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Degeneracy Loci in CR

Geometry

.1 Introduction

The geometry of complex subspaces contained within real subspaces of a com-

plex vector space is described in detail in Section 2. This leads to an analysis

of real subbundles of a complex vector bundle in Section 3, using a generalized

Gauss map. These geometric constructions lend themselves to a cohomological

formalism of Thom and [Porteous], and consequences of the theory are exam-

ined in Section 4. A general formula uni�es relations described by [Wells], [Lai],

[W86], [HL93], and [Domrin] among the pontrjagin classes of a real oriented m-

subbundle T , the chern classes of the ambient complex n-bundle F , and chern

numbers of complex bundles over the CR-singular sets in a smooth base space

M . The initial study of the grassmannian as a universal case shows that the

codimensions appearing in these cohomological formulas are indeed the numbers

\expected" in geometrically generic con�gurations.

The theory of degeneracy loci is classical in algebraic geometry ([Fulton84]);

a di�erential-topological approach is considered in a recent article of of Harvey

and Lawson [HL95]. In particular, [HL95] also arrives at a more general version

of Theorem 4.5, and phrases it in terms of singular di�erential forms and ap-

proximating families. Here, Theorem 4.5 is generalized in di�erent directions,

requiring that degeneracy loci be, in a certain sense, submanifolds arising from

transverse intersections. The examples make explicit how some formulas regard-

ing complex tangencies follow from [HL95]. Some new formulas (Theorems 4.12,

4.18) follow from theorems of [HT] and [Pragacz] on chern numbers of kernel

bundles, and of [Fulton91] on degeneracy loci for ags of bundles.

The theory is applied to smooth maps between complex bundles, and the

loci where such maps are complex-linear on subspaces. Corollary 5.2 generalizes

a lemma of [EW] and the invariants for pairs of complex structures of [HL93]

and [HL95].

1



.2 Planes in Planes in Planes

Consider a complex vector space Fn as an oriented real vector space FR of

real dimension 2n, with a complex structure J , J2 = �1 and a compatible

positive de�nite metric g. The compatibility condition is the equation g(X;Y ) =
g(JX; JY ), and if (J; g) does not already have this property, then g can be

replaced by a positive multiple of g(X;Y ) + g(JX; JY ). For 0 � m � 2n,
denote by SG(m;F ) the manifold of all oriented real-linear m-subspaces in FR.
SG(m;F ) has real dimension m(2n�m).

De�nition 2.1 V 2 SG(m;F ) has (exactly) j complex directions if

dimRV \ JV � 2j (= 2j). De�ne j0 = maxf0;m� ng and k = bbm=2cc.
Lemma 2.2

j 2 fj0; :::; kg () 9V 2 SG(m;F ) with exactly j complex directions.

Proof: Note that H := V \ JV is the largest J-invariant subspace of FR
contained in V and J jH is a complex structure. The inequality j0 � j � k

follows from simple linear algebra.

De�nition 2.3 If V has j = k = m=2 complex directions, then V is

J-invariant, and is called a \complex j-subspace" of F if its orientation is com-

patible with its induced complex structure, or an \anticomplex j-subspace"
otherwise.

De�nition 2.4 In the case where V has exactly zero complex directions,

V is said to be totally real. V with exactly j0 complex directions will be called

CR-regular.

For j0 � j � k, de�ne Dj = fV 2 SG(m;F ) with j complex directionsg,
and Cj = fV 2 SG(m;F ) with exactly j complex directionsg; then

� Ck = Dk, and for j0 � j � k � 1; Cj = Dj nDj+1:

� SG(m;F ) = Dj0
� : : : � Dj � : : : � Dk

� SG(m;F ) is the disjoint union Cj0 [ : : : [ Cj [ : : : [ Ck .

It is convenient to de�ne Ck+1 = ; and Dj = SG(m;F ) for j < j0.
Dj is a subvariety of SG(m;F ), with singular locus Cj+1, and can be de-

scribed as follows. Given a complex j-plane (an element of CG(j; n)), one could
consider the set of realm-planes containing it; this set forms a SG(m�2j; n�2j).
This process gives a bundle of grassmannians over CG(j; n), but if an m-plane

has j+1 complex directions then it appears in this grassmann bundle more than

once. Dj is the set obtained by making the appropriate identi�cations on this

manifold. The smooth locus of Dj is Cj , which is a �bered manifold with base

CG(j; n) and �ber a dense open subset of SG(m � 2j; n � 2j). In particular,

Cj0 is a dense open subset of SG(m;F ). If m is even, Ck = CG(k; n) �S0, and

if m is odd, then Ck has base CG(k; n) and �ber SG(1; 2n�m+ 1) = S2n�m.

Lemma 2.5 A brief calculation gives the codimension of Cj in SG(m;F ),

codimRCj = 2j(n�m+ j); (1)
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and that this number is � 0 and strictly increasing with j.
Example 2.6 m = n = 2 ) 0 � j � 1. [Chern-Spanier] show that

SG(2;R4 ) = S2 � S2 � �2R4 = R6 , given by x21 + x22 + x23 = y21 + y22 + y23 = 1.

