), H(w)) = g(x+ z,w)

= g(x,w) + g(z,w) = g(H(x), H(w)) + g(H(z), H(w))

= g(H(x) +H(z), H(w)) = g(H(x) +H(z),y),

and again by Theorem 5.21, we can conclude H(x+ z) = H(x) +H(z), so H is linear.

Definition 5.23. Given a function g : V ×V → K, define a function q : V → K by the formula:

q(x) = g(x,x).

q is a “quadratic form” means that q(x) = g(x,x) for some bilinear or sesquilinear form g.

In general, a quadratic form is not linear, but does satisfy q(0) = 0 by Exercise 5.3. The
expression g(x,x) appeared already in Definitions 5.15, 5.16.

Notation 5.24. Given a function g : V × V → K, define a function ψ : V × V → K by the
formula:

ψ(x,y) = g(y − x,y − x).
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The functions q and ψ defined by g are related by the identity ψ(0,y) = g(y,y) = q(y), and
also if g is bi-additive, then:

ψ(x,y) = q(y − x) = g(y − x,y − x)

= g(y,y) − g(y,x) − g(x,y) + g(x,x) (1)

= q(y) − g(y,x) − g(x,y) + q(x).

Theorem 5.25. Given a bi-additive function g on a vector space V , let q and ψ be defined as
above. If H : V → V is any function satisfying g(H(x), H(y)) = g(x,y) for all x,y ∈ V , then
H also satisfies q(H(x)) = q(x) and ψ(H(x), H(y)) = ψ(x,y).

Proof. The first claim follows immediately from the hypothesis and the definition of q:

q(H(x)) = g(H(x), H(x)) = g(x,x) = q(x).

The second claim follows from the above Equation (1):

ψ(H(x), H(y)) = g(H(y), H(y)) − g(H(y), H(x)) − g(H(x), H(y)) + g(H(x), H(x))

= g(y,y) − g(y,x) − g(x,y) + g(x,x)

= ψ(x,y).

Notation 5.26. Every complex number z ∈ C is, by definition, of the form z = x + iy, where
x and y are real numbers. The function that takes input z ∈ C and gives output x is called the
“real part” function, denoted Re(z) = x. Similarly, the “imaginary part” function is denoted
Im(z) = y.

Notation 5.27. For a vector v in a complex vector space V , scalar multiplication is defined for
any complex number scalar z, and denoted by z ·v. If we agree to forget about complex numbers
and work only with real scalars (z = x+ iy is real exactly when y = 0, so z = x+ i0 = x), then
the same set of vectors V still satisfies the axioms defining a real vector space. It makes sense
to refer to “real linear” functions or “real bilinear functions” when they are linear or bilinear
only for real scalars (but not necessarily for all complex scalars).

Example 5.28. If V is a complex vector space, and g : V × V → C is a complex bilinear or
sesquilinear form, then the following composite function is defined: Re ◦ g : V × V → R. This
composition has formula (Re ◦ g)(u,v) = Re(g(u,v)), so it takes two vectors in V as input
and returns a real scalar as output. The function Re ◦ g is a real bilinear form, on the set V
considered as a real vector space: it is bi-additive, and for real scalars r, (Re ◦ g)(r · u,v) =
(Re ◦ g)(u, r · v) = r((Re ◦ g)(u,v)).
Example 5.29. If V is a complex vector space, and g : V × V → C is a complex bilinear or
sesquilinear form, which is positive definite (or semidefinite), then the real bilinear form Re ◦ g
from the previous Example is positive definite (or semidefinite): since positive numbers are real
numbers, if g(u,u) > 0, then (Re ◦ g)(u,u) = Re(g(u,u)) = g(u,u) > 0.
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6 Inner Products

Definition 6.1. An “inner product” on a vector space V is a function g which takes two input
vectors (an ordered pair (x,y), with x and y ∈ V ), and which gives just one number as output,
satisfying three properties:

• For all vectors x, y ∈ V , and scalars λ ∈ K, g(λ · x,y) = λg(x,y).

• For all x, y, z ∈ V , g(x+ y, z) = g(x, z) + g(y, z).

• The function g also must have one of the following two properties:

� (Symmetric) For all x, y ∈ V , g(x,y) = g(y,x),

� (Hermitian) For all x, y ∈ V , g(x,y) = g(y,x). (switching the order of the inputs
gives the complex conjugate output.)

Note that the first two properties are part (but not all) of the definitions of “bilinear” and
“sesquilinear.”

There are three cases of inner products:

1. Complex Hermitian inner product: the input of g is two vectors from a complex vector
space, the output is a complex number, and g has the Hermitian property.

2. Complex symmetric inner product: the input of g is two vectors from a complex vector
space, the output is a complex number, and g has the symmetric property.

3. Real inner product: the input of g is two vectors from a real vector space (so the scalar λ
from the first property has to be real), and the output is a real number. The two choices
of symmetry property are actually identical — g is both symmetric and Hermitian, since
every real number is equal to its complex conjugate.

Proposition 6.2. For an inner product g on a real or complex vector space V ,

• For all vectors x ∈ V , g(x,0) = g(0,x) = 0.

• For all x, y, z ∈ V , g(x,y + z) = g(x,y) + g(x, z).

• If g is symmetric, then for all vectors x, y ∈ V , and scalars λ ∈ K, g(x, λ · y) = λg(x,y).

So, all inner products are bi-additive, and a symmetric inner product is always a bilinear
form.
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Theorem 6.3. Given a bilinear form g : V × V → K, the following are equivalent:

1. For all x,y ∈ V , if g(x,y) = 0, then g(y,x) = 0;

2. g is either a symmetric inner product (g(x,y) = g(y,x) for all x,y), or g is an alternating
form (g(x,y) = −g(y,x) for all x,y).

Proof. The proof of 2 . =⇒ 1 . is left as an easy exercise.
For 1 . =⇒ 2 ., this proof is based on [J] §6.1. A bilinear form g satisfies the following

identity for any x,y, z ∈ V :

g(x, g(x,y) · z− g(x, z) · y) = g(x,y)g(x, z) − g(x, z)g(x,y) = 0,

so by 1 ., these identities hold:

g(g(x,y) · z− g(x, z) · y,x) = 0

=⇒ g(x,y)g(z,x) − g(x, z)g(y,x) = 0. (2)

In the case y = x, we can factor to get this identity for all x, z ∈ V :

(g(z,x) − g(x, z))g(x,x) = 0. (3)

Suppose, toward a contradiction, that g is neither symmetric nor alternating. Then there exist
u,v ∈ V so that g(u,v) �= g(v,u), and (by Theorem 5.7 and Definition 5.8) there also exists
w ∈ V so that g(w,w) �= 0. Applying (3) to x = w, z = u, dividing by g(w,w) proves:

(g(u,w)− g(w,u))g(w,w) = 0 =⇒ g(u,w) = g(w,u).

