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Abstract. We consider some second order quasilinear partial differ-
ential inequalities for real valued functions on the unit ball and find
conditions under which there is a lower bound for the supremum of non-
negative solutions that do not vanish at the origin. As a consequence,
for complex valued functions f(z) satisfying ∂f/∂z̄ = |f |α, 0 < α < 1,
and f(0) �= 0, there is also a lower bound for sup |f | on the unit disk.
For each α, we construct a manifold with an α-Hölder continuous al-
most complex structure where the Kobayashi-Royden pseudonorm is
not upper semicontinuous.

1. Introduction

We begin with an analysis of a second order quasilinear partial differen-
tial inequality for real valued functions of n real variables,

(1) Δu−B|u|ε ≥ 0,

where B > 0 and ε ∈ [0, 1) are constants. In Section 2, we use a Com-
parison Principle argument to show that (1) has “no small solutions,” in
the sense that there is a uniform lower bound M > 0 for the supremum
of solutions u which are nonnegative on the unit ball and nonzero at the
origin.

We also consider a generalization of (1):

(2) uΔu− B|u|1+ε − C|�∇u|2 ≥ 0,

and find conditions under which there is a similar property of no small
solutions, in Theorem 2.4.

As an application of the results on the inequality (1), we show failure of
upper semicontinuity of the Kobayashi-Royden pseudonorm for a family
of 4-dimensional manifolds with almost complex structures of regularity
C0,α, 0 < α < 1. This generalizes the α = 1

2
example of [IPR]; it is known
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([IR]) that the Kobayashi-Royden pseudonorm is upper semicontinuous for
almost complex structures with regularity C1,α.

Our construction of the almost complex manifolds in Section 4 is very
similar to that of [IPR]; we give the details for the convenience of the
reader, and to show how the argument breaks down as α → 1−, due to a
shrinking radius of the domain. We also take the opportunity in Section
3 to state some Lemmas which allow for a more quantitative description
than that of [IPR].

One of the steps in [IPR] is a Maximum Principle argument applied to
a complex valued function h(z) satisfying the equation ∂h/∂z̄ = |h|1/2, to
get the property of no small solutions. The main difference between our
paper and [IPR] is the use of a Comparison Principle in Section 2 instead
of the Maximum Principle, and we arrive at this result:

Theorem 1.1. For any α ∈ (0, 1), suppose h(z) is a continuous complex
valued function on the closed unit disk, and on the set {z : |z| < 1, h(z) �=
0}, h has continuous partial derivatives and satisfies

(3)
∂h

∂z̄
= |h|α.

If h(0) �= 0 then sup |h| > Sα, where the constant Sα > 0 is defined by:

(4) Sα =

(
2(1 − α)

2 − α

)1/(1−α)

.

2. Some differential inequalities

Let DR denote the open ball in Rn centered at �0 with radius R > 0, and
let DR denote the closed ball.

Lemma 2.1. Given constants B > 0 and 0 ≤ ε < 1, let

M =

(
B(1 − ε)2

2(2ε+ n(1 − ε))

) 1
1−ε

> 0.

Suppose the function u : D1 → R satisfies:

• u is continuous on D1,
• u(�x) ≥ 0 for �x ∈ D1,
• on the open set ω = {�x ∈ D1 : u(�x) �= 0}, u ∈ C2(ω),
• for �x ∈ ω:

Δu(�x) − B(u(�x))ε ≥ 0.(5)

If u(�0) �= 0, then sup
�x∈D1

u(�x) > M .
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Proof. Define a comparison function

v(�x) = M |�x| 2
1−ε ,

so v ∈ C2(Rn) since 0 ≤ ε < 1. By construction of M , it can be checked
that v is a solution of this nonlinear Poisson equation on the domain Rn:

Δv(�x) −B|v(�x)|ε ≡ 0.

