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Abstract. Quadratically parametrized maps from a real projective space to
a complex projective space are constructed as projections of the Veronese em-
bedding. A classification theorem relates equivalence classes of projections
to real congruence classes of complex symmetric matrix pencils. The images
of some low-dimensional cases include certain quartic curves in the Riemann
sphere, models of the real projective plane in complex projective 4-space, and
some normal form varieties for real submanifolds of complex space with CR
singularities.

1. Introduction

One way to construct a smooth map from one projective space to another is by
a “rational parametrization.” This article will consider maps of the form

[u0 : u1 : . . . : um] �→ [P0 : P1 : . . . : Pn],

where the uj are real homogeneous coordinates, and each Pk is a homogeneous
quadratic polynomial in the uj variables with complex coefficients. Outside the
common zero locus of the Pk, such a parametrization defines a smooth map RPm →
CPn, which is a restriction of a holomorphic map CPm → CPn. A natural classi-
fication of such maps is to say that two are equivalent if they are related by a real
linear coordinate change in the domain and a complex linear transformation of the
target. However, working with R and C simultaneously will require some attention
to detail, so a rigorous but elementary construction is carried out in the next Sec-
tion, and some differences between real and complex geometry will be pointed out.
After working out the theory, the practical approach to the equivalence of these
quadratic parametrizations will be its relationship to the congruence of matrix
pencils (Theorems 2.6, 2.15), and to a classification program of [W] (Propositions
4.3, 6.4). Some low dimensional cases, where the real projective line and plane are
mapped to complex projective spaces, will be considered in detail. Section 4 makes
some observations on parametric curves in the Riemann sphere and establishes a
complete list of equivalence classes. Section 5 states and proves a new classifica-
tion of two-dimensional spaces of 2 × 2 complex symmetric matrices, up to real
congruence, and gives a geometric interpretation. Section 6 classifies quadratically
parametrized maps from the real projective plane to CP 4, most of which are totally
real embeddings, but some will have singularities or a complex tangent. Section 7
briefly discusses the special case where the coefficients of Pk are real, so they define
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2 A. COFFMAN

maps RPm → RPn. Section 8 shows a connection between quadratic parametriza-
tions and the Hopf bundle over a complex projective space, and also surveys some
real varieties that have appeared in the literature on real submanifolds of complex
manifolds, which admit quadratic rational parametrizations.

2. The projective geometric construction

2.1. General background. The first steps in our description of maps from RPm

to CPn will review (and fix some notation for) some well-known constructions in
projective geometry over arbitrary fields.

Let K and F be fields, and let m ≥ 0 be an integer. The projective m-space
over the field K, KPm, is the set of one-dimensional subspaces in Km+1. Denote
the usual projection πm

K
: Km+1 \ {0} → KPm, so that a non-zero column vector

z spans the line πm
K

(z). A line z ∈ KPm with representative non-zero vector
z = (z0, z1, . . . , zm)T will have homogeneous coordinates [z0 : z1 : . . . : zm].

Let f : K
m+1 → F

N+1 be any function. Given z ∈ K
m+1 \ {0}, suppose f has

the following two properties: first,

(2.1) f(z) �= 0,

and second, for any λ ∈ K \ {0}, there exists µ ∈ F \ {0} so that

(2.2) f(λ · z) = µ · f(z).
Then f will also have these two properties at every non-zero scalar multiple of
z. If U ⊆ K

m+1 \ {0} is the set of points where f has the two properties, then
we will say “f induces a map from KPm to FPN which is well-defined on the set
πm

K
(U),” and we will denote the induced map, which takes πm

K
(z) to πN

F
(f(z)), by

f : z �→ f(z). It should also be mentioned that the map of projective spaces induced
by a composition of maps is equal to the composition of the induced maps.

As an example with K = F, if f : Km+1 → KN+1 is K-linear, then f is well-
defined on the lines not contained in the kernel of f . If f : Km+1 → Km+1 is
K-linear and invertible, then f is well-defined on all of KPm, and also invertible.
Let GL(m+ 1,K) ⊆M(m+ 1,K) denote the subset of nonsingular matrices in the
set of (m + 1) × (m + 1) matrices with entries in K. Let PGL(m + 1,K) denote
the set of one-dimensional subspaces of M(m+ 1,K) which are subsets of GL(m+
1,K)∪{0}. The following construction defines a group action of PGL(m+1,K) on
KPm. For any nonsingular matrix A, there is a corresponding invertible K-linear
transformation, which in turn induces an automorphism of KPm, denoted A. Any
non-zero scalar multiple of A induces the same map A : KPm → KPm, so this
notation is consistent with the above conventions: a nonsingular matrix A spans
a line A ∈ PGL(m + 1,K), and the automorphism of KPm induced by A will be
denoted A : z �→ A · z.

Define a map from Km+1 to K(m+1)(m+2)/2, so that for z = (z0, . . . , zm)T ,

vK : z �→ (z2
0 , z0z1, z

2
1 , z0z2, z1z2, z

2
2 , . . . , z0zm, z1zm, . . . , z

2
m)T .

The components of the map are all the (m+1)(m+2)/2 quadratic monomials zizj.
It satisfies (2.1) and (2.2) at every non-zero vector, so it induces a well-defined map

vK : KPm → KPm(m+3)/2 :
z �→ [z2

0 : z0z1 : z2
1 : z0z2 : z1z2 : z2

2 : . . . : z0zm : z1zm : . . . : z2
m],

called the Veronese map.
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Define a K-linear invertible map from the space of d × d symmetric matrices,
S(d,K) ⊆ M(d,K), to the space of column d(d + 1)/2-vectors by stacking the
columns of the upper triangular part of the matrix:

vech : S(d,K) → K
d(d+1)/2 :

Md×d = (mij)i,j=1...d �→




m11

m12

m22

...
mi≤j

...
m1d

...
mdd




(d(d+1)/2)×1

.

This is a “vectorization” map for symmetric matrices (following the terminology of
[Searle]). Denote its inverse by k : Kd(d+1)/2 → S(d,K).

The composition of the maps vK and k (in the case d = m+1) has the following
interpretation in terms of matrix multiplication:

(2.3) k ◦ vK : K
m+1 → S(m+ 1,K) : z �→ z · zT .

zT is a row vector, the transpose of z, so the product z ·zT is a rank ≤ 1 symmetric
(m+ 1) × (m+ 1) matrix.

2.2. Complex projective geometry. We continue here with some elementary
constructions, as in the previous Subsection, but with K = C, so we are in the
familiar territory of complex projective geometry. We also will consider projec-
tive spaces with their usual topological and analytic structure — for example, the
Veronese map vC : CPm → CPm(m+3)/2 is a holomorphic embedding of complex
manifolds. It will be convenient to abbreviate vC = v and vC = v.

The next ingredients in the construction are an integer n such that 0 ≤ n ≤
(m+ 1)(m+ 2)/2 − 1 = m(m+ 3)/2, and a (n+ 1) × (m+ 1)(m+ 2)/2 matrix P
with complex entries and full rank n+ 1 ≤ (m+ 1)(m+ 2)/2, called the coefficient
matrix. The linear transformation C(m+1)(m+2)/2 → Cn+1 (also denoted P) induces
a “projection” map P : CPm(m+3)/2 → CPn, which is well-defined for all elements
z except those lines in the kernel of P. Let CPn have homogeneous coordinates
[Z0 : . . . : Zn].