If the R4 has complex structure operator

J =

0
BB@

0 0 1 0

0 0 0 �1
�1 0 0 0

0 1 0 0

1
CCA ;

then C1 = CP 1 �S0 is the parallel pair of 2-spheres given by x3 = �1. (cf also
[Bancho�-Farris], [IO], and [Chen-Morvan])

Example 2.7 The metric on FR gives the familiar di�eomorphism from

SG(m;F ) to SG(2n�m;F ), where V 7! V ?. Consider V 2 Cj :

dimV \ JV = 2j ) dim V ? \ JV = dim JV ? \ V = m� 2j

) dim V ? \ JV ? = (2n�m)� (m� 2j) = 2(n�m+ j)

) V ? 2 C 0
j0
� SG(m0; F );

where, denoting j0 = n � m + j, m0 = 2n � m, etc., C 0
j0
= fV 2 SG(m0; F )

with exactly j0 complex directionsg. The inequality j00 � j0 � k0 follows from
j0 � j � k, and the codimension of C 0

j0
in SG(m0; F ) is 2j0(n � m0 + j0) =

2j(n�m+ j). So, the di�eomorphism ? preserves the decomposition into Cj 's,
possibly re-indexing them.

The following table describes some con�gurations allowed by Lemma 2.2 and

(1), arranged by the codimension of Cj in SG(m;F ).

j m n codim j m n codim j m n codim

j0 0 � m � 2n � 0 0 1 n� 4 � 6 10 1 n� 7 � 9 16

1 n � 2 2 5 n+ 4 � 6 10 2 n� 2 � 6 16

1 n� 1 � 3 4 1 n� 5 � 7 12 4 n+ 2 � 6 16

2 n+ 1 � 3 4 2 n� 1 � 5 12 8 n+ 7 � 9 16

1 n� 2 � 4 6 3 n+ 1 � 5 12 1 n� 8 � 10 18

3 n+ 2 � 4 6 6 n+ 5 � 7 12 3 n � 6 18

1 n� 3 � 5 8 1 n� 6 � 8 14 9 n+ 8 � 10 18

2 n � 4 8 7 n+ 6 � 8 14

4 n+ 3 � 5 8 � � �

Another description of Dj detects J-invariant subspaces as subspaces of a
certain kernel. Fix V 2 SG(m;F ), containing H = V \ JV , and denote the

inclusion � : V ,! FR. Complexifying (applying 
RC to) H;V; and FR extends

� to �C , and J to JC : FR 
 C ! FR 
 C . FR 
 C splits into the +i and
�i eigenspaces of JC , as F � F . The \projection onto the holomorphic part"

' : F � F ! F is given by the operator ( 1
2
� i

2
JC ). Since H 
 C ,! V 
 C is

JC -invariant, it similarly is isomorphic to HC �HC , where HC := �C (V 
C )\F ,
and HC := �C (V 
 C ) \ F . The composite '�C : V 
 C ! F has kernel HC .
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Lemma 2.8 V 2 Dj () some complex j-subspace of V 
 C is mapped

to f~0 2 Fg by '�C .
Proof: A subspace, regardless of its orientation, is mapped to zero if

and only if it is contained in the kernel of the map, HC . HC has the property

dimRV \ JV = 2dimC HC � 2j.

.3 Degeneracy Loci and Grassmann Bundles

Now let V be the real oriented tautological m-bundle over SG(m;F ), and ab-

breviate as F the trivial complex n-bundle SG(m;F ) � F . Taking all com-

plex j-subspaces of �bers of the complexi�ed bundle V 
 C , form the complex

grassmann bundle �j : CG(j; V 
 C ) ! SG(m;F ). Let U j be the tautologi-

cal j-bundle over CG(j; V 
 C ), and form the pullbacks V := ��
j
(V 
 C ) and

F := ��
j
F .

The inclusion of U j into V, followed by the map '�C on �bers is a bundle map
U j ! F, and de�nes a section sj of Hom(U

j ; F). By Lemma 2.7, if this section

vanishes at x then �j(x) 2 Dj , and if x 2 Dj , then sj = 0 for some element

of ��1
j

(x). Denote the zero set Div(sj) := fxjsj(x) = 0g; then �j(Div(sj)) is
called the degeneracy locus of the bundle map '�C : V 
 C ! F .

Div(sj) � ��1
j
Dj is a real algebraic subvariety of CG(j; V 
 C ). For x 2

Cl; �
�1
j
(x) \ Div(sj) = CG(j; l). If Zj := Div(sj) n ��1

j
Dj+1, then �j jZj is a

di�eomorphism onto Cj , and so

codimRDiv(sj) = 2j(n�m+ j) + 2j(m� j) = 2jn;

as expected for a section of this bundle. The projection of Div(sj) onto Dj is a

partial desingularization which undoes some of the identi�cations made in the

earlier description of Dj .

The above paragraphs and the preceding section generalize to the situation

where F is a smooth complex vector bundle over a smooth manifold M . Let

FR be the underlying real oriented 2n-bundle, with some Riemannian metric,

and � : SG(m;F ) ! M the grassmann bundle formed by all the real oriented

m-subspaces of �bers (FR)x. If the tautological m-bundle over SG(m;F ) is

� : V ,! ��FR, then any real oriented m-subbundle T of FR is of the form

�
T
� : T = �

T
V ,! FR, for some smooth section T :M ! SG(m;F ).

Example 3.1 If an m-dimensional manifold is immersed g : M ! C n ,

then the immersion induces a map of real tangent bundles, TM ! T C n , and
an inclusion of TM in the trivial bundle g�T C n = M � R2n . Then T : M !
M � SG(m; 2n) is the graph of the oriented Gauss map of the immersion.