Similarly applying (3) to x = w, z = v, we get g(v,w) = g(w,v). Applying (3) to x = v,
z = u, dividing by the non-zero quantity g(u,v)− g(v,u) proves g(v,v) = 0.

Applying (2) to x = u, y = w, z = v,

g(u,w)g(v,u) − g(u,v)g(w,u) = 0

=⇒ (g(v,u)− g(u,v))g(u,w) = 0 =⇒ g(u,w) = 0.

Similarly applying (2) to x = v, y = w, z = u proves g(v,w) = 0. Using the bi-additive
property together with g(u,w) = g(w,u) = 0,

g(u,w + v) = g(u,w) + g(u,v) = g(u,v)

g(w + v,u) = g(w,u) + g(v,u) = g(v,u)

=⇒ g(u,w + v) �= g(w+ v,u),

and then applying (3) to x = w+ v, z = u,

(g(u,w + v)− g(w + v,u))g(w + v,w + v) = 0 =⇒ g(w + v,w + v) = 0.

However, expanding and simplifying gives:

0 = g(w + v,w + v) = g(w,w) + g(w,v) + g(v,w) + g(v,v) = g(w,w) + 0 + 0 + 0,

which contradicts g(w,w) �= 0. The conclusion is that g must be either symmetric or alternating.
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Theorem 6.4. Given a complex vector space V and a function g : V × V → C, the following
are equivalent:

1. g is a Hermitian inner product;

2. g is a sesquilinear form and g(x,x) is real for all x ∈ V .

Proof. The proof of 1 . =⇒ 2 . is left as an easy exercise.
For 2 . =⇒ 1 ., sesquilinear forms satisfy the first two parts of Definition 6.1, so we only

need to check the Hermitian symmetry property. Consider any two vectors x, y ∈ V . Using the
bi-additive property,

g(x+ y,x+ y) = g(x,x) + g(x,y) + g(y,x) + g(y,y),

and since g(x+ y,x + y) and g(x,x) + g(y,y) are real, g(x,y) + g(y,x) is also real. This real
number is equal to its complex conjugate:

g(x,y) + g(y,x) = g(x,y) + g(y,x)

= g(x,y) + g(y,x). (4)

Since (4) holds for all vectors, we can replace y by i · y to get another identity, and use the
sesquilinear property:

g(x, i · y) + g(i · y,x) = g(x, i · y) + g(i · y,x)
=⇒ (−i)g(x,y) + ig(y,x) = (−i)g(x,y) + ig(y,x)

= ig(x,y)− ig(y,x),

and dividing by −i,
g(x,y) − g(y,x) = −g(x,y) + g(y,x).

Adding the last line to Equation (4), there is a cancellation and 2g(x,y) = 2g(y,x). Dividing

by 2 proves the Hermitian symmetry property.

Theorem 6.5. Given a complex vector space V and a sesquilinear form g : V × V → C, the
following are equivalent:

1. For all x,y ∈ V , if g(x,y) = 0, then g(y,x) = 0;

2. There is some non-zero complex number w so that the function

h(x,y) = w · g(x,y)
is a Hermitian inner product on V .

Proof. The proof of 2 . =⇒ 1 . is left as an easy exercise.
For 1 . =⇒ 2 ., first consider the case where g(x,x) = 0 for all x ∈ V . Then, by Theorem

5.12, g is the constant function 0, so we can let w = 1 and h = g = 0, and h trivially satisfies
the definition of Hermitian inner product.

The only remaining case is that there is some u ∈ V so that g(u,u) �= 0. Then, let w = 1
g(u,u) ,

so the function h(x,y) = w · g(x,y) satisfies h(u,u) = 1. Since g is sesquilinear, it is easy to
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check that h is also sesquilinear. Further, if g satisfies property 1 ., then so does h, using w �= 0,
if h(x,y) = 0, then w · g(x,y) = 0 =⇒ g(x,y) = 0 =⇒ g(y,x) = 0 =⇒ h(y,x) = w · 0 = 0.

The following argument will use the assumption that h satisfies 1 . to show that h(v,v) is
real for all v ∈ V . By Theorem 6.4, that would be enough to show that h is a Hermitian inner
product, establishing 2 .

The sesquilinear form h satisfies the following identity for any x,y, z ∈ V :

h(x, h(x,y) · z− h(x, z) · y) = h(x,y)h(x, z) − h(x, z)h(x,y)

= h(x,y)h(x, z) − h(x, z)h(x,y) = 0,

and since h satisfies 1 ., these identities hold:

h(h(x,y) · z− h(x, z) · y,x) = 0

=⇒ h(x,y)h(z,x) − h(x, z)h(y,x) = 0. (5)

In the case y = x = u, we can use h(u,u) = 1 to get this identity for all z ∈ V :

h(z,u)− h(u, z) = 0. (6)

Evaluating Equation (5) with y = x and z = u gives

h(x,x)h(u,x)− h(x,u)h(x,x) = 0,

and since h(x,u) = h(u,x) by (6), factoring gives

(h(x,x) − h(x,x))h(u,x) = 0. (7)

If x ∈ V is any vector such that h(x,x) is a non-real complex number, then h(x,x)−h(x,x) �= 0,
so by (7), h(u,x) = 0, and also by (6), h(x,u) = h(u,x) = 0 = 0.

Suppose, toward a contradiction, that there is some v ∈ V so that h(v,v) is a non-real
complex number. Then h(u,v) = h(v,u) = 0, and expanding using the bi-additive property,

h(u+ v,u + v) = h(u,u) + h(u,v) + h(v,u) + h(v,v) = 1 + 0 + 0 + h(v,v),

so u+ v is another vector such that h(u+ v,u+ v) is a non-real complex number, and we can
conclude h(u,u+ v) = 0. However, expanding this gives

0 = h(u,u+ v) = h(u,u) + h(u,v) = 1 + 0,

a contradiction. The conclusion is that there is no element v ∈ V so that h(v,v) is a non-real

complex number.