So, the composition P ◦ v is a well-defined map CPm → CPn if the image of v
contains no lines in the kernel of P. When the (n+ 1) × (m+ 1)(m+ 2)/2 entries
of the matrix P are used as complex coefficients pi,jk of quadratic polynomials

Pk =
∑

0≤i≤j≤m
pi,jk zizj ,

the map P ◦ v is of the form

[z0 : . . . : zm] �→ [P0 : . . . : Pn].

Example 2.1. The m = 1, n = 1 case is in the assumed dimension range. A 2× 3
matrix P with rank 2 has a kernel equal to a line in C3, or a single point x ∈ CP 2.
P ◦ v : CP 1 → CP 1 is well-defined if the image of v([z0 : z1]) = [z2

0 : z0z1 : z2
1 ], a
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complex curve in CP 2, misses the point x. Otherwise, P ◦ v is defined on all but
one point of the domain CP 1.

Even if it is well-defined, the composition P ◦ v may not be one-to-one, and may
also have singular points, where its (complex) Jacobian has rank less than m.

Theorem 2.2. Suppose P and Q are coefficient matrices so that the induced maps
P ◦ v and Q ◦ v are equal, and well-defined at every point of CPm. Then, there
exists a non-zero constant ν ∈ C so that P = ν ·Q.

Proof. The equality of the maps induced by P◦v and Q◦v means that there exists
some function f : Cm+1 \ {0} → C \ {0} so that

(P ◦ v)(z) = f(z) · (Q ◦ v)(z).

Applying this equality, and the fact that v(µ · z) = µ2 · v(z), to λ · z, λ �= 0,

(P ◦ v)(λ · z) = f(λ · z) · (Q ◦ v)(λ · z)
=⇒ λ2 · (P ◦ v)(z) = λ2 · f(λ · z) · (Q ◦ v)(z)

=⇒ λ2 · f(z) · (Q ◦ v)(z) = λ2 · f(λ · z) · (Q ◦ v)(z).

Now, the hypothesis that Q ◦ v is well-defined implies (Q ◦ v)(z) �= 0, so f(z) =
f(λ·z). Since f satisfies properties (2.1) and (2.2), it defines a function f : CPm → C

(it also induces a map f : CPm → CP 0, but this is different and will not be needed).
f can be given an explicit expression when restricted to an affine neighborhood, say
U0 = {z0 = 1}:

f([1 : z1 : . . . : zm]) = f((1, z1, . . . , zm)).

For each u ∈ U0, with a representative vector u, (Q ◦ v)(u) �= 0 implies there is
some component Qk, k = 0, . . . , n, so that

Qk(z) = q0,0k +
m∑
j=1

q0,jk zj +
∑

1≤i≤j≤m
qi,jk zizj

is non-zero for z in a small neighborhood of u in U0. In that neighborhood,

f (z) = f(z) =
Pk(z)
Qk(z)

is holomorphic in z1, . . . , zm. Similarly, f is holomorphic in every affine neighbor-
hood, but a holomorphic map f : CPm → C must be constant. The result follows
since the image of v clearly spans C(m+1)(m+2)/2.

Example 2.3. In general, to establish that P = ν · Q, it is not enough to check
that P ◦ v = Q ◦ v only on some open set. For example, with m = n = 1, the
coefficient matrix

P =
(

1 0 0
0 1 0

)
,

defines a composite map P ◦ v : [z0 : z1] �→ [z2
0 : z0z1], which is not defined at the

point [0 : 1]. For

Q =
(

0 1 0
0 0 1

)
,

the composite map is Q ◦ v : [z0 : z1] �→ [z0z1 : z2
1 ]. It is not defined at the point

[1 : 0], but (Q ◦ v)(z) = (P ◦ v)(z) for every z in CP 1 except two.
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The following Proposition is recalled from [CLO] §8.5, and it gives another in-
teresting property of maps which are defined at every point.

Proposition 2.4. Let F : CPm → CPn be defined by homogeneous polynomials
[f0 : . . . : fn], of the same degree in z0, . . . zm, with no common zeros. Then, the
image F (CPm) is an irreducible projective algebraic variety in CPn.

The Proposition applies to maps of the form P ◦ v when the degree is two,
and in some later examples the implicit polynomial equations defining the image
(P ◦ v)(CPm) ⊆ CPn will be given. The corresponding claim for maps between
real projective spaces is false, as shown by the Whitney umbrella surface and other
examples ([A], [CLO], [CSS]) where the real parametric image does not fill up a
real variety.

Definition 2.5. For fixed integers m, n, two coefficient matrices P and Q are
“c-equivalent” if there exist matrices A ∈ GL(m + 1,C), B ∈ GL(n + 1,C) such
that for all z ∈ Cm+1 \ {0},

Q · (v(z)) = B · P · (v(A · z)).

The following Theorem relates c-equivalence to congruence of matrix pencils.
Similar classification theorems, with similar proofs, appear in [CSS] and [C1].

Theorem 2.6. P and Q are c-equivalent if and only if there exists A ∈ GL(m+
1,C) such that the following (m(m+3)/2−n)-dimensional subspaces of S(m+1,C)
are equal:

k(ker(P)) = A · (k(ker(Q))) · AT .

Proof. The map
z �→ vech(A · (k(z)) · AT )

is a C-linear invertible map C(m+1)(m+2)/2 → C(m+1)(m+2)/2. It, and its represen-
tation as a square matrix, will be denoted [A ⊗ A].

Using Equation (2.3),

(k ◦ v)(A · z) = (A · z) · (A · z)T

= A · z · zT ·AT

= A · ((k ◦ v)(z)) · AT

= k([A ⊗ A] · (v(z))).

Since k is an isomorphism,

(2.4) v(A · z) = [A⊗ A] · (v(z)).

(For present purposes, [A⊗A] is merely a convenient label; see [Searle] or [C3] for
the connections between vectorization of matrices and tensor products.)

So, from the definition of c-equivalence,

Q · (v(z)) = B ·P · (v(A · z)) = (B · P · [A ⊗ A]) · (v(z)),

and since the image of v : C
m+1 → C

(m+1)(m+2)/2 spans the target space, Q and
P are c-equivalent if and only if there exist A, B so that

Q = B ·P · [A ⊗ A].

This equation says Q and P · [A⊗A] are “row-equivalent” matrices, and therefore
there exists such an invertible B if and only if ker(Q) = ker(P · [A ⊗ A]). This
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equality of subspaces of C(m+1)(m+2)/2 is equivalent to the equality of subspaces of
S(m+ 1,C):

k(ker(Q)) = k(ker(P · [A ⊗ A])).

Suppose K ∈ k(ker(P · [A⊗ A])). This is equivalent to

0 = (P · [A ⊗ A])(vech(K)) = P · vech(A ·K ·AT ),

by definition of [A ⊗ A], or, equivalently,

vech(A ·K ·AT ) ∈ ker(P) ⇐⇒ A · K · AT ∈ k(ker(P)).

This proves the claim of the Theorem.