The subsets Dj and Cj of SG(m;F ) are de�ned in the same way,

e. g. Dj = fx 2 SG(m;F )j dimRVx \ ��JxVx � 2jg, and the codimension

formula (1) still applies.

De�nition 3.2 The CR-singular set of (j� j0)
th order, Nj , of a subbundle

T in F , is the set �(T (M) \ Dj) � M . Points of �(T (M) \ Cj0) are called
CR-regular.
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If T is the tangent bundle ofM and F is the pullback bundle by an immersion

M ,! A of TA, the tangent bundle of the almost complex manifold A, then both
points in Nj0+1 and the subspaces H of �bers of T over such points are called

\complex tangents" of the immersion.

De�nition 3.3 T is generically included in F if T (M) and Cj intersect

transversely in SG(m;F ) for each j.
Lemma 3.4 If T is generically included in F , Nj n Nj+1 is a smooth

submanifold of M , of codimension 2j(n�m+ j).
De�nition 3.5 T is a CR-subbundle of F of CR codimension m � 2j if

T (M) � Cj . If j = 0 then T is called totally real, and if j = k = m=2; T is a

complex (or anticomplex, on each connected component) j-subbundle of F . A
generic CR-subbundle has CR-codimensionm�2j0; such subbundles are totally
real if m � n, or have totally real orthogonal complement if m � n. If T is the

tangent bundle as above, similar adjectives apply to the manifold M .

Example 3.6 If 0 < m < 2n then a generically included subbundle is

not complex or anticomplex. Otherwise, if m = 0 or 2n, every subbundle is

trivially both generically included and complex (or anticomplex, on connected

components). If m = 2n � 1, then j0 = k = n � 1, and every subbundle T
is a generically included CR-subbundle of CR codimension 1. Every real line

subbundle (m = 1) is totally real. If dimRM < 2(n�m+1), then a generically

included T is totally real. In the case T = TMm, the tangent bundle of a

real m-manifold, this inequality is similar to bounds in embedding theorems of

[Whitney44] and [Haeiger]: if m < 2
3
(n+1), then any m-manifold immersed in

C n can be perturbed so that there are no complex tangents.

To describeDj as a degeneracy locus inside the grassmann bundle SG(m;F ),
again form the grassmann bundle �j of complex j-subspaces of the bundle V 
C .
The tautological complex j-bundle U j over the total space CG(j; V 
 C ) is

included in the pullback bundle V := ��
j
(V 
C ). This inclusion, composed with

the map given on �bers by '�C , is a bundle map U j ! F := ��
j
��F , de�ning a

section sj of the bundle Hom(U
j ; F). Div(sj) projects by �j to Dj .

Hom(U j ; F)

��

V

��

F

��
CG(j; V 
 C )

sj

OO

�j // SG(m;F )
� //

M
T

oo

Over the set Nj nNj+1 lies an obvious complex j-bundle, de�ned at a point x
by Tx \ JxTx, with the complex structure induced by Jx. In terms of the above

construction, it is a pullback bundle, as follows. T jNjnNj+1
is a di�eomorphism

onto T (M) \ Cj , and �j j�1Zj is a di�eomorphism Cj ! Zj . Finally, include

Zj ,! CG(j; V 
 C ), and denote the (injective) composition �j : Nj nNj+1 !
CG(j; V 
C ). The �ber of U j above an element y of Zj is the j-plane mapped to
~0 in Fy , which is, by Lemma 2.7, of the form (HC )y, where (HC )y is isomorphic

to the ��
j
��Jy-invariant real 2j-plane contained in �

�

j
Vy. So, de�ne the complex
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j-bundle Hj over Nj nNj+1 by ��
j
U j . If m is even, the connected components

of Hk are complex or anticomplex k-subbundles of components of F jNk
.

Remark: At this point, assume M is a smooth compact oriented manifold

without boundary, of real dimension d. The orientations on T , F , and TM , the

real tangent bundle of M , induce orientations on almost everthing else. At a

point x of the grassmann bundle SG(m;F ), the tangent space is T�(x)M�V �

x



V ?

x
, where V is the oriented tautological bundle. At a point y of CG(j; V 


C ), the tangent space is T�j(y)SG(m;F ) � U j�

y

 (Vy=U

j

y
): The tangent space

to Div(sj) is oriented so that Hom(U j ; F)jDiv(sj) � TDiv(sj) = T CG(j; V 

C )jDiv(sj): This orientation induces orientations for the submanifolds Cj and

Nj nNj+1.

Remark: In the generic case, the normal bundle of the submanifold Nj n
Nj+1 is isomorphic to Hom(ker'�C ; coker '�C ) �= �Hj 
C H

n�m+j
?

, where H? is

the complex tangent space T? \ JT? of the bundle normal to T in F . ([GG],
p. 145) This description of the normal bundle is another geometric feature of

the codimension formula (1). A complex structure on �(N1 nN2) was observed

in the m = n case in [W85].

Remark: If X is connected without boundary, but not orientable, then it

admits a connected, orientable two-fold cover Xo ! X . CR singularities of a

bundle T over X induce CR singularities when T and F are pulled back to Xo.

It will frequently be the case that CR-singularities of high order are to be

avoided; this is denoted by \Nj+1 = ;:" This condition may follow from the

hypothesis \T generic," (for large j), and otherwise is not inconsistent with

genericity. If T is generically included in F and Nj+1 = ;, then T (M) and Cl
intersect transversely in SG(m;F ) for each l � j, and T (M) \Dj+1 = ;.