The same property 1 . appears in Theorems 6.3 and 6.5 — various authors refer to a bilinear
or sesquilinear form satisfying that property as orthosymmetric or reflexive.
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Theorem 6.6. Given a complex vector space V and a complex symmetric inner product g, if
g(x,x) is real for all x ∈ V , then g is the constant function zero.

Proof. Since g is symmetric, it is bilinear, and the property that g(x,x) is real for all x implies
g(x,y) = −g(y,x) for all x, y ∈ V by 4 . =⇒ 2 . of Theorem 5.10. Using the symmetric
property again, g(x,y) = g(y,x), it follows that for all x, y ∈ V , g(x,y) = −g(x,y), so we can

conclude g(x,y) = 0.

Note that one case in which Theorem 6.6 would apply is where g is positive semidefinite and
complex symmetric. The Theorem also shows that the constant function 0 is the only inner
product on a complex vector space which is both complex symmetric and Hermitian.

Corollary 6.7. If V is a complex vector space and g : V × V → C is both complex symmetric
and positive definite, then V = {0}, the zero-dimensional vector space.

Proof. By the previous Theorem, g is the constant function 0 since it is symmetric and positive
semidefinite. However, since g is positive definite, g(x,x) > 0 for all non-zero vectors x ∈ V .

The conclusion is that V has no non-zero vectors.

Theorem 6.8. If g is a symmetric inner product on Kn, then there exists a matrix Gn×n with
entries in K such that

g(x,y) = yT
1×nGn×nxn×1,

and the matrix Gn×n satisfies G = GT .

Proof. Since g is a bilinear form, the matrix G was constructed in the Proof of Theorem 5.6.
From the formula Gj� = g(e�, ej), and the assumption that g is symmetric, we can conclude

Gj,� = G�,j, which implies G = GT .

So, we define a “symmetric matrix” as a matrix G equal to its transpose, as in the above
Theorem.

Theorem 6.9. If g is a Hermitian inner product on Kn, then there exists a matrix Gn×n with
entries in K such that

g(x,y) = yT
1×nGn×nx,

and the matrix Gn×n satisfies G = G
T
.

Proof. Since g is a sesquilinear form, the matrix G was constructed in the Proof of Theorem
5.13. From the formula Gj� = g(e�, ej), and the assumption that g is Hermitian, we can conclude

Gj,� = G�,j, which implies G = G
T
.

So, we define a “Hermitian matrix” as a matrix G equal to its conjugate transpose, as in
the above Theorem. It can have complex entries, but by Proposition 6.2, its diagonal entries,
Gjj = g(ej, ej) are real numbers.

Example 6.10. Let V be a complex vector space and let g : V × V → C be an inner product.
Then the composite Re ◦ g : V × V → R is a real inner product on V , considered as a real
vector space. Re ◦ g is bi-additive, and for real scalars r ∈ R, Re(g(r · x,y)) = Re(r · g(x,y)) =
r · Re(g(x,y)) (the last equality might be false for non-real scalars). In either the case where
g is symmetric, or where g is Hermitian, the composite Re ◦ g is symmetric: for all x, y ∈ V ,
Re(g(x,y)) = Re(g(y,x)) = Re(g(y,x)).
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Theorem 6.11 (CBS �=). Given a positive semidefinite inner product g on a vector space V ,
for any x, y ∈ V ,

|g(x,y)|2 ≤ g(x,x)g(y,y).

Proof. Note that if the positive semidefinite inner product g is complex symmetric, then it is
the zero function by Theorem 6.6, and the claimed inequality follows trivially. The remaining
case is that g is Hermitian (either complex or real).

For any λ, μ ∈ K,

0 ≤ g(λ · x+ μ · y, λ · x+ μ · y)
= λλ̄g(x,x) + μλ̄g(y,x) + λμ̄g(x,y) + μμ̄g(y,y).

In particular, for λ = g(y,y) and μ = −g(x,y),

0 ≤ λλ̄g(x,x) + μλ̄(−μ̄) + λμ̄(−μ) + μμ̄λ

= λ̄(g(x,x)g(y,y) − |g(x,y)|2),

and if g(y,y) �= 0, then this proves the claim. Similarly, for λ = −g(y,x) and μ = g(x,x),

0 ≤ λλ̄μ+ μλ̄(−λ) + λμ̄(−λ̄) + μμ̄g(y,y)

= μ̄(g(x,x)g(y,y) − |g(y,x)|2),

and if g(x,x) �= 0, then this proves the claim. Finally, if g(x,x) = g(y,y) = 0, then let λ = 1
and μ = −g(x,y), so

0 ≤ 0− g(x,y)g(y,x) − g(y,x)g(x,y) + 0

= −2|g(x,y)|2,

proving g(x,y) = 0, and the claim.

The following result is a converse of Theorem 5.19 in the case of an inner product. (Note
that the bilinear form in Example 5.20 was neither symmetric nor Hermitian.)

Theorem 6.12. If g is a non-degenerate, positive semidefinite inner product, then g is positive
definite.

Proof. The positive semidefinite property means that the CBS inequality applies, and that
g(x,x) ≥ 0 for all x. Suppose that g is not positive definite; then g(x,x) = 0 for some non-zero
x. Then, for any y, |g(x,y)|2 ≤ g(x,x)g(y,y) = 0, which implies g(x,y) = 0. This contradicts

the assumption that g is non-degenerate.

Theorem 6.13 (Δ �=). Given a positive semidefinite inner product g on a vector space V , the
function

ng : V → R : ng(x) = +
√
g(x,x)

satisfies, for all x, y ∈ V ,
ng(x+ y) ≤ ng(x) + ng(y).
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Proof. It is convenient to denote ng(x) = ‖x‖g, keeping track of the inner product g which
we’re using to define n. We also note that the domain of n is all of V : the real square root
is always defined, by the positive semidefinite hypothesis, g(x,x) ≥ 0. So, we want to show:
‖x+ y‖g ≤ ‖x‖g + ‖y‖g.

‖x+ y‖2g = g(x+ y,x + y)

= |g(x,x) + g(y,x) + g(x,y) + g(y,y)|
≤ g(x,x) + g(y,y) + 2|g(x,y)|
≤ g(x,x) + g(y,y) + 2

√
g(x,x)g(y,y)

= (‖x‖g + ‖y‖g)2,
where the first inequality is the usual triangle inequality for scalar numbers (real or complex),

and the second is using the CBS inequality.