Corollary 2.7. Given matrices P and Q, let P and Q be the induced projections.
If P and Q are c-equivalent, then there exist automorphisms A ∈ PGL(m+ 1,C),
B ∈ PGL(n+ 1,C) such that

(Q ◦ v)(z) = B · ((P ◦ v)(A · z))

for all z ∈ CPm where both sides are defined. Conversely, if there exist A and B
such that Q and P satisfy the above equation at every point z ∈ CPm, then P and
Q are c-equivalent.

Proof. The first implication is easy: if there exist A and B so that Q ◦ v = B ◦
P ◦ v ◦ A, then they induce A and B so that the composite maps of projective
spaces are equal where they are defined. For the converse, suppose there exist such
maps A, B, and let A, B be matrix representatives. By the Proof of the previous
Theorem, B ◦P ◦ v ◦A = B ◦P ◦ [A⊗A] ◦ v, so Q and B ◦P ◦ [A⊗A] are linear
maps whose composites with v induce equal maps on all of CPm. By Theorem 2.2,
there exists a constant ν �= 0 so that

Q = ν · B ◦ P ◦ [A ⊗ A],

and again, from the previous Proof, this proves P and Q are c-equivalent.

So, if P and Q are c-equivalent, it is not too abusive to also call the compositions
P ◦ v and Q ◦ v “c-equivalent maps” CPm → CPn. The geometric idea is that the
compositions Q ◦ v and P ◦ v are related by a reparametrization A of the domain,
CPm, and a coordinate change B of the target, CPn.

Example 2.8. In the m = 2, n = 3 case, the image of P ◦ v : CP 2 → CP 3 is called
a complex Steiner surface. The c-equivalence classes of such maps were known
classically ([A], [Salmon], [Sommerville]).

2.3. Real projective geometry. The maps to be introduced in this Subsection
are the inclusion:

δ : R
m+1 → C

m+1 :
(u0, . . . , um)T �→ (u0 + 0i, . . . , um + 0i)T ,

and the real linear involution of C
m+1 defined by entrywise complex conjugation:

C : C
m+1 → C

m+1 :
(z0, . . . , zm)T �→ (z̄0, . . . , z̄m)T .
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The image of δ is exactly the fixed point set of C. For non-zero vectors, δ satisfies
(2.1) and (2.2), with K = R and F = C, and C is not complex linear but still satisfies
(2.1) and (2.2), so both maps induce well-defined maps of projective spaces:

δ : RPm → CPm, C : CPm → CPm.

Theorem 2.9. The induced map δ is a smooth embedding, and its image is a
regular smooth submanifold of CPm which is equal to the fixed point set of the
induced involution C.

Proof. For this Theorem, CPm is considered only as a differentiable manifold of real
dimension 2m. The map δ is a smooth immersion because it is a smooth immersion
on affine coordinate charts, for example, the induced map restricted to the {u0 �= 0}
neighborhood (∼= Rm) maps to the {z0 �= 0} neighborhood (Cm ∼= R2m) in the
target:

δ : R
m → C

m :
[1 : u1 : . . . : um] �→ [1 + 0i : u1 + 0i : . . . : um + 0i] .

The induced map is one-to-one: suppose u, w ∈ RPm, and δ(u) = δ(w). Then,
u and w are spanned by non-zero vectors u, w ∈ Rm+1, and by definition of the
induced map, there exists a non-zero complex scalar µ so that

δ(u) = µ · δ(w) ∈ C
m+1.

The vector u = (u0, . . . , um)T has some non-zero entry uj ∈ R, which satisfies
uj + 0i = µ · (wj + 0i), so wj is also non-zero, and in particular, µ = uj

wj
∈ R ⊆ C.

This implies u is a real scalar multiple of w:

(u0 + i0, . . . , um + i0)T = µ · (w0 + i0, . . . , wm + i0)T ,

so the real lines u and w are equal. This is enough to show that the image of the
compact manifold RPm is a regular submanifold in the sense of [B] §III.5.

It is obvious that for any element [u0 : . . . : um] ∈ RPm, its image under δ is
fixed by the involution C. Suppose, conversely, that z = [z0 : . . . : zm] is a fixed
point, so there exists some non-zero complex scalar µ such that

(z̄0, . . . , z̄m)T = µ · (z0, . . . , zm)T .

Then, for some non-zero entry zj ∈ C, µ = z̄j

zj
is an element of the unit circle

S1 ⊆ C. Twice the “real part” of z is:

z + C(z) = (z0 + z̄0, . . . , zm + z̄m)T = (1 + µ)z.

If µ1
µ2

�= −1, this shows that z is a complex scalar multiple of a non-zero vector with
real entries, so z is in the image of δ. If µ = −1, the following C-invariant, non-zero
complex scalar multiple of z will work instead:

i · (z − C(z)) = i · (z + z) �= 0.

The composition v ◦ δ : RPm → CPm(m+3)/2 is also a smooth embedding. It has
the following form, for u = [u0 : . . . : um]:

u �→ [u2
0 : u0u1 : u2

1 : u0u2 : u1u2 : u2
2 : . . . : u0um : u1um : . . . : u2

m].

The image happens to be contained in the image of another inclusion

δ′ : RPm(m+3)/2 → CPm(m+3)/2,
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and it is the “real Veronese variety” named in the Title. For a coefficient matrix P,
the composition P ◦v◦δ : RPm → CPn is smooth at points where it is well-defined,
but it is not necessarily one-to-one or nonsingular. It is possible that P ◦v◦δ is well-
defined, or an embedding, even if P ◦v is neither. As mentioned in the Introduction,
the composition P ◦ v ◦ δ is of the form:

u �→ [P0 : P1 : . . . : Pn],

with complex coefficients pi,jk on quadratic terms in real variables:

Pk =
∑

0≤i≤j≤m
pi,jk uiuj .

Maps of the form P ◦v◦δ will be the main objects of interest in subsequent Sections.
These real analytic parametrizations do not behave exactly like the complex analytic
maps P ◦ v. For instance, a minor modification of Example 2.3 shows that an
analogue of Theorem 2.2 fails.

Example 2.10. The coefficient matrix

P =
(

1 i 0
0 1 i

)
defines a composite map P ◦ v ◦ δ : [u0 : u1] �→ [(u0 + iu1)u0 : (u0 + iu1)u1], and

Q =
(

1 −i 0
0 1 −i

)
defines a map Q ◦ v ◦ δ : [u0 : u1] �→ [(u0 − iu1)u0 : (u0 − iu1)u1]. These maps
RP 1 → CP 1 agree at every point in the domain, but the matrices are not related
by scalar multiplication, and the maps P ◦ v, Q ◦ v are not defined on all of CP 1.

Some examples (Examples 4.8, 4.10) will show that an analogue of Proposition
2.4 fails in general. The image of a map P ◦ v ◦ δ will be contained in some real
algebraic variety in CPn, but may not be equal to it, even if P ◦ v is defined
everywhere on CPm.

The rest of this Section will develop a notion of equivalence for coefficient ma-
trices P which will be useful in studying the geometry of maps P ◦ v ◦ δ.

It is easy to see that a matrix A ∈ M(m + 1,C) has all real entries if and only
if A = C ◦ A ◦ C. In fact, such matrices are the only ones that fix the image of δ.