Example 3.7 If d < 2(j+1)(n�m+j+1), then Nj+1 = ; for T generically

included in F . If Nj+1 = ; and T is generic, then Nj is a closed submanifold of

M . Example 3.6 is a special case of this phenomenon.

.4 Determinantal Formulas

De�nition 4.1 For two complex vector bundles R; S over a manifold M , let

c(R�S) denote the quotient of total chern classes cR(cS)�1 in the cohomology

ring H�(M ; C ), with ci(R� S) the degree 2i part.
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Example 4.2 Abbreviate F = ��F over SG(m;F ). Then

c(F � V 
 C )

:= cF (c(V 
 C ))�1 (2)

� (

nX
a=0

caF )(

kX
b=0

(�1)bpbV )�1 (3)

= (

nX
a=0

caF )(

1X
i=0

(

kX
b=1

(�1)b+1pbV )i) (4)

= 1 + c1F + (c2F + p1V ) + (c3F + c1Fp1V ) + (5)

(c4F + c2Fp1V � p2V + p21V ) +

(c5F + c3Fp1V � c1Fp2V + c1Fp
2
1V ) +

(c6F + c4Fp1V � c2Fp2V + c2Fp
2
1V + p3V � 2p1V p2V + p31V ) + : : :

(3) is the de�nition of pontrjagin classes. (4) is a formal power series expansion.

The terms of (5) are grouped by total (even) degree.

.4.1 Formulas for isolated complex tangents

A determinantal formula developed over a long history by Giambelli, Thom,

and [Porteous] about degeneracy loci of bundle maps applies to the geometry

of complex tangents as developed previously. Both of the following propositions

are from [Porteous]:

Proposition 4.3 The equation of degree 2jn cohomology classes

[Div(sj)] = cjnHom(U
j ; F) (6)

pushes forward by �j to the equation

�j�[Div(sj)] = �
(j)
n�m+j(c(�

�F � V 
 C )) (7)

:= det(cn�m+j+a�b(�
�F � V 
 C ))1�a;b�j ; (8)

of degree 2j(n�m+ j) cohomology classes.

Lemma 4.4 �j�[Div(sj)]jSG(m;F )nDj+1
= [Dj ]jSG(m;F )nDj+1

.

Theorem 4.5 If d = dimRM = 2j(n�m+j), and T is generically included

in F , then

X
x2Nj

ind(x) =

Z
M

�
(j)

n�m+j(c(F � T 
 C )); (9)

where ind(x) is the oriented intersection number of T (M) and Cj at T (x).
Proof: This equation is the integral of the product of both sides of (7)

with [T (M)]. The chern and pontrjagin classes on the RHS pull back to M by

functoriality. The hypothesis T generic assures that T (M) is transverse to Cj ,
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the smooth part of the support of �j�[Div(sj)], and the codimension formula

(1) implies the intersection is only in isolated points of Cj .
Example 4.6 ([W86]) Consider the situation where T is a real 2-subbundle

of a complex 2-bundle F over a smooth compact oriented surface M . (This will

be described by d = m = n = 2.) If T is generically included in F , the set

N1 of points x where the �ber Tx is complex or anticomplex is a codimension 2

submanifold, i.e., �nite. Formula (9) then reads:

X
x2N1

ind(x) =

Z
M

c1F: (10)

In fact, this holds for d = 2; m = n � 2. The local geometry of this index when

T = TM is also considered by [IO].

Example 4.7 In the case d = m = 4, n = 5, [Domrin] calculated the index

sum

X
x2N1

ind(x) =

Z
M

c2F + p1T:

For example, the complex projective plane can be embedded in C 3 �R3 by the

map P : [z1 : z2 : z3] 7! 1
N
(z2�z3; �z1z3; z1�z2; z1�z1; z2�z2; z3�z3), with N(z1; z2; z3) =

jz1j2 + jz2j2 + jz3j2. If the target space R9 is included in C
5 , the image CP 2 ,

or generic smooth perturbations of it, has isolated points at which the tangent

space contains a complex line. The index sum is p1CP
2 = 3.

Example 4.8 m = n � 4; j = 2; d = 8. Abbreviate by ci the 2i-degree
part of c(F � T 
 C ), corresponding to the ith term of (5).

X
x2N2

ind(x) =

Z
M

���� c2 c1
c3 c2

���� (11)

=

Z
M

(c2F + p1T )
2 � c1F (c3F + c1Fp1T ): (12)

In particular, if F is trivial, as in the case whereM is immersed in C 8 , T = TM;
and F is the pullback by the immersion of T C 8 , then ([Lai])

X
x2N2

ind(x) =

Z
M

p21T: (13)

Example 4.9 m� n+ 1 = j = 2l > 0; d = 2j.

X
x2Nj

ind(x) =

Z
M

�
(j)
1 (c(F � T 
 C )); (14)

This can be a complicated polynomial. One of several useful determinantal

identities in [Fulton84] applies,

�(b)
a
(c(R� S)) = (�1)ab�(a)

b
(c(S �R));
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so the characteristic class can be rewritten �
(1)
j
(T 
 C � F ), which simpli�es

to (�1)lplT if F is trivial. Equation (14) becomes this corollary of Theorem

4.5: Let M be a 4l-dimensional manifold, and let T be a generic (n + 2l � 1)-

subbundle of the trivial complex n-bundle. Then (note j0 = 2l � 1, so N2l is

the �rst CR-singular set)

X
x2N2l

ind(x) = (�1)l
Z
M

plT; (15)

and, letting n = 2l+1, and T = TM yields a formula ([HL93]) about 2l-complex
and anticomplex tangencies of generic immersions M4l ! C 2l+1 :

X
x2N2l

ind(x) = (�1)l
Z
M

plM: (16)

Example 4.10 m = 2; j = 1; d = 2(n� 1) � 0.