Suppose, toward a contradiction, that u(�x) ≤ M for all �x ∈ D1. For
a point �x0 on the boundary of ω ⊆ Rn, either |�x0| = 1, in which case by
continuity, u(�x0) ≤ M = v(�x0), or 0 < |�x0| < 1 and u(�x0) = 0, so u(�x0) ≤
v(�x0). Since u ≤ v on the boundary of ω, the Comparison Principle ([GT]
Theorem 10.1) applies to the subsolution u and the solution v on the
domain ω. The relevant hypothesis for the Comparison Principle in this
case is that the second term expression of (5), −BXε, is weakly decreasing,
which uses B > 0 and ε ≥ 0. (To satisfy this technical condition for all
X ∈ R, we define a function c : R → R by c(X) = −BXε for X ≥ 0,
and c(X) = 0 for X ≤ 0. Then c is weakly decreasing in X, v satisfies
Δv(�x) + c(v(�x)) ≡ 0 and u satisfies Δu(�x) + c(u(�x)) ≥ 0.)

The conclusion of the Comparison Principle is that u ≤ v on ω, however
�0 ∈ ω and u(�0) > v(�0), a contradiction.

Of course, the constant function u ≡ 0 satisfies the inequality (5), and

so does the radial comparison function v, so the initial condition u(�0) �= 0
is necessary.

Example 2.2. In the n = 1 case, M =
(

B(1−ε)2

2(1+ε)

) 1
1−ε

. For points c1,

c2 ∈ R, c1 < c2, define a function

u(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M(x− c2)
2

1−ε if x ≥ c2

0 if c1 ≤ x ≤ c2

M(c1 − x)
2

1−ε if x ≤ c1

.

Then u ∈ C2(R), and it is nonnegative and satisfies u′′ = B|u|ε (the case of
equality in the n = 1 version of (5)). For c1 < 0 < c2, this gives an infinite
collection of solutions of the ODE u′′ = B|u|ε which are identically zero
in a neighborhood of 0, so the ODE does not have a unique continuation
property. For c1 > 0 or c2 < 0, the function u satisfies u(0) �= 0 and the
other hypotheses of Lemma 2.1, and its supremum on (−1, 1) exceeds M
even though it can be identically zero on an interval not containing 0.
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Example 2.3. In the case n = 2, B = 1, ε = 0, (5) becomes the linear
inequality Δu ≥ 1 and the number M = 1

4
agrees with Lemma 2 of [IPR],

which was proved there using a Maximum Principle argument.

By applying Lemma 2.1 to the Laplacian of a power of u, we get the
following generalization.

Theorem 2.4. Given constants B > 0, C ∈ R, and ε < 1, let

M =

⎧⎪⎨
⎪⎩
(

B(1−ε)2

2(2(ε−C)+n(1−ε))

) 1
1−ε

if C ≤ ε(
B(1−ε)

2n

) 1
1−ε

if C ≥ ε
.

Suppose the function u : D1 → R satisfies:

• u is continuous on D1,
• u(�x) ≥ 0 for �x ∈ D1,
• on the open set ω = {�x ∈ D1 : u(�x) �= 0}, u ∈ C2(ω),
• for �x ∈ ω:

u(�x)Δu(�x) ≥ B|u(�x)|1+ε + C|�∇u(�x)|2.
If u(�0) �= 0, then sup

�x∈D1

u(�x) > M .

Proof. Let μ = min{ε, C}, so μ ≤ ε < 1, and on the set ω,

u(�x)Δu(�x) ≥ B|u(�x)|1+ε + μ|�∇u(�x)|2.
Consider the function u1−μ on D1, so u1−μ ∈ C0(D1) ∩ C2(ω), and on the
set ω,

Δ(u1−μ) = (1 − μ)u−μ−1(uΔu− μ|�∇u|2)
≥ (1 − μ)u−μ−1Bu1+ε

= (1 − μ)B
(
u1−μ

)(ε−μ)/(1−μ)
.

Since (1 − μ)B > 0, and μ ≤ ε < 1 =⇒ 0 ≤ ε−μ
1−μ

< 1, Lemma 2.1 applies

to u1−μ. If (u(�0))1−μ �= 0, then

sup u1−μ >

(
(1 − μ)B(1 − ε−μ

1−μ
)2

2(2 ε−μ
1−μ

+ n(1 − ε−μ
1−μ

))

) 1

1− ε−μ
1−μ

=⇒ sup u >

(
B(1 − ε)2

2(2(ε− μ) + n(1 − ε))

) 1
1−ε

.

Functions satisfying a differential inequality of the form (1) or (2) also
satisfy a Strong Maximum Principle; the only condition is B > 0.
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Theorem 2.5. Given any open set Ω ⊆ Rn, and any constants B > 0,
C, ε ∈ R, suppose the function u : Ω → R satisfies:

• u is continuous on Ω,
• on the set ω = {�x ∈ Ω : u(�x) > 0}, u ∈ C2(ω),
• on the set ω, u satisfies

uΔu− B|u|1+ε − C|�∇u|2 ≥ 0.