Theorem 6.14. If g is a positive definite inner product on the vector space V , then the function
ng : V → R : ng(x) = +

√
g(x,x) = ‖x‖g is a norm on V .

Proof. In the case where g is a complex symmetric inner product, V = {0} by Corollary 6.7, so
ng is the constant function 0, which does count as a norm in this case, satisfying Definition 4.6.

In the remaining case where g is (real or complex) Hermitian, it is also easy to check the
properties in Definition 4.6 to show ng is a norm. For λ ∈ K,

‖λ · x‖g =
√
g(λ · x, λ · x) =

√
λλ̄g(x,x) =

√
λλ̄ · ‖x‖g = |λ| · ‖x‖g.

The norm function is non-negative by definition, and equals zero only if x = 0, by the fact that
g is positive definite. The positive definite property also means that Theorem 6.13 applies, so
that the norm satisfies its version of the triangle inequality.

Corollary 6.15. If g is a positive definite inner product on the vector space V , then the formula

dg(x,y) = ng(y − x) = ‖y− x‖g =
√
g(y − x,y − x)

defines a distance function dg on V .

Proof. This follows from Proposition 4.7.

Theorem 6.16. For a distance function dg as in the previous Corollary, the following identity
holds for any x,y, t ∈ V :

dg(x+ t,y + t) = dg(x,y).

Proof.

dg(x+ t,y + t) =
√
g((y + t)− (x+ t), (y + t)− (x+ t))

=
√
g(y − x,y − x)

= dg(x,y).

This shows that a “translation” function, α(x) = x+t, is a motion of V (the inverse function
is α−1(x) = x− t).
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7 Orthogonal and unitary transformations for non-degenerate
inner products

Recall, from Theorems 5.22 and 5.25, the equation

g(H(x), H(y)) = g(x,y), (8)

for a function H : V → V , and a bilinear or sesquilinear form g : V × V → K. Also recall the
functions q(x) = g(x,x) and ψ(x,y) = g(y − x,y − x) from Definition 5.23 and Notation 5.24.

Theorem 7.1. Given a finite-dimensional (real or complex) vector space V , and a symmetric,
non-degenerate inner product g : V ×V → K, let q and ψ be as defined previously in terms of g.
Then, for any function H : V → V , the following are equivalent:

1. H is onto, and for all x,y ∈ V , g(H(x), H(y)) = g(x,y);

2. H is onto, and H(0) = 0, and for all x,y ∈ V , ψ(H(x), H(y)) = ψ(x,y);

3. H is linear, and for all x ∈ V , q(H(x)) = q(x).

Proof. The proof of equivalence is shown in three steps.
1 . =⇒ 3 .: Since g is a non-degenerate bilinear form and H is onto, Theorem 5.22 applies,

to show H is linear. The identity q(H(x)) = q(x) was also already proved, in Theorem 5.25.
(This step did not require the symmetric property of g.)

3 . =⇒ 2 .: Since H is linear, H(0) = 0 follows immediately, and using the linearity and the
identity for q:

ψ(H(x), H(y)) = q(H(y) −H(x)) = q(H(y − x)) = q(y − x) = ψ(x,y). (9)

To show that the linear function H : V → V is onto, it is enough to show that the kernel of H
is only {0} (this is where the finite-dimensional assumption is used). Suppose that x is in the
kernel, so H(x) = 0. Then, for any y ∈ V , using (9) and the symmetric property of g,

q(H(y)) = ψ(0, H(y)) = ψ(H(x), H(y)) = ψ(x,y)

= q(y)− 2g(x,y) + q(x) = q(H(y)) − 2g(x,y) + q(H(x)),

and since q(H(x)) = q(0) = 0, it follows that g(x,y) = 0 for all y. Since g is non-degenerate, x
must be 0, which is what we wanted to show.

2 . =⇒ 1 .: Using the symmetric property of g,

ψ(x,y) = g(y,y) − 2g(x,y) + g(x,x)

= ψ(0,y)− 2g(x,y) + ψ(0,x).

Assuming the second and third parts of hypothesis 2 ., the above quantity is equal to:

ψ(H(x), H(y)) = ψ(0, H(y)) − 2g(H(x), H(y)) + ψ(0, H(x))

= ψ(H(0), H(y)) − 2g(H(x), H(y)) + ψ(H(0), H(x))

= ψ(0,y) − 2g(H(x), H(y)) + ψ(0,x).

By cancelling the equal terms, we can conclude g(x,y) = g(H(x), H(y)). (This step did not

require the non-degeneracy property of g or the onto property of H .)
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Definition 7.2. Given a finite-dimensional (real or complex) vector space V with a non-
degenerate, symmetric inner product g, H : V → V is an “orthogonal transformation with
respect to g” means: H is a function satisfying any of the three equivalent properties from
Theorem 7.1.

The Proof of Theorem 7.1 showed that H must be an invertible linear transformation. In
the case V = Kn, we also know that any linear function Kn → Kn has a matrix representation.
So, for any orthogonal transformation H , there is some non-singular n × n matrix A so that
H(x) = An×n · x.
Theorem 7.3. Suppose g is a non-degenerate, symmetric inner product on V = Kn, and let
G be the matrix from Theorem 6.8. Suppose H is a orthogonal transformation, with matrix
representation H(x) = An×n · x. Then, G = ATGA.

Proof. The proof is similar to the Proof of Theorem 7.6 (just delete the bar and consider Kn

instead of Cn).