X
x2N1

ind(x) =

Z
M

�
(1)
n�1(c(F � T 
 C )) =

Z
M

cn�1(F � T 
 C ) (17)

=

Z
M

((cF )(1� p1T )
�1)2n�2 =

Z
M

1X
b=0

cn�1�2bF (p1T )
b:(18)

Note that Example 4.6 is the special case n = 2. If T = �M , the normal 2-

bundle of a generic immersion of a 2(n� 1)-manifold M in an almost complex

n-manifold, and F is the restriction to M of the ambient tangent bundle, then

p1�M = ~
2, where ~
 is the euler class of the normal bundle. In this scenario,

(18) is a theorem of [Lai]:

X
x2N1

ind(x) =

Z
M

1X
b=0

~
2bcn�1�2bF: (19)

If n is even and F is trivial, then (RHS 18) = 0. If n = 2l+ 1, and F is trivial,

such as when M is generically immersed in C n , then (19) becomes

X
x2N1

ind(x) =

Z
M

~
2l: (20)

For a given immersion of M , equations (16) and (20) give the same in-

formation. The gauss maps of the tangent and normal bundle are related

by TM =? ��M ; by Example 2.6, the CR-singular sets are the same, and

so are the intersection indices. Since pTMp�M = pC 2l+1 = 1; pTM =

(1 + p1�M)�1 ) plTM = (�1)l(p1�M)l:
More generally, If Tm is generic in Fn, then so is T?; the set Nj of CR-

singularities of T is the same set as the Nn�m+j corresponding to T? in F ,
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and either sum of indices is given by Theorem 4.5. The equality of the chern

numbers is also a consequence of determinantal identities:Z
M

�
(n�m+j)
j

(c(F � T? 
 C )) =

Z
M

�
(n�m+j)
j

�
cF

c((F=T )
 C )

�

=

Z
M

�
(n�m+j)
j

�
cF

cFc �Fc(T 
 C )�1

�
=

Z
M

�
(n�m+j)
j

(c(T 
 C � �F ))

= (�1)j(n�m+j)

Z
M

�
(n�m+j)

j
(c(T 
 C � F )) =

Z
M

�
(j)

n�m+j(c(F � T 
 C )):

Example 4.11 In the case of an oriented four-manifold M generically

immersed in an almost complex 3-manifold A, the characteristic classes of T =

TM , � = T?, and F = TAjM are related by p1T +p1� = c21F �2c2F . The sum
of the indices of complex tangents for T is

R
M
c21F � c2F � p1T , and for � isR

M
c2F + p1�. These numbers are equal, and zero if M is a CR submanifold of

A. For any suchM4, the pontrjagin number
R
M
p1T is three times the signature

([Hirzebruch]), and if A = C 3 , then
R
M
p1� is three times the algebraic number

of triple points of the immersion ([Herbert]). If M is isotopic to a complex

submanifold Y , the chern classes of Y pull back to M ; adjunction formulas for

almost complex hypersurfaces can be used ([GH], p. 601). For example, if Y is

a smooth, degree d complex hypersurface in A = CP 3 , and H is the hyperplane

class in the cohomology of CP 3 , c2(T CP
3 jY ) = 6H2, and c1T

?Y = dH . SinceR
Y
H2 = d, the chern number

R
Y
c2(T CP

3 jY ) + (c1T
?Y )2 is 6d + d3, which

equals
R
M
c2F +p1� ifM is isotopic to Y . This number is always positive; there

are no CR submanifolds of CP 3 isotopic to smooth complex hypersurfaces. In

particular, a generically immersed submanifold isotopic to a complex hyperplane

CP 2 has seven complex tangents, counted with multiplicity.

.4.2 Formulas for non-isolated complex tangents

A procedure for �nding the chern numbers of a kernel bundle was given by [HT].

Later, [Pragacz] gave a closed formula in terms of the segre class s(F �T
C ) =
1 + s1 + s2 + : : : , where the �rst few terms of the segre class are as follows:

s = (1� c1 + c2 � c3 + c4 � c5 + : : : )�1

= 1 + c1 + (c21 � c2)

+(c31 � 2c1c2 + c3)

+(c41 � 3c21c2 + 2c1c3 + c22 � c4) + : : :

= 1 + c1F + (c21F � c2F � p1T )

+(c31F � 2c1Fc2F + c3F � c1Fp1T )

+(c41F � 3c21Fc2F + 2c1Fc3F + c22F � c4F � c21Fp1T + c2Fp1T + p2T ) + : : : :

The segre classes will appear in determinants labeled with a sequence of

integers J = (j1; j2; : : : ; jr), with

�J(s(R � S)) = det(sjp�p+q)1�p;q�r :

10



Theorem 4.12 If T is generic in F ! M , Nj+1 = ;, and the product of

chern classes
Q
ci(K)�i is expressed as a sum with nonnegative integer coe�-

cients
Q
ci(K)�i =

P
mJ�J(s(K)), where

P
i�i =

1
2
dimR(Nj) = d, then

Z
Nj

Y
i

ci(H)�i =

Z
M

X
J

mJ�jn�m+j ;~J
(s(F � T 
 C ));

where ~J denotes the conjugate partition (i1; i2; : : : ), ia = cardfh : jh � ag.
Proof: Recall that M is assumed smooth, compact, and oriented, and by

Example 3.7, Nj is a closed, oriented submanifold. The formula follows from

the equality of cohomology classes ([Pragacz] Lemma 5.1 and Prop. 5.3)

�J(s(�K))[Nj ] = �jn�m+j ;J(s(F � T 
 C ));

which by a determinantal identity implies

�J(s(K))[Nj ] = (�1)d�
jn�m+j ;~J

(s(F � T 
 C ));

where K is the kernel bundle over Nj of the map T 
 C ! F . The sign (�1)d

is cancelled when writing formulas for the chern number of H = �K.