If u(�x0) > 0 for some �x0 ∈ Ω, then u does not attain a maximum value on
Ω.

Proof. Note that the constant function u ≡ 0 is the only locally constant
solution of the inequality for B > 0. If B = 0 then obviously any constant
function would be a solution.

Given a function u satisfying the hypotheses, ω is a nonempty open
subset of Ω. Suppose, toward a contradiction, that there is some �x1 ∈ Ω
with u(�x) ≤ u(�x1) for all x ∈ Ω. In particular, u(�x1) ≥ u(�x0) > 0, so
�x1 ∈ ω. Let ω1 be the connected component of ω containing �x1.

For �x ∈ ω1, u satisfies the linear, uniformly elliptic inequality

Δu(�x) + (−B(u(�x))ε−1)u(�x) + (−C
�∇u(�x)
u(�x)

) · �∇u(�x) ≥ 0,

where the coefficients (defined in terms of the given u) are locally bounded
functions of �x, and (−B(u(�x))ε−1) is negative for all �x ∈ ω. It follows from
the Strong Maximum Principle ([GT] Theorem 3.5) that since u attains a
maximum value at �x1, then u is constant on ω1. Since the only constant
solution is 0, it follows that u(�x1) = 0, a contradiction.

The next Lemma shows how an inequality like (5) with n = 2 can arise
from a first order PDE for a complex valued function.

Lemma 2.6. Consider constants α, γ ∈ R with 0 < α < 1. Let ω ⊆ C be
an open set, and suppose h : ω → C satisfies:

• h ∈ C1(ω),
• h(z) �= 0 for all z ∈ ω,

• ∂h

∂z̄
= |h|α on ω.

Then, the following inequality is satisfied on ω:

(6) Δ(|h|(1−α)γ) ≥ (4(1 − α)γ − (2 − α)2)|h|(1−α)(γ−2).

Remark. The special case α = 1
2
, γ = 3

2
is Lemma 1 of [IPR]; its Proof

there is a long calculation in polar coordinates, which can be generalized
to some other values of α by an analogous argument. However, using z, z̄
coordinates allows for a shorter calculation.
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Proof of Lemma 2.6. We first want to show that h is smooth on ω, ap-
plying the regularity and bootstrapping technique of PDE to the equation
∂h/∂z̄ = |h|α. We recall the following fact (for a more general statement,
see Theorem 15.6.2 of [AIM]): for a nonnegative integer �, and 0 < β < 1, if

ϕ ∈ C�,β
loc (ω) and g : ω → C has first derivatives in L2

loc(ω) and is a solution

of ∂g/∂z̄ = ϕ, then g ∈ C�+1,β
loc (ω). In our case, ϕ = |h|α ∈ C1(ω) ⊆ C0,β

loc (ω)
(since h ∈ C1(ω) and is nonvanishing), and g = h has continuous first

derivatives, so we can conclude that g = h ∈ C1,β
loc (ω). Repeating gives that

h ∈ C2,β
loc (ω), etc.

Since the conclusion is a local statement, it is enough to express ω as a
union of open subsets ωk and establish the conclusion on each subset. For
each zk ∈ ω, there is a sufficiently small disk ωk containing zk, where real
exponentiation of h(z) is well-defined on ωk, by choosing a single-valued
branch of log to define hr = exp(r log(h)).

The condition
∂h

∂z̄
= |h|α can be re-written

hz̄ = (h̄)z = |h|α = hα/2h̄α/2.

This leads to

hzz̄ = (hz̄)z = (hα/2h̄α/2)z

=
α

2

(
h(α/2)−1h̄α/2hz + hαh̄α−1

)
= ((h̄)zz̄),

which is used in a line of the next step. For an arbitrary exponent m ∈ R,

(|h|m)zz̄ = (hm/2h̄m/2)zz̄

=
∂

∂z

(m
2
h

m
2
−1hz̄h̄

m
2 + h

m
2
m

2
h̄

m
2
−1(h̄)z̄

)
=

m

2

∂

∂z

(
h

m
2
−1+ α

2 h̄
m
2

+ α
2 + h

m
2 h̄

m
2
−1(h̄)z̄

)
=

m

2

[(m
2

+
α

2
− 1
)
h

m
2

+ α
2
−2hzh̄

m
2

+ α
2

+h
m
2

+ α
2
−1
(m

2
+
α

2

)
h̄

m
2

+ α
2
−1(h̄)z

+
m

2
h

m
2
−1hzh̄

m
2
−1(h̄)z̄

+h
m
2

(m
2
− 1
)
h̄

m
2
−2(h̄)z(h̄)z̄ + h

m
2 h̄

m
2
−1(h̄)zz̄

]
.