Lemma 2.11. Suppose z = C(z) implies A · z = C(A · z). Then A = C ◦ A ◦ C.

Proof. For all z such that z = C(z), A · z = C(A · z) = C(A · C(z)). C ◦ A ◦ C
is complex linear, and it is equal to the complex linear transformation A, because
they agree on the set δ(Rm+1), which spans Cm+1.

The Lemma shows that the inclusion δ′′ : M(m+ 1,R) → M(m+ 1,C) defines
a bijection between matrices with real entries and complex linear transformations
that leave invariant δ(Rm+1). If A denotes a real matrix, with corresponding
complex matrix δ′′(A) = A + i · 0 = A, then

(2.5) δ ◦ A = A ◦ δ : R
m+1 → C

m+1.

Given A, A is the only complex linear transformation satisfying (2.5); if also δ◦A =
A1 ◦ δ, then A1 must equal A, since they agree on δ(Rm+1).

A fact similar to Lemma 2.11 applies to automorphisms of complex projective
space.
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Theorem 2.12. Given an automorphism A of CPm, suppose A fixes δ(RPm) as
a set:

z = C(z) =⇒ A · z = C(A · z).
Then, there exists A ∈ GL(m+ 1,C) so that A induces A, and A = C ◦ A ◦ C.

Proof. There is some invertible matrix A0 that induces A. For any nonzero real
vector u ∈ δ(Rm+1) \ {0}, the equation u = C(u) holds, so A · u = C(A · u), and
there is some complex scalar µ �= 0, so that

C(A0 · u) = C(A0 ·C(u)) = µ · A0 · u.
This implies that there is some function f : δ(Rm+1) \ {0} → C \ {0} so that

f(u) · u = A0
−1 · C(A0 · C(u)).

Notice the composite real linear transformation A0
−1◦C◦A0◦C is in fact complex

linear, with some matrix representative S ∈ GL(m+ 1,C), and the above equation
just says that every nonzero real vector is an eigenvector of S.

There exist basis vectors u0, . . . , um ∈ δ(Rm+1), so that any z ∈ Cm+1 is a
unique complex linear combination of the basis elements. Using the linearity of S,
and the eigenvalue equation,

S(u0 + · · · + um) = S(u0) + · · · + S(um)
f(u0 + · · · + um) · (u0 + · · · + um) = f(u0) · u0 + · · · + f(um) · um,

and if λ = f(u0 + · · · + um), then f(u0) = · · · = f(um) = λ, by the uniqueness of
the coefficients. Since the complex linear transformations S and λ · I agree on a
basis, they are equal.

It follows that λ ·A0 = C ◦ A0 ◦ C, and multiplying both sides by λ̄ gives

λ̄ · λ ·A0 = λ̄ ·C ◦ A0 ◦ C = C ◦ (λ · A0) ◦ C = C ◦ (C ◦ A0 ◦ C) ◦ C = A0,

so λ̄ · λ = 1, and λ = eiθ for some θ ∈ R. Let A = eiθ/2 ·A0, so that

C ◦ A ◦ C = C ◦ (eiθ/2 ·A0) ◦ C = e−iθ/2 ·C ◦ A0 ◦ C = e−iθ/2 · (eiθA0) = A.

The uniqueness statement from Equation (2.5) also has a projective version.

Theorem 2.13. If A ∈ GL(m + 1,R) induces an automorphism A of RPm, and
A1 ∈ GL(m+1,C) induces an automorphism A1 of CPm such that A1 ◦ δ = δ ◦A,
then there is a non-zero complex constant λ so that A1 = λ · δ′′(A).

Proof. Let A = δ′′(A), so that δ ◦A = A ◦ δ. Then, A1 ◦ δ = δ ◦A implies there is
some function f : Rm+1 \ {0} → C \ {0} so that (A1 ◦ δ)(u) = f(u) · (δ ◦ A)(u) =
f(u)·(A◦δ)(u) for all u ∈ Rm+1\{0}. As in the Proof of the previous Theorem, this
means every nonzero real vector is an eigenvector of A1

−1 ◦ A, so A1 = λ ·A.

It follows from Theorems 2.12 and 2.13 that A fixes δ(RPm) if and only if
A = C ◦ A ◦ C, and that every such automorphism is uniquely determined by its
restriction to δ(RPm).

Definition 2.14. For fixed integersm, n, two (complex) coefficient matrices P and
Q are “r-equivalent” if there exist matrices A ∈ GL(m + 1,C), B ∈ GL(n + 1,C)
such that A = C ◦ A ◦ C, and for all z ∈ Cm+1 \ {0},

Q · (v(z)) = B · P · (v(A · z)).
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Theorem 2.15. Given P and Q, the following are equivalent.
(1) P and Q are r-equivalent.
(2) There exist A ∈ GL(m+1,C), B ∈ GL(n+1,C) such that A = C◦A◦C,

and for all u ∈ Rm+1,

Q · ((v ◦ δ)(u)) = B ·P · (v(A · δ(u))).

(3) There exist A ∈ GL(m+1,R), B ∈ GL(n+1,C) such that for all u ∈ Rm+1,

Q · ((v ◦ δ)(u)) = B · P · ((v ◦ δ)(A · u)).

(4) There exists A ∈ GL(m+ 1,C) such that A = C ◦ A ◦ C , and

k(ker(P)) = A · (k(ker(Q))) · AT .

Proof. That (1) implies (2) follows from Definition 2.14, the equivalence of (2) and
(3) follows from Lemma 2.11 and Equation (2.5), and (1) and (4) are equivalent by
Theorem 2.6. Assuming (2), and using the identity (2.4) from Theorem 2.6, gives

Q · ((v ◦ δ)(u)) = B · P · [A⊗ A] · ((v ◦ δ)(u))

for all u ∈ R
m+1. Since (v ◦ δ)(Rm+1) spans C

(m+1)(m+2)/2(∼= S(m + 1,C)),
Q = B · P · [A ⊗ A], which, by the calculations from the Proof of Theorem 2.6,
implies (4).

Corollary 2.16. Given matrices P and Q, let P and Q be the induced projections.
If P and Q are r-equivalent, then there exist automorphisms A ∈ PGL(m+ 1,C),
B ∈ PGL(n+ 1,C) such that A = C ◦A ◦ C, and

(Q ◦ v)(z) = B · ((P ◦ v)(A · z))
for all z ∈ CPm where both sides are defined. Conversely, if there exist A and B
such that A = C ◦ A ◦ C, and Q and P satisfy the above equation at every point
z ∈ CPm, then P and Q are r-equivalent.

Proof. The argument is identical to the Proof of Corollary 2.7, except that Theorem
2.12 must be used for the converse, when picking a matrix representing A.

However, in contrast to Corollary 2.7, some examples (Examples 5.7, 5.8) will
show that the existence of A and B such that

Q ◦ v ◦ δ = B ◦ P ◦ v ◦ δ ◦A : RPm → CPn

at every point of RPm is not enough to establish the r-equivalence of P and Q.

3. Equivalence of parametrizations

The remaining Sections will consider maps of the form P ◦ v ◦ δ : RPm → CPn,
for specific choices of m and n. To get an idea of which m, n will pose interesting,
yet tractable, r-equivalence classification problems, consider the following näıve
dimension count.