The segre classes are sometimes more natural than the chern classes in enu-

merative constructions such as these. The determinants in this formula could

immediately be rewritten in terms of chern classes using the determinantal iden-

tities �I(s(E � F )) = (�1)jIj�~I
(s(F �E)) = �~I

(c(E � F )).
Example 4.13 For T generic, d = 12; j = 2; m = n � 4; the characteristic

numbers are expressed as:

Z
N2

c2H
2 =

Z
M

������
s2 s3 s4
s1 s2 s3
1 s1 s2

������ =
Z
M

c23 � c2c4;

Z
N2

c21H
2 =

Z
M

������
s2 s3 s4
s1 s2 s3
1 s1 s2

������+
��������

s2 s3 s4 s5
s1 s2 s3 s4
0 1 s1 s2
0 0 1 s1

��������
=

Z
M

c23 � c1c5:

These are two possibly di�erent obstructions to N2 = ;.
Example 4.14 d = 2j(n + q � m + j), q � 0: suppose T is a generic

subbundle of F such that Nj+1 = ;. To �nd a power of the top chern class of

Hj , the determinantal formula can be written in terms of chern classes,

Z
Nj

cq
j
Hj =

Z
M

�
(j)
n+q�m+j(c(F � T 
 C )); (21)

and the special case q = 0 is Theorem 4.5.

11



Example 4.15 j = 1; m = n = 4; q = 1; d = 4; T generic ([W86])

Z
N1

c1H
1 =

Z
M

�
(1)
2 (c(F � T 
 C )) =

Z
M

c2F + p1T:

More generally, for T generic, j = 1; m = n � 2; d = 2(q + 1), and N2 = ;
(which is implied by generic for d = 4 or 6),

Z
N1

cq1H
1 =

Z
M

�
(1)
q+1(c(F � T 
 C )) =

Z
M

cq+1(F � T 
 C ):

For example, [Whitney44] showed the embedding of CP 2 from Example 4.7 can

be composed with a projection resulting in an embedding into R7 . Generic

perturbations of this map give a 4-manifold in C 4 such that N1 is a smooth

surface and
R
N1

c1H
1 = p1CP

2 = 3.

Example 4.16 Suppose T is a totally real n-subbundle of the trivial bundle
F = C n . Then all its pontrjagin classes except p0 are zero. This follows directly
from the de�nition of pontrjagin classes since F and T 
 C are isomorphic, but

is also a consequence of the formula. T (M) does not intersect the support of

�1�([Div(s1)]c
q

1U
1�), so

0 = �
(1)
q+1(c(F � T 
 C )) = (c(T 
 C )�1 )q+1

for q � 0, so pT = (1+ 0+ 0+ : : : )�1 = 1. This was noticed by Kobayashi and

[Wells] in the T = TM case. The same conclusion holds if T is a totally real

n � 1-subbundle of C n ; in this case 0 = �
(1)
q+2(c(F � T 
 C )), and c1 = 0 by

hypothesis. This also gives a result of [Lai]: if T is a CR-regular n+1-subbundle

of C n , then T? is a totally real n� 1-subbundle, and pC n = pTpT? = pT = 1.

Example 4.17 Suppose T is a generic CR-subbundle of F , with m > n, so
FR decomposes as a direct sum of smooth subbundles T?� JT?�Hm�n. The

chern numbers of H can be calculated in terms of cF and pT using the sum

formula

cF = c(T? 
 C )cH;

and the kernel bundle formula gives the same result when applied toNm�n =M :

Y
c�i
i
H =

X
mJ�~J

(s(F � T 
 C ))

=
X

mJ�J(c(F � T 
 C ))

=
X

mJ�J(s(F � T? 
 C ))

=
Y

c�i
i
(F � T? 
 C ):

In the case where T is the normal bundle of a totally real submanifold, the

topology of H is considered in [Forstneri�c].

12



.4.3 Flags of subbundles

As another generalization of Theorem 4.5, a \ag of real subbundles" inside

the complex bundle F is considered. To �x notation, t � 1 subspaces (or

subbundles) are indexed:

Tm1

1 � Tm2

2 � : : : � Tmt

t
� Fn;

with 0 � m1 � m2 � : : : � mr � 2n: The interesting loci of complex tangents

are indexed by sequences of ji = dimC Ti \ JTi:

0 < j1 < j2 < : : : < jt (22)

m1 � j1 < m2 � j2 < : : : < mt � jt < n: (23)

Flags with (at least) ji complex directions in Ti, 1 � i � t, form a locus D(j1:::jt)

in the (partial) ag manifold SF l(m1; : : : ;mn; F ) of oriented real subspaces of

F 2n
R
.