Theorem 7.4. Given a finite-dimensional complex vector space V , and a non-degenerate Her-
mitian inner product g : V × V → C, let q and ψ be as defined previously in terms of g. Then,
for any function H : V → V , the following are equivalent:

1. H is onto, and for all x,y ∈ V , g(H(x), H(y)) = g(x,y);

2. H is onto, and for all x,y ∈ V , H(i · x) = i ·H(x) and ψ(H(x), H(y)) = ψ(x,y);

3. H is linear, and for all x ∈ V , q(H(x)) = q(x).

Proof. The proof of equivalence is shown in three steps.
1 . =⇒ 3 .: This step is the same as in Theorem 7.1.
3 . =⇒ 2 .: Since H is linear, H(i · x) = i ·H(x) follows immediately, and the property that

H preserves ψ is proved in the same way as in the Proof of Theorem 7.1, using Equation (9).
To show that the linear function H : V → V is onto, it is enough to show that the kernel of H
is only {0} (this is where the finite-dimensional assumption is used). Suppose that x is in the
kernel, so H(x) = 0, and also H(i · x) = i ·H(x) = i · 0 = 0. Then, for any y ∈ V :

(i + 1)q(H(y)) = (i+ 1)ψ(0, H(y)) = iψ(0, H(y)) + ψ(0, H(y))

= iψ(H(x), H(y)) + ψ(H(i · x), H(y))

= iψ(x,y) + ψ(i · x,y)
= i(q(y)− g(y,x) − g(x,y) + q(x))

+q(y) − g(y, i · x)− g(i · x,y) + q(i · x)
= (i+ 1)q(y) − 2ig(x,y) + iq(x) + q(i · x)
= (i+ 1)q(H(y)) − 2ig(x,y) + iq(H(x)) + q(H(i · x)),

where the terms ig(y,x) and g(y, i · x) cancel by the sesquilinear property. Since q(H(x)) =
q(H(i · x)) = q(0) = 0, it follows that g(x,y) = 0 for all y. Since g is non-degenerate, x must
be 0, which is what we wanted to show.
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2 . =⇒ 1 .: We first show that H(i · x) = i · H(x) implies H(0) = 0. Plug in x = 0,
to get H(i · 0) = H(0) = i · H(0). Then, subtract and simplify: H(0) − i · H(0) = 0 =⇒
(1− i) · (H(0)) = 0, so H(0) = 0 by Theorem 1.17.

Recalling Equation (1),

ψ(x,y) = g(y,y)− g(x,y)− g(y,x) + g(x,x)

= ψ(0,y)− g(x,y) − g(y,x) + ψ(0,x).

Assuming that H preserves ψ and using the fact (which we just proved) that H fixes 0, the
above quantity is equal to:

ψ(H(x), H(y)) = ψ(0, H(y)) − g(H(x), H(y)) − g(H(y), H(x)) + ψ(0, H(x))

= ψ(H(0), H(y)) − g(H(x), H(y)) − g(H(y), H(x)) + ψ(H(0), H(x))

= ψ(0,y) − g(H(x), H(y)) − g(H(y), H(x)) + ψ(0,x).

By cancelling the equal terms, we can conclude

g(x,y) + g(y,x) = g(H(x), H(y)) + g(H(y), H(x)). (10)

Since this identity holds for all x,y ∈ V , we can substitute i · x for x to get this identity:

g(i · x,y) + g(y, i · x) = g(H(i · x), H(y)) + g(H(y), H(i · x)).

Then, using the assumption that H(i · x) = i ·H(x) and the sesquilinear property of g,

ig(x,y) + (−i)g(y,x) = g(i ·H(x), H(y)) + g(H(y), i ·H(x))

= ig(H(x), H(y)) + (−i)g(H(y), H(x)),

and dividing both sides by i gives

g(x,y)− g(y,x) = g(H(x), H(y)) − g(H(y), H(x)).

Adding this identity to Equation (10) gives

2g(x,y) = 2g(H(x), H(y)),

which implies 1 . (This step did not require the non-degeneracy property of g or the onto property

of H .)

Definition 7.5. Given a finite-dimensional complex vector space V with a non-degenerate,
Hermitian inner product g, H : V → V is a “unitary transformation with respect to g” means:
H is a function satisfying any of the three equivalent properties from Theorem 7.4.

Theorem 7.6. Suppose g is a non-degenerate, Hermitian inner product on V = Cn, and let G be
the matrix from Theorem 6.9. Suppose H is a unitary transformation, with matrix representation
H(x) = An×n · x. Then, G = ĀTGA.
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Proof. G is invertible by Theorem 5.18. Let x,y ∈ Cn.

g(G−1ĀTGAx,y) = yTGG−1ĀTGAx

= yT ĀTGAx

= (Ay)
T
GAx

= g(Ax, Ay) = g(H(x), H(y))

= g(x,y),

so by Theorem 5.21, we can conclude G−1ĀTGAx = x for all x, so G−1ĀTGA = In×n (the

identity matrix), and the result follows from multiplying both sides by G.

In analogy with Definitions 7.2 and 7.5, we have the following terms for matrices (with entries
in K = R or C).

Definition 7.7. Given an invertible symmetric matrix Gn×n, a matrix An×n which satisfies the
equation G = ATGA is called “orthogonal with respect to G.”

Definition 7.8. Given an invertible Hermitian matrix Gn×n, a matrix A which satisfies the
equation G = ĀTGA is called “unitary with respect to G.”

When G and A are real matrices, “orthogonal” and “unitary” mean the same thing. In the
above two Definitions, it follows that A is non-singular (for example, by taking the determinant
of both sides).

Example 7.9. Let G be the identity matrix In×n, which is symmetric. The symmetric inner
product on Rn given by the formula

g(x,y) = yTGx = yTx = x1y1 + x2y2 + · · ·+ xnyn

is called the “dot product” or the “real Euclidean inner product.” It is positive definite. A real
matrix A which is orthogonal with respect to G = I satisfies the equation AT IA = ATA = I,
or equivalently, AT = A−1.

Example 7.10. Let G be the identity matrix In×n, which is symmetric. The symmetric inner
product on Cn given by the formula

g(x,y) = yTGx = yTx = x1y1 + x2y2 + · · ·+ xnyn

is called the “complex symmetric dot product.” For n > 0, it is not positive definite, by Theorem
6.6, but since I is invertible, g is non-degenerate, by Theorem 5.18. A complex matrix A which
is orthogonal with respect to G = I satisfies the equation AT IA = ATA = I, or equivalently,
AT = A−1.

Example 7.11. Let G be the identity matrix In×n, which is Hermitian. The Hermitian inner
product on Cn given by the formula

g(x,y) = yTGx = yTx = x1ȳ1 + x2ȳ2 + · · ·+ xnȳn

is called the “Hermitian dot product” or the “complex Euclidean inner product.” It is positive
definite. A complex matrix A which is unitary with respect to G = I satisfies the equation
ĀT IA = ĀTA = I, or equivalently, ĀT = A−1.
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8 Orthogonal and unitary transformations for positive def-
inite inner products

Recall, from Theorem 6.14 and Corollary 6.15, the norm function ng : V → R : ng(x) =
√
g(x,x)

and distance function dg(x,y) =
√
g(y − x,y − x) defined in terms of a positive definite inner

product g. For a real vector space with a positive definite inner product, we can drop the “onto”
assumptions from Theorem 7.1, although the Proof will be different.