=
m

2

[
Re
(
(m+ α− 2)|h|m+α−4h̄2hz

)
+
(m

2
+ α

)
|h|m+2α−2

+
m

2
|h|m−2|hz|2

]
.
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With the aim of applying Lemma 2.1 to the function |h|m, we consider the
expression (8), with real constants B, ε, and m �= 0. In line (9), we assign

(7) ε =
1

m
(m+ 2α− 2)

to be able to combine like terms, and in line (10), we choose B = 4m −
(2 − α)2 to complete the square.

Δ(|h|m) − B(|h|m)ε(8)

= 4(|h|m)zz̄ − B|h|mε

= 2m
[
Re
(
(m+ α− 2)|h|m+α−4h̄2hz

)
+
(m

2
+ α

)
|h|m+2α−2

+
m

2
|h|m−2|hz|2

]
−B|h|mε

= (m(m+ 2α) − B)|h|m+2α−2(9)

+Re
(
2m(m+ α− 2)|h|m+α−4h̄2hz

)
+m2|h|m−2|hz|2

≥ |h|m−2
(
(m2 + 2αm− B)|h|2α

−2|m||m+ α− 2||h|α|hz| +m2|hz|2
)

= |h|m−2 (|m+ α− 2||h|α − |m||hz|)2 ≥ 0.(10)

Considering the form of (7), it is convenient to choose m = (1 − α)γ for
some constant γ �= 0. The claim of the Lemma follows; the γ = 0 case can
be checked separately.

The parameter γ can be chosen arbitrarily large; to apply Lemma 2.1
to get the “no small solutions” result of Theorem 1.1, we need the RHS

coefficient in (6) to be positive, so γ > (2−α)2

4(1−α)
, and also the RHS exponent

(1 − α)(γ − 2) to be nonnegative, so γ ≥ 2. In contrast, the α = 1
2
,

γ = 3
2

case appearing in Lemma 1 of [IPR] has RHS exponent −1
4
. The

approach of Theorem 2 of [IPR] is to use the negative exponent together
with the result of Example 2.3 to show that assuming h has a small solution
leads to a contradiction. As claimed, their method can be generalized to

apply to other nonpositive exponents, but (2−α)2

4(1−α)
< γ ≤ 2 holds only for

α < 2(
√

2 − 1) ≈ 0.8284.

Proof of Theorem 1.1. Given a continuous h : D1 → C satisfying the hy-
potheses of Theorem 1.1, on the set ω = {z ∈ D1 : h(z) �= 0}, h ∈ C1(ω),
and the conclusion of Lemma 2.6 can be re-written:

(11) Δ(|h|(1−α)γ) ≥ (4(1 − α)γ − (2 − α)2)(|h|(1−α)γ)1− 2
γ .

The hypotheses of Lemma 2.1 are satisfied with n = 2, u(x, y) = |h(x +

iy)|(1−α)γ, and u(�0) �= 0, when the RHS of (11) has a positive coefficient
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(so γ > (2−α)2

4(1−α)
) and the quantity ε = 1 − 2

γ
is in [0, 1) (for γ ≥ 2). The

conclusion of Lemma 2.1 is:

sup
z∈D1

|h(z)|(1−α)γ > M =

(
1

4
· (4(1 − α)γ − (2 − α)2) ·

(
2

γ

)2
)γ/2

=⇒ sup
z∈D1

|h(z)| >

(
4(1 − α)γ − (2 − α)2

γ2

) 1
2(1−α)

.

We can optimize this lower bound, using elementary calculus to show

that the maximum value of 4(1−α)γ−(2−α)2

γ2 is achieved at the critical point

γ = (2−α)2

2(1−α)
> max

{
2, (2−α)2

4(1−α)

}
, and the lower bound for the sup is Sα as

appearing in (4).