Recall that coefficient matrices have size (n+1)× (m+1)(m+2)/2, and are full
rank, with complex scalar multiples of a matrix P defining exactly the same pro-
jection P . So, the “parameter space” of projection matrices is a dense open subset
of CP (n+1)(m+1)(m+2)/2−1, which has real dimension (n + 1)(m + 1)(m + 2) − 2.
The group acting on the matrix space, whose orbits are the r-equivalence classes,
is PGL(m + 1,R) × PGL(n + 1,C), which has real dimension

(
(m+ 1)2 − 1

)
+
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2
(
(n+ 1)2 − 1

)
. The difference between these two dimensions is the expected num-

ber of real moduli:

M(m,n) = (n+ 1)(m+ 1)(m+ 2) − 2 − (m(m+ 2) + 2n(n+ 2))
= m2n+ 3mn+m− 2n− 2n2.

The following table lists some values of M(m,n), with 0 ≤ n < (m+1)(m+2)/2−1.
It also shows the dimension of the kernel of an associated coefficient matrix P.

m n M(m,n)
dimC(k(ker(P)))
in S(m+ 1,C)

1 1 1 1
1 0 1 2
2 4 2 1
2 3 8 2
2 2 10 3
2 1 8 4
2 0 2 5
3 8 3 1
...

The last row is the case m = 3, n = 8, where the map v ◦ δ : RP 3 → CP 9 can be
composed with a 9 × 10 projection matrix P to get a map P ◦ v ◦ δ : RP 3 → CP 8.
Classifying these matrices up to r-equivalence is equivalent to the classification of
non-zero 4×4 complex symmetric matrices, up to complex scalar multiplication and
real congruence. In fact, this congruence problem is solved by [W], and the generic
congruence classes are described by a three-dimensional set of real parameters, as
expected by M(3, 8) = 3.

The simplest cases, to be examined in the next Sections, are the first three rows
in the above table. We will use the real congruence problem to find representatives
of each r-equivalence class, and to see how the algebraic invariants of P correspond
to geometric properties of the maps P ◦ v ◦ δ and P ◦ v.

Some of the interesting geometric features that the image (P ◦ v ◦ δ)(RPm) may
have are differential-topological singularities (Examples 4.6, 4.8, 6.7), or a locus of
self-intersection (Examples 4.9, 6.8). As remarked after Theorem 2.9, such points
do not occur in the image of v ◦ δ, but they could occur after the projection by P .

In addition to the differential topology of maps P ◦v◦δ, it will also be important
to consider their interaction with the complex structure on the target space CPn.
A real submanifold M (dimR = m) of a complex manifold (dimC = n with complex
structure operator J on the tangent bundle), if it is in general position, will satisfy
the following property at most points x: dimC(TxM ∩ JTxM) = max{0,m − n}.
The points x ∈M where the tangent space contains a complex subspace of greater
dimension than this minimum are called “CR singular” points.

The image of v◦δ : RPm → CPm(m+3)/2 is a real submanifold, and at each point,
the tangent space contains no complex lines, so it is called “totally real.” There
could be CR singular points after the projection by P , and loci of such points will
be another interesting feature to look for when classifying maps P ◦ v ◦ δ. Sections
6 and 8 will consider several examples of real submanifolds of complex manifolds
with 2 ≤ m ≤ n, so any point where the tangent space contains a complex line will
be a CR singular point. If u is an element of RPm, and P ◦ v is nonsingular at
δ(u), then P ◦ v will be a complex analytic diffeomorphism of a neighborhood of
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δ(u) onto a neighborhood in (P ◦ v)(CPm), and since δ(RPm) is totally real near
δ(u), the image (P ◦ v ◦ δ)(RPm) will also be totally real near (P ◦ v ◦ δ)(u). So,
the only candidates for CR singularities in the image of P ◦ v ◦ δ will be images of
singular points of P ◦ v, and this phenomenon will be observed in Sections 6 and 8.

4. Parametric curves in the Riemann sphere

In the case m = n = 1, a 2 × 3 matrix P with rank 2 determines a map
P ◦v ◦ δ : RP 1 → CP 1, as in Examples 2.1, 2.3, 2.10. Although P ◦v ◦ δ may not be
defined on all of RP 1, the image will be a real curve in the Riemann sphere CP 1,
with a homogeneous parametric equation of the form

[u0 : u1] �→ [p00
0 u

2
0 + p01

0 u0u1 + p11
0 u

2
1 : p00

1 u
2
0 + p01

1 u0u1 + p11
1 u

2
1].

Restricted to the {[1 : u]} real affine line in RP 1, and the {[1 : Z]} complex affine
line in CP 1, the equation is

Z =
p00
1 + p01

1 u+ p11
1 u

2

p00
0 + p01

0 u+ p11
0 u

2
.

If Z = X + iY , the parametric equations are rational functions of u ∈ R of degree
at most four:

X =
Re((p00

1 + p01
1 u+ p11

1 u
2)(p00

0 + p01
0 u+ p11

0 u
2))

|p00
0 + p01

0 u+ p11
0 u

2|2 ,

Y =
Im((p00

1 + p01
1 u+ p11

1 u
2)(p00

0 + p01
0 u+ p11

0 u
2))

|p00
0 + p01

0 u+ p11
0 u

2|2 .

The images of such quartic parametrizations are various interesting “special plane
curves,” but their equivalence classes, under projective transformations of the do-
main and range, will turn out to have simple representatives. Real curves in CP 1

parametrized by rational functions with complex coefficients are discussed in [MM],
which describes a notion essentially the same as r-equivalence, and arrives at the
same parameter count, M(1, 1) = 1.

To get started with the classification, consider the c-equivalence problem for
2×3 coefficient matrices. By Theorem 2.6, it will be enough to recall that the only
invariant of one-dimensional subspaces of S(2,C) under complex congruence is the
rank: 1 or 2. These correspond to the two cases of Example 2.1, whether the kernel
of the coefficient matrix is contained in the image of v or not.

Example 4.1. Given P, if k(ker(P)) is a line spanned by a matrix of rank 1, then
this line is in the image of v, and it is congruent to

{λ ·
(

1 0
0 0

)
: λ ∈ C}.

P is c-equivalent to

Q =
(

0 1 0
0 0 1

)
,

as in Example 2.3. The composite map from CP 1 to CP 1, Q ◦ v : [z0 : z1] �→ [z0z1 :
z2
1 ], is well-defined at every point except [1 : 0].
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Example 4.2. Given P, if k(ker(P)) is a line spanned by a matrix of rank 2, then
this line is congruent to

{λ ·
(

1 0
0 1

)
: λ ∈ C},

and P is c-equivalent to

Q =
(

1 0 −1
0 1 0

)
.

The composite map from CP 1 to CP 1 is Q ◦ v : [z0 : z1] �→ [z2
0 − z2

1 : z0z1]. Maps
in this c-equivalence class are defined at every point, and are two-to-one except at
two singular points.

Under the smaller group, where only “real” changes of variables are allowed,
there will be more equivalence classes. The rank 1 case, where P ◦ v is undefined
at one point, will split into two cases, depending on whether this point is in the
image of δ (Example 4.4) or not (Example 4.5). The rank 2 case will split into some
one-parameter families, as expected from M(1, 1) = 1.