Theorem 8.1. Given a finite-dimensional real vector space V , and a positive definite inner
product g : V × V → R, let ng and dg be the norm and distance functions defined by g as above.
Then, for any function H : V → V , the following are equivalent:

1. For all x,y ∈ V , g(H(x), H(y)) = g(x,y);

2. H(0) = 0, and for all x,y ∈ V , dg(H(x), H(y)) = dg(x,y);

3. H is linear, and for all x ∈ V , ng(H(x)) = ng(x);

4. H is an orthogonal transformation of V with respect to g;

5. H is a motion of V , and H(0) = 0.

Proof. Let ψ(x,y) = (dg(x,y))
2 = g(y − x,y − x) and q(x) = (ng(x))

2 = g(x,x) as in The-
orem 7.1, which applies here since an inner product on a real vector space is symmetric, and
a positive definite inner product is non-degenerate. Then dg(H(x), H(y)) = dg(x,y) ⇐⇒
ψ(H(x), H(y)) = ψ(x,y), by taking the non-negative square root, and similarly, ng(H(x)) =
ng(x) ⇐⇒ q(H(x)) = q(x). So, 3 . of this Theorem implies 1 . and 2 . of this Theorem by
Theorem 7.1. Since 3 . also implies H is onto (as in Theorem 7.1), 3 . =⇒ 5 . =⇒ 2 . by
Definition 4.4.

To show 1 . =⇒ 2 ., first consider g(H(0), H(0)) = g(0,0) = 0; the positive definite property
of g implies H(0) = 0. The property ψ(H(x), H(y)) = ψ(x,y) was proved in Theorem 5.25,
which implies 2 .

Since we have 3 . =⇒ 1 . =⇒ 2 . and 3 . =⇒ 5 . =⇒ 2 ., and 3 . ⇐⇒ 4 . by Definition
7.2, the only remaining step is to show 2 . =⇒ 3 . The fact that 2 . implies ng(H(x)) = ng(x) is
easy: ng(H(x)) = dg(0, H(x)) = dg(H(0), H(x)) = dg(0,x) = ng(x). Showing that H is linear
uses some tricky identities:

From Exercise 5.4:

(dg(u+ v,w))2 (11)

= g(u+ v −w,u+ v −w)

= g(u−w,u−w) + g(v −w,v −w)− g(u− v,u− v) + g(u,u) + g(v,v) − g(w,w)

= (dg(u,w))2 + (dg(v,w))2 − (dg(u,v))
2 + (ng(u))

2 + (ng(v))
2 − (ng(w))2.

Since H preserves both dg and ng, this last quantity is equal to:

(dg(H(u), H(w)))2 + (dg(H(v), H(w)))2 − (dg(H(u), H(v)))2

+(ng(H(u)))2 + (ng(H(v)))2 − (ng(H(w)))2,

= (dg(H(u) +H(v), H(w)))2,
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the last step using Exercise 5.4 again. Setting w = u+v, line (11) is 0, so dg(H(u)+H(v), H(u+
v)) = 0, and we can conclude H(u) +H(v) = H(u+ v).

From Exercise 5.5:

(dg(λ · u,w))2 (12)

= g(λ · u−w, λ · u−w)

= (1− λ)(g(w,w) − λg(u,u)) + λg(u−w,u−w)

= (1− λ)((ng(w))2 − λ(ng(u))
2) + λ(dg(u,w))2.

Since H preserves both dg and ng, this last quantity is equal to:

(1− λ)((ng(H(w)))2 − λ(ng(H(u)))2) + λ(dg(H(u), H(w)))2

= (dg(λ ·H(u), H(w)))2,

the last step using Exercise 5.5 again. Settingw = λ·u, line (12) is 0, so dg(λ·H(u), H(λ·u)) = 0,

and we can conclude H(λ · u) = λ ·H(u).

Corollary 8.2. Given a finite-dimensional real vector space V , and a positive definite inner
product g : V × V → R, dg be the distance function defined by g as above. Then, for any
function M : V → V , the following are equivalent:

1. M is a motion of V ;

2. For all x,y ∈ V , dg(M(x),M(y)) = dg(x,y);

3. There exists a vector t ∈ V and a function H : V → V which is an orthogonal transfor-
mation of V with respect to g, and such that for all x ∈ V , M(x) = H(x) + t.

Proof. 1 . =⇒ 2 . by Definition 4.4.
2 . =⇒ 3 .: If M preserves distances, then define t = M(0) and H(x) = M(x) −M(0), so

that H(0) =M(0)−M(0) = 0. H preserves distances, using Theorem 6.16:

dg(H(x), H(y)) = dg(M(x)− t,M(y) − t)

= dg(M(x),M(y)) = dg(x,y).

So, H is an orthogonal transformation by Theorem 8.1.
3 . =⇒ 1 .: The function M(x) = H(x) + t preserves distances, using Theorem 6.16 again:

dg(M(x),M(y)) = dg(H(x) + t, H(y) + t)

= dg(H(x), H(y)) = dg(x,y).

Also, M is onto because H is onto (by Theorem 7.1): for any y ∈ V , there is some x ∈ V so

that H(x) = y − t, so y = H(x) + t =M(x).
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Corollary 8.3. Given a positive definite real inner product g on Rn, let G be the matrix corre-
sponding to g from Theorem 6.8, and let dg be the distance function corresponding to g as above.
Then, for any function M : Rn → Rn, the following are equivalent:

1. M is a motion of Rn;

2. For all �x, �y ∈ Rn, dg(M(�x),M(�y)) = dg(�x, �y);

3. There exists a vector �t ∈ Rn and a n × n real matrix A so that G = ATGA, and for all
�x ∈ Rn, M(�x) = An×n · �xn×1 + �tn×1.

Proof. Let H be the orthogonal transformation from the previous Corollary. The representation
of the function H by a matrix A with the claimed property was established in Theorem 7.3, so
A is an orthogonal matrix, as in Definition 7.7.