It is not too restrictive to consider strictly increasing indices ji and mi�ji|
consider Tm1

1 � Tm2

2 � Fn withm2 � n. If T1 has exactly j1 complex directions,
any T2 will have at least that many, and generically will have an equal number,

j2 = j1. So, the locus in SF l where 0 < j1 � j2 is the inverse image of

Dj1
� SG(m1; F ) under the projection forgetting T2, and enumerative questions

about the locus D(j1j2) reduce to the single subbundle case if j2 = j1. Similarly,
if n � m1, the number of complex directions in the normal space, n�mi + ji,
generically does not increase for i = 1, 2, so the con�gurations which do not

reduce to the grassmannian case are those with mi � j1 < m2 � j2.
The formula for the real codimension of the locus D(j1:::jt) in SF l is

2j1(n�m1 + j1) + 2(j2 � j1)(n�m2 + j2) + : : :+ 2(jt � jt�1)(n�mt + jt):

Note that this reduces to formula (1) when t = 1, and that each term is non-zero

by (22), (23). The proof of the special case t = 2 illustrates the general idea.

Example 4.18 SF l(m1;m2; F
n) is a �ber space with base SG(m1; F ), the

orientedm1-planes in F
2n
R
. Them2-planes containing a �xed T

m1

1 form the �ber

over T1, a grassmannian of quotients of m2 �m1 dimensions inside F=T1 The

total dimension of SF l is m1(2n�m1) + (m2 �m1)((2n�m1)� (m2 �m1)).

Those T1 that contain any complex j1-dimensional subspace form a codimension

2j1(n�m1+j1) locus in the base space SG(m1; F ), and so a dimension 2m1n�
m2

1 � 2j1n + 2j1m1 � 2j21 base variety. Those Hj2

2 that contain the complex

subspace Hj1

1 form a �ber with real dimension 2(j2 � j1)(n � j1 � (j2 � j1)).
Generically, H2 and T1 intersect only in H1 and the real dimension of their

sum (H2 + T1 as real vector subspaces) is m1 + 2j2 � 2j1. The space of Tm2

2

that contain both T1 and H2 forms a �ber of real dimension (m2 � (m1+2j2�
2j1))(2n�(m1+2j2�2j1)�(m2�(m1+2j2�2j1))): The total parameter count
for the space D(j1j2) is 2j1(n�m1 + j1) + 2(j2 � j1)(n�m2 + j2) less than the

dimension of SF l. This description of D(j1j2) omits some identi�cations that

must be made when some of the subspaces intersect non-transversely, causing

singularities in the locus but not decreasing the dimension.

13



A ag of subbundles over M is \generic" if its image under the Gauss map

to the ag bundle SF l(m1; : : : ;mt; F )!M meets the smooth parts of the loci

Dj transversely for each j satisfying (22), (23). The locus in M mapped to Dj

will be called Nj. De�ne the partition

� = ((n�m1 + j1)
j1 ; (n�m2 + j2)

j2�j1 ; : : : ; (n�mt + jt)
jt�jt�1);

and, for 1 � a � jt, let �(a) = minfs : 1 � s � t; a � jsg:
Theorem 4.19 If T1 � : : : � Tt � F is a generic ag of subbundles, then

Nj has codimension 2j�j = 2j1(n �m1 + j1) + : : : + 2(jt � jt�1)(n �mt + jt),
and the current de�ned by Nj has cohomology class

[Nj] = det(c�a�a+b(F � T�(a) 
 C ))1�a;b�jt :

The formula follows from [Fulton91]; the real degree of the cohomology class

is 2j�j, and the dimension count in the universal ag bundle is necessary to show
that generically Nj is a subset with a smooth locus of codimension 2j�j.

Example 4.20 The simplest example with t = 2 is j1 = 1, j2 = 2, m1 = 2,

m2 = 4, n = 3. In this case, F 3 is a complex 3-plane bundle, containing T 4
2 as a

real subbundle, which in turn contains T 2
1 . T

2
1 is generically totally real in F 3,

but is a complex line along a locus of real codimension 4. T 4
2 generically contains

a complex line, but is a complex 2-plane along a locus of real codimension 4.

T 2
1 and T 4

2 are simultaneously complex along the locus N(12), which generically

has codimension 2 � 1 � (3� 2 + 1) + 2 � (2� 1) � (3� 4 + 2) = 6.

The formula uses the partition � = (2; 1) and the function �(1) = 1, �(2) = 2:

[N(12)] =

���� c2(F � T1 
 C ) c3(F � T1 
 C )

1 c1(F � T2 
 C )

����
= c1F (c2F + p1T1)� (c3F + c1Fp1T1) = c1Fc2F � c3F:

ConsiderM = CP 1�CP 1�CP 1 as a real 6-manifold, with complex tangent

bundle F 3. If p1 : M ! CP 1 is projection onto the �rst factor, and p2 : M !
CP 1 � CP 1 is projection onto the �rst two factors, then p�1T CP

1 � p�2T (CP
1 �

CP 1 ) � F 3 is a ag of complex subbundles tangent to the product foliations of

M . A real perturbation of the subbundles (or the foliations) can give a generic

ag of real subbundles T 2
1 � T 4

2 � F 3, with N(12) expected to be isolated.

Denoting by a, b, c the generators of the cohomology of each of the three factors
CP 1 pulled back toM , the total chern class of F is (1+2a)(1+2b)(1+2c). The
class c1Fc2F � c3F is 16abc, so the index sum of the isolated complex tangents

of T1 � T2 � F is 16.