The following classification of one-dimensional matrix pencils is recalled from
[W].

Proposition 4.3. If K is a non-zero matrix in S(2,C), then there is exactly one
matrix in the list below equal to λ ·A ·K ·AT for some nonsingular real matrix A
and non-zero complex scalar λ.

(1)
(

1 0
0 0

)
;

(2)
(

0 1/2
1/2 i

)
;

(3)
(

1 0
0 α

)
, α = cos(θ) + i sin(θ), 0 ≤ θ ≤ π;

(4)
(

−it2 1
1 i

)
, 0 < t ≤ 1.

Example 4.4. The first normal form in the above list was mentioned in Example
4.1. The representative coefficient matrix Q induces a map from the real projective
line to CP 1, Q ◦ v ◦ δ : [u0 : u1] �→ [u0u1 : u2

1], which is not defined at [1 : 0], and
on the affine neighborhood {[u : 1]}, it is the map u �→ [u : 1].

Example 4.5. The other rank 1 matrix from Proposition 4.3 is in case (4), with
t = 1. A representative coefficient matrix, i.e., a matrix whose kernel is spanned

by vech(
(

−i 1
1 i

)
), is

Q =
(

1 0 1
0 1 i

)
.

The induced map is

Q ◦ v ◦ δ : [u0 : u1] �→ [u2
0 + u2

1 : u0u1 + iu2
1],
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which takes [1 : 0] to [1 : 0], and restricts to a parametric map R → R2, in the
{[u : 1]}, {[1 : X + iY ]} neighborhoods:

X =
u

u2 + 1
,

Y =
1

u2 + 1
.

The image of Q ◦ v ◦ δ is the circle X2 + (Y − 1
2 )2 = 1

4 in this neighborhood.

We can conclude so far that if P is a coefficient matrix whose kernel is spanned by
a rank 1 complex matrix, then it is r-equivalent to one of the above representatives.
Since the action of PGL(2,C) on CP 1 takes lines and circles to lines and circles,
the image of P ◦ v ◦ δ will be a circle (or line) in the Riemann sphere, possibly with
one point deleted.

Example 4.6. The exceptional rank 2 matrix,
(

0 1/2
1/2 i

)
from case (2) of

Proposition 4.3, has a representative coefficient matrix,

Q =
(

1 0 0
0 2 i

)
.

The induced map is

Q ◦ v ◦ δ : [u0 : u1] �→ [u2
0 : 2u0u1 + iu2

1],

which takes [0 : 1] to [0 : 1], and restricts to a parametric map R → R2, in the
{[1 : u]}, {[1 : X + iY ]} neighborhoods: X = 2u, Y = u2. The image of Q ◦ v ◦ δ
is the parabola Y = X2/4 in this neighborhood. The point at infinity is a cusp
singularity, which is visible in other affine neighborhoods; inverting the parabola
in its focus, for example, gives a “cardioid,” and more generally the image of a
parabola is a “cuspidal biquadratic” ([MM], [CF]).

Example 4.7. One of the rank 2 matrices from the list is in case (3), with α = 1,(
1 0
0 1

)
, and a representative coefficient matrix is

Q =
(

1 0 −1
0 1 0

)
.

The induced map is

Q ◦ v ◦ δ : [u0 : u1] �→ [u2
0 − u2

1 : u0u1].

This mapping is two-to-one over the whole domain: (Q ◦ v ◦ δ)([u0 : u1]) = (Q ◦ v ◦
δ)([−u1 : u0]), and the image is δ(RP 1).

Example 4.7 shows that r-equivalence classes cannot necessarily be distinguished
by inspecting the image of Q ◦ v ◦ δ, since the image of the map from Example 4.5
was also projectively equivalent to a line.

Example 4.8. The other end of case (3) is at α = −1,
(

1 0
0 −1

)
, with repre-

sentative coefficient matrix

Q =
(

1 0 1
0 1 0

)
.
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The induced map is

Q ◦ v ◦ δ : [u0 : u1] �→ [u2
0 + u2

1 : u0u1].

This mapping is two-to-one at most points: (Q◦v◦δ)([u0 : u1]) = (Q◦v◦δ)([u1 : u0]),
except at two singular points: (Q ◦ v ◦ δ)([1 : 1]) = [2 : 1], (Q ◦ v ◦ δ)([1 : −1]) =
[2 : −1]. The image is contained in δ(RP 1); the map [u0 : u1] �→ [1 : u0u1

u2
0+u

2
1
] is a

projection of the circle onto the interval − 1
2 ≤ X ≤ 1

2 .

Example 4.9. The remaining matrices from case (3), with α = eiθ, 0 < θ < π,
correspond to representative coefficient matrices of the form:

Q =
(
α 0 −1
0 1 0

)
.

For each α, the induced map is

Q ◦ v ◦ δ : [u0 : u1] �→ [αu2
0 − u2

1 : u0u1].

This mapping is one-to-one except at a double point, where [0 : 1] and [1 : 0] both
go to a “node,” [1 : 0] ∈ CP 1. In one affine neighborhood, the image is a hyperbola,
[u : 1] �→ [αu − 1

u : 1], with parametric and implicit equations:

X = cos(θ)u − 1
u
, Y = sin(θ)u =⇒ cos(θ)Y 2 = sin(θ)XY + sin2(θ).

In another affine neighborhood, the image is a lemniscate ([CF]), [1 : u] �→ [1 :
u

α−u2 ], with parametric and implicit equations:

X =
u(cos(θ) − u2)

u4 − 2 cos(θ)u2 + 1
, Y =

−u sin(θ)
u4 − 2 cos(θ)u2 + 1

=⇒ cos(θ)Y 2 + sin(θ)XY − sin(θ)2(X2 + Y 2)2 = 0.

The tangent cone at the origin is the union of the X-axis and the line with slope
− tan(θ), so that one loop of the figure is in the interior of the angle formed by the
positive X-axis and the ray measured π − θ counterclockwise.

Since the angle between these two tangent lines is a conformal invariant, the
r-equivalence classes of self-intersecting immersions P ◦ v ◦ δ can be distinguished
by looking at a neighborhood of the node. As θ approaches 0+ or π−, the curve
folds in on itself to give the two-to-one maps from the previous Examples.

Example 4.10. The last family of equivalence classes from Proposition 4.3 is in
case (4), with 0 < t < 1. Representative coefficient matrices are of the form:

Qt =
(

1 0 t2

0 1 i

)
.

For each t, the induced map is

Qt ◦ v ◦ δ : [u0 : u1] �→ [u2
0 + t2u2

1 : u0u1 + iu2
1].

This mapping from RP 1 to CP 1 is one-to-one, and in one affine neighborhood, the
image is an ellipse, [u : 1] �→ [1 : u+i

1+t2u2 ], with parametric and implicit equations:

X =
u

1 + t2u2
, Y =

1
1 + t2u2

=⇒ X2

( 1
2t )

2
+

(Y − 1
2 )2

(1
2 )2

= 1.
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For any t, the minor axis of the ellipse is the segment from (0, 0) to (0, 1), and the
major axis is parallel to the X-axis. Its eccentricity is

√
1 − t2, and as t → 1−, the

ellipse approaches the circle from Example 4.5.
Similarity transformations of this affine neighborhood will preserve the eccen-

tricity of the ellipse, but the image in other affine neighborhoods (or under the
action of PGL(2,C)) will not necessarily be an ellipse. Unlike the previous Exam-
ples with the hyperbolas or the parabola, there are no distinguished points in the
image where the r-equivalence class can be detected by a local conformal invariant.