Note that Sα is decreasing for 0 < α < 1, with S1/2 = 4
9
, S2/3 = 1

8
, and

Sα → 0 as α→ 1−. This Theorem is used in the Proof of Theorem 4.3.

Example 2.7. As noted by [IPR], a one-dimensional analogue of Equation
(3) in Theorem 1.1 is the well-known (for example, [BR] §I.9) ODE u′(x) =
B|u(x)|α for 0 < α < 1 and B > 0, which can be solved explicitly. By an
elementary separation of variables calculation, the solution on an interval

where u �= 0 is |u(x)| = (±(1 − α)(Bx+ C))
1

1−α . The general solution on
the domain R is, for c1 < c2,

u(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − α)
1

1−α (B(x− c2))
1

1−α if x ≥ c2

0 if c1 ≤ x ≤ c2

−(1 − α)
1

1−α (B(c1 − x))
1

1−α if x ≤ c1

.

So u ∈ C1(R), and if u(0) �= 0, then sup
−1<x<1

|u(x)| > ((1 − α)B)
1

1−α .

3. Lemmas for holomorphic maps

We continue with theDR notation for the open disk in the complex plane
centered at the origin. The following quantitative Lemmas on inverses of
holomorphic functions DR → C are used in a step of the Proof of Theorem
4.3 where we put a map Dr → C2 into a normal form, (14).

Lemma 3.1 ([G] Exercise I.1.). Suppose f : D1 → D1 is holomorphic,

with f(0) = 0, |f ′(0)| = δ > 0. For any η ∈ (0, δ), let s =
(

δ−η
1−ηδ

)
η; then

the restricted function f : Dη → D1 takes on each value w ∈ Ds exactly
once.
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The hypotheses imply δ ≤ 1 by the Schwarz Lemma.

Lemma 3.2. For a holomorphic map Z1 : Dr → D2 with Z1(0) = 0,

Z ′
1(0) = 1, if r > 4

√
2

3
then there exists a continuous function φ : D1 → Dr

which is holomorphic on D1 and which satisfies (Z1 ◦ φ)(z) = z for all
z ∈ D1.

Remark. It follows from the Schwarz Lemma that r ≤ 2, and it follows
from the fact that φ is an inverse of Z1 that φ(0) = 0 and φ′(0) = 1.

Proof of Lemma 3.2. Define a new holomorphic function f : D1 → D1 by

f(z) =
1

2
· Z1(r · z),

so f(0) = 0, f ′(0) = r
2
, and Lemma 3.1 applies with δ = r

2
. If we choose

η = 3r
8
, then s = 3r2

64−12r2 , and the assumption r > 4
√

2
3

implies s > 1
2
. It

follows from Lemma 3.1 that there exists a function ψ : Ds → Dη such
that (f ◦ ψ)(z) = z for all z ∈ D1/2 ⊆ Ds; this inverse function ψ is

holomorphic on D1/2. The claimed function φ : D1 → Drη ⊆ Dr is defined

by φ(z) = r · ψ(1
2
· z), so for z ∈ D1,

Z1(φ(z)) = Z1(r · ψ(
1

2
· z)) = 2 · f(ψ(

1

2
· z)) = 2 · 1

2
· z = z.

4. J-holomorphic disks

For S > 0, consider the bidisk ΩS = D2×DS ⊆ C2, as an open subset of
R4, with coordinates �x = (x1, y1, x2, y2) = (z1, z2) and the trivial tangent
bundle TΩS ⊆ TR4. Consider an almost complex structure J on ΩS given
by a complex structure operator on T�xΩS of the following form:

(12) J(�x) =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 λ 0 −1
λ 0 1 0

⎞
⎟⎟⎠ ,

where λ : ΩS → R is any function.
A differentiable map Z : Dr → ΩS is a J-holomorphic disk if dZ ◦Jstd =

J ◦ dZ, where Jstd is the standard complex structure on Dr ⊆ C. Let
z = x + iy be the coordinate on Dr. For J of the form (12), if Z(z) is
defined by complex valued component functions,

(13) Z : Dr → ΩS : Z(z) = (Z1(z), Z2(z)),

then the J-holomorphic property implies that Z1 : Dr → D2 is holomorphic
in the standard way.
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Example 4.1. If the function λ(z1, z2) satisfies λ(z1, 0) = 0 for all z1 ∈ D2,
then the map Z : D2 → ΩS : Z(z) = (z, 0) is a J-holomorphic disk.