This result shows that ifM is any transformation from Rn to itself that preserves the distance
function dg, then M has to be equal to matrix multiplication by an orthogonal matrix (for
example, a rotation or a reflection), followed by a translation (vector addition of �t). This
characterization of distance-preserving functions applies only when the distance is defined in
terms of an inner product on a vector space, not necessarily to other types of distance functions
on Rn (or on other sets).

Exercise 8.4. Show that a linear transformation T : R3 → R3 which is orthogonal with respect
to a positive definite inner product on R3 has at least one “eigenvector” �v with “eigenvalue”
either 1 or −1.

Hint. Let A3×3 be a real matrix representing T : T (�v) = A�v. The problem is to show there
exists a non-zero vector �v ∈ R3 such that either A�v = �v or A�v = −�v. Show first that there
exists an eigenvector, and then show that the eigenvalue must be ±1 using the fact that the
inner product is preserved.

Theorem 8.5. Given a finite-dimensional complex vector space V , and a positive definite inner
product g : V × V → C, let ng and dg be the norm and distance functions defined by g. Then,
for any function H : V → V , the following are equivalent:

1. For all x,y ∈ V , Re(g(H(x), H(y))) = Re(g(x,y));

2. H(0) = 0, and for all x,y ∈ V , dg(H(x), H(y)) = dg(x,y);

3. H is additive, satisfies H(r · x) = r ·H(x) for all r ∈ R, and for all x ∈ V , ng(H(x)) =
ng(x);

4. H is an orthogonal transformation of V (considered as a real vector space) with respect to
the real inner product Re ◦ g;

5. H is a motion of V with respect to dg, and H(0) = 0.

Proof. If g is complex symmetric and positive definite, then V = {0} by Corollary 6.7, so H is
the constant function zero, which satisfies all of the above properties.

In the case where g is Hermitian and positive definite, the composite function Re ◦ g is a
positive definite real inner product on the real vector space V , as in Examples 5.29 and 6.10.
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Since V is a finite-dimensional complex vector space (with some basis {v1, . . . ,vn}), it is also
finite-dimensional considered as a real vector space (although in general we need twice as many
basis vectors to span V using only real coefficients, for example, it is straightforward to check
{v1, . . . ,vn, i · v1, . . . , i · vn} is a basis for the real vector space V ).

The two inner products g and Re ◦ g define exactly the same distance function, dg = dRe◦g:

dRe◦g(x,y) =
√
Re(g(y − x,y − x)) =

√
g(y − x,y − x) = dg(x,y).

So, a function H preserves the dg distance as in 2 . if and only if H preserves the dRe◦g distance,
and this Theorem will follow from applying Theorem 8.1 to the real vector space V with the
real symmetric positive definite inner product Re ◦ g. Specifically, statement 2 . of this Theorem
referring to dg is equivalent to 2 . from Theorem 8.1 referring to dRe◦g, which is equivalent to
H being a real linear orthogonal transformation of the real vector space V (4 .), that preserves
the inner product Re ◦ g (1 .) and the norm nRe◦g = ng (3 .), and which is a motion of V with

respect to dRe◦g, or equivalently with respect to the same distance function dg (5 .).

Corollary 8.6. Given a finite-dimensional complex vector space V , and a positive definite inner
product g : V × V → C, let dg be the distance function defined by g. Then, for any function
M : V → V , the following are equivalent:

1. M is a motion of V ;

2. For all x,y ∈ V , dg(M(x),M(y)) = dg(x,y);

3. There exists a vector t ∈ V and a function H : V → V which is an orthogonal transfor-
mation of the real vector space V with respect to the real inner product Re ◦ g, and such
that for all x ∈ V , M(x) = H(x) + t.

Proof. This follows from the previous Theorem in the same way that Corollary 8.2 followed from
Theorem 8.1.

Example 8.7. Consider the complex vector space V = C2, with the Hermitian dot product

from Example 7.11: for z =

(
z1
z2

)
, w =

(
w1

w2

)
,

g(z,w) = z1w̄1 + z2w̄2 = wT z.

The following function is an example of a distance-preserving map from V onto V : let

H(z) =

(
z̄1
z̄2

)
,

soH applies complex conjugation to both components of z. It is easy to check that H is additive,
and satisfies H(r · z) = r ·H(z) for real scalars r; but it is also easy to show (by example) that
H is not linear because H(i · z) �= i · H(z), and H does not preserve the complex Hermitian
inner product g. In fact, g(H(z), H(w)) = g(z,w), and these quantities have the same real part,
so H preserves the real symmetric inner product Re ◦ g. This function H is an example of a
non-unitary function satisfying the equivalent conditions of Theorem 8.5, and also explains why
the hypothesis H(i · x) = i ·H(x) that was needed in part 2 . of Theorem 7.4 is different from
the hypothesis H(0) = 0 from part 2 . of Theorem 7.1.
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Theorem 8.8. Given a finite-dimensional complex vector space V , and a positive definite inner
product g : V × V → C, let ng and dg be the norm and distance functions defined by g. Then,
for any function H : V → V , the following are equivalent:

1. For all x,y ∈ V , g(H(x), H(y)) = g(x,y);

2. For all x,y ∈ V , H(i · x) = i ·H(x) and dg(H(x), H(y)) = dg(x,y);

3. H is linear, and for all x ∈ V , ng(H(x)) = ng(x);

4. H is a unitary transformation of V with respect to g;

5. H is a motion of V such that for all x ∈ V , H(i · x) = i ·H(x).

Proof. As in the Proof of Theorem 8.5, if g is complex symmetric and positive definite, then H
is the constant function 0 on V = {0}, satisfying all the equivalent properties. So we continue
by considering the case where g is Hermitian.

Let ψ(x,y) = (dg(x,y))
2 = g(y − x,y − x) and q(x) = (ng(x))

2 = g(x,x) as in Theo-
rem 7.4, which applies here since a positive definite inner product is non-degenerate. Then
dg(H(x), H(y)) = dg(x,y) ⇐⇒ ψ(H(x), H(y)) = ψ(x,y), by taking the non-negative square
root, and similarly, ng(H(x)) = ng(x) ⇐⇒ q(H(x)) = q(x). So, 3 . of this Theorem implies 1 .
and 2 . of this Theorem by Theorem 7.4. Since 3 . also implies H is onto (as in Theorem 7.4),
3 . =⇒ 5 . =⇒ 2 . by Definition 4.4.