One thing that can be said about the curves in this class is that the eccentricity
is an invariant in the following sense: if there is a linear fractional transformation of
C that takes one (non-circular) ellipse into another ellipse, then that transformation
is a similarity. This claim is proved in [CF]. So, unlike the circles from Examples
4.5 and 4.7, the r-equivalence classes of parametrized ellipses can be distinguished
by looking at their images.

The real implicit equations for images of the ellipse will have an isolated node,
for example, the inversion of the ellipse X2/A2 + Y 2/B2 = 1 in the unit circle will
be the quartic

(X2 + Y 2)2 − (
X2

A2
+
Y 2

B2
) = 0,

which contains both the parametric image and the point at the origin.

To summarize, each r-equivalence class of maps P ◦ v ◦ δ : RP 1 → CP 1 has a
representative whose image in at least one affine neighborhood is equal to a real
conic curve, or contained in some straight line, and all irreducible real affine conics
appear at least once in this way. The set of all possible images in the Riemann
sphere includes Möbius transformations of conics, and circles and lines (possibly
with one point or an arc deleted). Classically (see [K], [MP], [P]), the term “nodal
biquadratic” has been used to refer to inversive images of ellipses and hyperbolas,
and (as previously mentioned) “cuspidal biquadratic” to refer to inversive images of
parabolas. Various cases of conics transformed by inversions have interesting names
as special plane curves; these are surveyed in [CF], which displays some pictures
and gives further references on the images of conics in the inversive plane.

Another interesting observation is that an analogue of Proposition 4.3 was used
in [C1] to classify immersions of the complex projective line in CP 2, and there
are (at least superficially) some geometric similarities between the corresponding
equivalence classes.

5. Maps from the projective line to a point

As the heading of this Section suggests, maps from RP 1 to CP 0, of the form

u = [u0 : u1] �→ [P0] = [p00
0 u

2
0 + p01

0 u0u1 + p11
0 u

2
1],

will not have a very interesting image. This is the m = 1, n = 0 case of the
construction from Section 2, and the 1 × 3 complex matrix P = (p00

0 , p
01
0 , p

11
0 ) is

non-zero, so the map P ◦ v ◦ δ will be defined on at least one point of RP 1, with
image CP 0 = {[1]}. However, M(1, 0) = 1 suggests there will be infinitely many r-
equivalence classes, and in fact the geometric phenomenon detected by r-equivalence
is the configuration of the points in CP 1 where P ◦ v is undefined.
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This case also illustrates the problem of finding a normal form for a complex sym-
metric pencil of matrices, under real congruence. The previous Section used Propo-
sition 4.3 to classify one-dimensional complex subspaces of the three-dimensional
space S(2,C), but the two-dimensional subspaces are not covered by [W].

To begin the classification of two-dimensional subspaces, first consider the com-
plex congruence classes, which by Theorem 2.6 correspond to c-equivalence classes
of maps P ◦ v : CP 1 → CP 0. The following normal form for two basis elements of
a subspace is recalled from [CW].

Proposition 5.1. If L is a two-dimensional subspace of S(2,C), then there is
exactly one subspace in the list below equal to the subspace {A · M · AT : M ∈ L}
for some nonsingular complex matrix A.

(1) {λ ·
(

1 0
0 0

)
+ µ ·

(
0 1
1 0

)
: λ, µ ∈ C};

(2) {λ ·
(

1 0
0 1

)
+ µ ·

(
0 1
1 0

)
: λ, µ ∈ C}.

The congruence class of a pencil can be distinguished by its intersection with
the affine Veronese variety, the image of k ◦ v, which by Equation (2.3) is the
locus of singular matrices in S(2,C). Given a plane L, its congruence class can be
determined by picking any matrices K1 and K2 which span L, and counting the
number of distinct roots [λ : µ] of the characteristic polynomial det(λ ·K1 +µ ·K2)
(cf [CSS] §4).

Example 5.2. It is easy to check that the singular matrices in the pencil L =

{λ ·
(

1 0
0 0

)
+ µ ·

(
0 1
1 0

)
} are exactly the scalar multiples of

(
1 0
0 0

)
=

(k ◦ v)((1, 0)T ). So if vech(L) = ker(Q), then, projectively, there is one point,
[1 : 0], where Q ◦ v is undefined. One such coefficient matrix is Q = (0, 0, 1)1×3,
which defines a parametric map

Q ◦ v : [z0 : z1] �→ [z2
1 ].

Example 5.3. The singular matrices in the pencil L = {λ ·
(

1 0
0 1

)
+ µ ·(

0 1
1 0

)
} form exactly two lines: the scalar multiples of

(
1 1
1 1

)
= (k ◦

v)((1, 1)T ), and
(

1 −1
−1 1

)
= (k ◦ v)((1,−1)T ). So if vech(L) = ker(Q), then,

projectively, there are two points, [1 : 1] and [1 : −1], where Q◦v is undefined. One
such coefficient matrix is Q = (1, 0,−1)1×3, which defines a parametric map

Q ◦ v : [z0 : z1] �→ [z2
0 − z2

1 ].

So, maps (P ◦v)(z) = [P0] fall into two c-equivalence classes, where the quadratic
homogeneous polynomial P0 has a double root, or two distinct roots in CP 1 (cf
[H], Example 10.8). At this point, before actually finding normal forms for the
r-equivalence classes, it is possible to predict how the c-equivalence classes will be
partitioned. By the discussion from Subsection 2.3, the action of PGL(2,R) on the
domain CP 1 fixes the real line δ(RP 1). It is easy to see that it acts transitively on
both δ(RP 1) and its complement in CP 1. Let z and z′ be the roots of P0 in CP 1,
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where P ◦ v is undefined. In the first c-equivalence class, z = z′. If the double root
is on the real line, it can be moved to some certain point on the line, say, [1 : 0],
and if it is not on the real line, then it can be moved to some other certain point,
say [1 : i]. In the second c-equivalence class, where z �= z′, there are two cases. If
the two points are on the real line, they can be moved to a certain pair, say [1 : 0]
and [0 : 1]. If one of the points is not on the real line, then it can be moved to
[1 : i], and the other point can be anywhere else on the Riemann sphere. There is
a one-parameter subgroup of PGL(2,C) which fixes both [1 : i] and the real line
(a pole and equator of the sphere), so the other point can be moved (rotated) to
some semicircular meridian of longitude. This intuitive description of r-equivalence
classes is justified by the following theorem of linear algebra.

Theorem 5.4. If L is a two-dimensional subspace of S(2,C), then there is exactly
one subspace in the list below equal to the subspace {A ·M ·AT : M ∈ L} for some
nonsingular real matrix A.