Definition 4.2. The Kobayashi-Royden pseudonorm on ΩS is a function
TΩS → R : (�x,�v) �→ ‖(�x,�v)‖K , defined on tangent vectors �v ∈ T�xΩS to be
the number

glb

{
1

r
: ∃ a J-holomorphic Z : Dr → ΩS, Z(0) = �x, dZ(0)(

∂

∂x
) = �v

}
.

Under the assumption that λ ∈ C0,α(ΩS), 0 < α < 1, it is shown by [IR]
and [NW] that there is a nonempty set of J-holomorphic disks through �x
with tangent vector �v as in the Definition, so the pseudonorm is a well-
defined function. Further, each such disk satisfies Z ∈ C1(Dr).

At this point we pick α ∈ (0, 1) and set λ(z1, z2) = −2|z2|α. Let S =
Sα > 0 be the constant defined by formula (4) from Theorem 1.1. Then,
(ΩS, J) is an almost complex manifold with the following property:

Theorem 4.3. If 0 �= b ∈ DS then ‖((0, b), (1, 0))‖K ≥ 3
4
√

2
.

Remark. Since 3
4
√

2
≈ 0.53, and ‖((0, 0), (1, 0))‖K ≤ 1

2
by Example 4.1,

the Theorem shows that the Kobayashi-Royden pseudonorm is not upper
semicontinuous on TΩS.

Proof. Consider a J-holomorphic map Z : Dr → ΩS of the form (13), and
suppose Z(0) = (0, b) ∈ ΩS and dZ(0)( ∂

∂x
) = (1, 0). Then the holomorphic

function Z1 : Dr → D2 satisfies Z1(0) = 0, Z ′
1(0) = 1, and Z2 ∈ C1(Dr)

satisfies Z2(0) = b.
Suppose, toward a contradiction, that there exists such a map Z with

b �= 0 and r > 4
√

2
3

. Then Lemma 3.2 applies to Z1: there is a re-
parametrization φ which puts Z into the following normal form:

(Z ◦ φ) : D1 → ΩS

z �→ (Z1(φ(z)), Z2(φ(z))) = (z, f(z)),(14)

where f = Z2 ◦ φ : D1 → DS satisfies f ∈ C0(D1) ∩ C1(D1). From the
fact that Z ◦ φ is J-holomorphic on D1, it follows from the form (12) of J
that if f(z) = u(x, y) + iv(x, y), then f satisfies this system of nonlinear
Cauchy-Riemann equations on D1:

(15)
du

dy
= −dv

dx
and

du

dx
+ λ(z, f(z)) =

dv

dy
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with the initial conditions f(0) = b, ux(0) = uy(0) = vx(0) = 0 and
vy(0) = λ(0, b) = −2|b|α. The system of equations implies

∂f

∂z̄
=

1

2
(
∂

∂x
(u+ iv) + i

∂

∂y
(u+ iv))

=
1

2
(ux − vy + i(vx + uy))

= −1

2
λ(z, f(z)) = |f |α.(16)

So, Theorem 1.1 applies, with f = h. The conclusion is that

sup
z∈D1

|f(z)| > Sα,

but this contradicts |f(z)| < S = Sα.

The previously mentioned existence theory for J-holomorphic disks shows
there are interesting solutions of the equation (16), and therefore also the
inequality (11).

Example 4.4. For 0 < α < 1, (ΩS, J), λ(z1, z2) = −2|z2|α as above,
a map Z : Dr → ΩS of the form Z(z) = (z, f(z)) is J-holomorphic if
f(x, y) = u(x, y) + iv(x, y) is a solution of (15). Again generalizing the
α = 1

2
case of [IPR], examples of such solutions can be constructed (for

small r) by assuming v ≡ 0 and u depends only on x, so (15) becomes
the ODE u′(x) − 2|u(x)|α = 0. This is the equation from Example 2.7;
we can conclude that J-holomorphic disks in ΩS do not have a unique
continuation property.

Acknowledgments. The authors acknowledge the insightful remarks of the
referee, whose suggestions led to a shorter proof of Lemma 2.6 and an
improvement of Theorem 2.4.
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