To show 1 . =⇒ 2 ., the distance-preserving property follows in the same way as in the
Proof of Theorem 8.1. To show H(i · x) = i ·H(x), we use the sesquilinear and positive definite
properties of g. For any u, w ∈ V ,

g(i · u−w, i · u−w)

= g(u,u)− ig(u,w) + ig(w,u) + g(w,w)

= g(H(u), H(u))− ig(H(u), H(w)) + ig(H(w), H(u)) + g(H(w), H(w))

= g(i ·H(u)−H(w), i ·H(u)−H(w)).

So if w = i · u, then LHS = 0 = RHS, and we can conclude i ·H(u)−H(i · u) = 0.
Since we have 3 . =⇒ 1 . =⇒ 2 . and 3 . =⇒ 5 . =⇒ 2 ., and 3 . ⇐⇒ 4 . by Definition

7.5, the only remaining step is to show 2 . =⇒ 3. Exactly as in the Proof of Theorem 7.4,
H(i · x) = i ·H(x) implies H(0) = 0, so statement 2 . of this Theorem implies statement 2 . of
Theorem 8.5, which implies statement 3 . of that Theorem. We can conclude ng(H(x)) = ng(x),
and also that H is additive and satisfies H(r · x) = r ·H(x) for all r ∈ R. To show H is linear,
we use these properties together with the additional assumption that H(i · x) = i ·H(x). For
any z ∈ C, let z = x+ iy. Then

H(z · u) = H((x+ iy) · u) = H((x · u) + ((iy) · u)) = H(x · u) +H((iy) · u)
= x ·H(u) +H(i · (y · u)) = x ·H(u) + i ·H(y · u) = x ·H(u) + i · (y ·H(u))

= x ·H(u) + (iy) ·H(u) = (x + iy) ·H(u) = z ·H(u).
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Corollary 8.9. Given a finite-dimensional complex vector space V , and a positive definite inner
product g : V × V → C, let dg be the distance function defined by g. Then, for any function
M : V → V , the following are equivalent:

1. M is a motion of V such that for all x ∈ V , M(i · x)−M(0) = i · (M(x)−M(0));

2. For all x,y ∈ V , M(i · x)−M(0) = i · (M(x) −M(0)) and dg(M(x),M(y)) = dg(x,y);

3. There exists a vector t ∈ V and a function H : V → V which is a unitary transformation
of the complex vector space V with respect to the inner product g, and such that for all
x ∈ V , M(x) = H(x) + t.

Proof. This follows from the previous Theorem in the same way that Corollary 8.2 followed from
Theorem 8.1. The construction of H(x) = M(x) −M(0) shows that the condition M(i · x) −
M(0) = i · (M(x)−M(0)) is equivalent to H(i · x) = i ·H(x).

Corollary 8.10. Given a positive definite inner product g on Cn, let G be the complex matrix
corresponding to g from Theorem 6.9, and let dg be the distance function defined by g. Then,
for any function M : Cn → Cn, the following are equivalent:

1. M is a motion of Cn such that for all �x ∈ Cn, M(i · �x)−M(�0) = i · (M(�x)−M(�0));

2. For all �x, �y ∈ Cn, M(i · �x)−M(�0) = i · (M(�x)−M(�0)) and dg(M(�x),M(�y)) = dg(�x, �y);

3. There exists a vector �t ∈ Cn and a n×n complex matrix A such that G = ĀTGA, and for
all �x ∈ Cn, M(�x) = A · �x+ �t.

Proof. Let H be the unitary transformation from the previous Corollary. The representation of
the function H by a matrix A with the claimed property was established in Theorem 7.6, so A
is a unitary matrix, as in Definition 7.8.

The following Theorem shows that a mapping of a spanning subset which preserves inner
products extends to a unitary transformation.

Theorem 8.11. Given a finite-dimensional complex vector space V , with a positive definite
inner product g, and a subset S ⊆ V such that the span of S is V , suppose there is a function
T : S → V such that g(�v, �w) = g(T (�v), T (�w)) for all �v, �w ∈ S. Then there is a function
H : V → V such that H(�v) = T (�v) for all �v ∈ S, and H is unitary.

Proof. By Theorem 8.8, the unitary property will follow from showing g(�v, �w) = g(H(�v), H(�w))
for all �v, �w ∈ V .

Define H as follows: for �v ∈ V , the spanning property of S means that �v =
∑
ci�vi, for finitely

many {�v1, . . . , �vn} ⊆ S. Then define H(�v) =

n∑
i=1

ciT (�vi). However, since we are not assuming S

is an independent set (it may in fact be infinite), �v may also be expressible as some other linear

combination: �v =

N∑
i=1

di�vi, for a possibly longer, but still finite, list {�v1, . . . , �vn, . . . , �vN}. To
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show H is well-defined, we need to show

N∑
i=1

ciT (�vi) =

N∑
i=1

diT (�vi) (where cn+1 = . . . = cN = 0).

g

(
N∑
i=1

ciT (�vi)−
N∑
i=1

diT (�vi),
N∑
i=1

ciT (�vi)−
N∑
i=1

diT (�vi)

)

= g

⎛
⎝ N∑

i=1

(ci − di)T (�vi),

N∑
j=1

(cj − dj)T (�vj)

⎞
⎠

=

N∑
i=1

(ci − di)

⎛
⎝ N∑

j=1

(cj − dj)g(T (�vi), T (�vj))

⎞
⎠

=

N∑
i=1

(ci − di)

⎛
⎝ N∑

j=1

(cj − dj)g(�vi, �vj)

⎞
⎠

= g

(
N∑
i=1

ci�vi −
N∑
i=1

di�vi,

N∑
i=1

ci�vi −
N∑
i=1

di�vi

)

= g(�v − �v,�v − �v) = 0.

The fact that H extends T follows from the definition of H , and the property that H preserves
the inner product is easy to check:

g(H(�v), H(�w)) = g

⎛
⎝ n∑

i=1

ciT (�vi),

m∑
j=1

fjT (�vj)

⎞
⎠

=

n∑
i=1

ci

⎛
⎝ m∑

j=1

fjg(T (�vi), T (�vj))

⎞
⎠

=

n∑
i=1

ci

⎛
⎝ m∑

j=1

fjg(�vi, �vj)

⎞
⎠ = g

⎛
⎝ n∑

i=1

ci�vi,

m∑
j=1

fj�vj

⎞
⎠ = g(�v, �w).
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