.5 Coincidence as CR Singularities of a Graph

A smooth real-linear map � between complex vector bundles T r = (TR; J
T ) and

Fn = (FR; J
F ) of real dimension 2r = m and 2n overM may be complex-linear

14



on some vectors ~vx 2 Tx, meaning �x(J
T

x
~vx) = JF

x
�x(~vx). In the �ber Tx, the

set of vectors where �x is complex-linear is a complex subspace Kx, and the

subset of points x 2 M where dimC Kx is at least j de�nes the \coincidence

locus" Qj .

The map � : TR ! FR de�nes its graph � as a real-linear inclusion of the

image �T in TR � FR of the map ~v 7! (~v; �(~v)). TR � FR has the direct sum

complex structure, J�
x
(~v; ~w) = (JT

x
~v; JF

x
~w). Denote T � F = (TR� FR; J

�).

Lemma 5.1 Kx
�= �Tx \ J�x �Tx.

Proof: The claim is that �
x
is a C -linear isomorphism when restricted to

Kx, and that its image is the maximal J�
x
-complex subspace of �Tx.

~v 2 K () (JT~v; JF�~v) = (JT~v; �JT~v) () J�(~v; �~v) 2 �T

() (~v; �~v) 2 �T \ J��T:

So, a map � such that �T is a generically included subbundle of real rank

m = 2r in the complex bundle T �F of complex rank n+ r has coincidence loci
Qj nQj+1 of real codimension 2j((n+ r) � 2r + j) in M , corresponding to the

complex tangent loci of �T . The following corollary of Theorem 4.5 describes

the the coincidence locus in terms of the chern classes of (T; JT ) and (F; JF ):
Corollary 5.2

[Qj ] = [Nj ] = �
(j)

(n+r)�2r+j
(c(T � F � T 
 C ))

= �
(j)
n�r+j(

cT cF

cTc �T
) = �

(j)
n�r+j(c(F � �T )):

The relationship between complex coincidence and the CR structure of the

graph seems to be well-known, but not formulated as explicitly as this in the

literature. (cf [Freeman] and x4:2, [Chirka])
Example 5.3 If T is the conjugate bundle of F , i.e., TR = FR and JT =

�JF , then the identity map is complex-linear on no vector| Qj = ; for j > 0.

The graph of the identity map is a totally real inclusion and c(F � �T ) = 1+0+

0 + : : : .
Example 5.4 Two complex structures JT and JF on the same real vector

bundle are relatively generic if the graph of the identity map is a generic inclusion

in the sum. Invariants for such a pair were calculated in [HL93] and [HL95]:

[Qj ] = �
(j)
j
(c(F � �T )):

Example 5.5 The graph of a smooth map f : M ! A (not necessarily an

immersion) de�nes an embedding f : M ! M � A. The coincidence locus Qj

of df is the same as the locus Nj of complex tangents of the image of df = df
in T (M �A).

Example 5.6 ([EW]) If f is a smooth map between connected, compact,

oriented Riemannian surfaces, f : (M; gM ) ! (A; gA), the degree of f is an
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Figure 1: A smooth map CP 1 ! C , conformal at two points

integer. Giving M and A complex structures compatible with the metrics,

and using Webster's formula (Example 4.6) for the image of the graph of f in

(M �A; J�),

X
x2N1

ind(x) =

Z
M

c1(TM � f�TA) = �M + (deg f)�A:

Reversing the orientation and complex structure on A changes the index sum to

�M�(deg f)�A, and similarly, reversing the orientation and complex structure
on M gives index sum ��M + (deg f)�A. The sign of the index di�ers from

the [EW] formulas, which use a bundle map T 1;0M ! T 0;1A instead of the

projection onto the (1; 0) part as in Lemma 2.7.

Example 5.7 As an example of a smooth map between Riemann surfaces,

the unit sphere in R3 can be projected radially onto the x; y-plane from the

point (0; 0; 2), giving a degree zero map with one (index �2) point each of

direct and indirect conformality. Varying the point of projection along the line

f(r; 0; 2)g projects the sphere onto a region whose boundary is an ellipse. Not

too surprisingly, the map is conformal at exactly those points projected onto the

foci of the ellipse. In the �gure, the lines connecting the foci to the vertex of the

cone meet the sphere at four points, two each of direct and indirect conformality.

Two of the four points are the poles (0; 0;�1). The minor semiaxis of the ellipse,
parallel to the y-axis, has constant length 2=

p
3. The major semiaxis has length

2
3

p
r2 + 3, and the foci are at r=3 and �r. It is a well-known theorem that,

in this case, the ellipses de�ned by the intersections of the planes z = 1 and

z = �1 with the cone each have a focus at a pole of the sphere, and that they

are similar (and so conformal) to any parallel ellipse on the cone.

Example 5.8 If M and A are complex manifolds, with real dimensions 4

and 6, and complex structures (TM; JT ), (TA; JA), a smooth map f : M ! A
generically will satisfy df � JT = JA � df only on complex lines tangent to a

discrete set Q1. The graph of f is an embedding of a real 4-manifold inM�A, a
complex 5-manifold, and if f is real-analytic, so is the image f(M). By Example

4.7, the index sum of Q1 is

X
x2Q1

ind(x) =

Z
M

p1M + c2(TM � f�TA)

=

Z
M

c21M � c2M + c1Mf�c1A+ f�c2A:

This example shows that the geometry of a generic map f from a complex surface

to a complex 3-manifold reduces to the study of isolated complex tangents in

the graph of f .
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