(1) {λ ·
(

1 0
0 0

)
+ µ ·

(
0 1
1 0

)
};

(2) {λ ·
(

1 0
0 0

)
+ µ ·

(
0 0
0 1

)
};

(3) {λ ·
(

−i 1
1 i

)
+ µ ·

(
1 0
0 1

)
};

(4) {λ ·
(

−i 1
1 i

)
+ µ ·

(
1 it
it −t2

)
}, −1 ≤ t < 1.

Proof. Let K1 and K2 be a basis for the given subspace L. There is always at least
one element K ∈ L that has rank 1: it could be K = K1, or if not, then

det(λ · K1 + K2) = λ2 det(K1) + . . .+ det(K2) = 0

has one or two complex solutions, so there is some λ = λ0, so that the linear
combination K = λ0 ·K1 + K2 is singular but non-zero. By Proposition 4.3, there
is some real matrix A1 so that A1 ·K ·AT

1 is equal to a complex scalar multiple of

either
(

1 0
0 0

)
or
(

−i 1
1 i

)
. So, the proof continues in two parts.

For the first part, L is congruent to a subspace which is spanned by K3 =(
1 0
0 0

)
, and some non-zero matrix of the form K4 =

(
0 β
β γ

)
. If γ = 0,

then a complex rescaling of K4 gives case (1) of the Theorem. If γ �= 0, then,
by a complex rescaling, assume γ = 1. If (after the rescaling) β ∈ R, then let

A2 =
(

1 −β
0 1

)
, so A2 ·K3 · AT

2 = K3, and

A2 ·K4 ·AT
2 =

(
−β2 0

0 1

)
,

and some linear combination of K3 and A2 ·K4 ·AT
2 gives case (2) of the Theorem.

If γ = 1 and Im(β) �= 0, let

A2 =

(
1

Im(β)
−Re(β)

Im(β)

0 −1

)
.
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Then, A2 · K3 · AT
2 = ( 1

Im(β)
)2 · K3, and

A2 ·K4 ·AT
2 =

(
−Re(β)(Re(β)+2i·Im(β))

(Im(β))2
−i

−i 1

)
.

Some complex linear combination of K3 and i · A2 · K4 · AT
2 will be equal to the

matrix
(

−i 1
1 i

)
, giving the t = 0 pencil from case (4) of the Theorem. By

finding the set of rank 1 matrices in each case, Proposition 5.1 says that the pencils
from (1) and (2) fall into different complex congruence classes, so they are also
not congruent by any real matrix. Similarly, (1) and any of the pencils in case (4)
are not congruent. To show that (2) and any of the pencils in case (4) are not

congruent, it is enough, and left to the reader, to check that
(

−i 1
1 i

)
cannot be

diagonalized by any real matrix.
The next part to consider is where L is congruent to a subspace spanned by

K5 =
(

−i 1
1 i

)
, and some other matrix K6 =

(
α β
β δ

)
. Since

det(λ ·K5 + µ · K6) = µ · ((iα− iδ − 2β) · λ+ (αδ − β2) · µ),

the singular matrices in L will form exactly one line if and only if β = i
2 (α− δ). In

this case,

− i

2
(α − δ) · K5 +

(
α i

2 (α− δ)
i
2 (α− δ) δ

)
=
(

1
2 (α+ δ) 0

0 1
2 (α+ δ)

)
,

and rescaling gives case (3) of the Theorem. The matrix pencils from cases (3) and
(1) are equivalent under complex congruence, but not under real congruence, since
such a transformation preserves rank, and would have to take the line spanned by
K5 to the line spanned by K3, contradicting Proposition 4.3.

The final possibility is that L is spanned by K5 and some other rank 1 matrix,
which could be a multiple of K3 = (k ◦ v)((1, 0)T ), or a multiple of some other
singular matrix, (k ◦ v)((β, 1)T ). Since the K3 case was already considered, let

K7 =
(
β2 β
β 1

)
, for some β = a + ib �= −i (if β = −i, K5 and K7 are not

linearly independent). Let A3 =
(
q −1
1 q

)
, for q ∈ R, so A3 is nonsingular,

A3 · K5 ·AT
3 = (q − i)2 ·K5, and

A3 ·K7 ·AT
3 =

(
(qβ − 1)2 (β + q)(qβ − 1)

(β + q)(qβ − 1) (β + q)2

)
.

If β is real, then setting q = −β gives a product equal to a multiple of K3. Other-
wise, qβ − 1 �= 0, and the product is

A3 · K7 · AT
3 = (qβ − 1)2 ·


 1 β+q

qβ−1

β+q
qβ−1

(
β+q
qβ−1

)2


 ,

and

Re(
β + q

qβ − 1
) =

q2a+ (a2 + b2 − 1)q − a

|qβ − 1|2 .
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The discriminant of the numerator of this real part is (a2 + (b− 1)2)(a2 + (b+ 1)2),
which is nonnegative for any a, b, so there is a real root q. After the congruence

transformation, the subspace is spanned by K5 and K8(t) =
(

1 i · t
i · t −t2

)
, for

t ∈ R, t �= 1. Another congruence transformation, using A4 =
(

0 1
−1 0

)
, would

give A4 · K5 · AT
4 = −K5, and K9(t) = A4 · K8(t) · AT

4 =
(

−t2 −i · t
−i · t 1

)
. If

|t| > 1, K9(t) = −t2 · K8(1
t ). Since K8(t) is congruent to a multiple of K8(1

t ), t
can be chosen in the interval [−1, 1), as claimed in case (4).

It remains only to be checked that the representatives of case (4) are pairwise
inequivalent, for different values of t. So, consider two subspaces of S(2,C), the
first spanned by K5 and K8(t), as derived above, and the other spanned by K5

and K8(s), for −1 ≤ s < 1. If the subspaces are congruent, the pair of singular
lines in one subspace must be transformed into the pair of singular lines in the other
subspace (since congruence is a one-to-one, linear, rank-preserving transformation).
There are two cases.

The first case is that the congruence transformation fixes each line: if K5 is
equal to a scalar multiple of A · K5 · AT for some real matrix A, it is not hard

to check that A is of the form
(

p q
−q p

)
(this is left to the reader, who might

use Equation (2.3) as a shortcut for some matrix calculations). Using this A to
transform K8(t) gives:

A ·K8(t) · AT = (p+ iqt)2 ·


 1 i pt+iqp+iqt

i pt+iqp+iqt −
(
pt+iq
p+iqt

)2


 ,

and if this is equal to α ·K8(s) for some α ∈ C, then pt+iq
p+iqt = s. Equating real and

imaginary parts, the only solutions of pt = ps and q = qts are s = t, or p = 0 and
st = 1.

The second case is that the congruence transformation interchanges the two lines,
so A ·K5 ·AT is equal to some scalar multiple of K8(s). Recalling that the reader
has already checked K5 is not diagonalizable, the s = 0 case can be excluded. A

must be of the form
(

p q
−qs ps

)
, so

A · K8(t) ·AT = (p+ iqt)2 ·


 1 i pst+iqsp+iqt

i pst+iqsp+iqt −
(
pst+iqs
p+iqt

)2


 .

If K8(t) is congruent to a multiple of K5, then i pst+iqsp+iqt = i. Equating real and
imaginary parts, the only solutions of pst = p and qs = qt are s = t, or q = 0 and
st = 1.

Example 5.5. Case (1) of the Theorem is similar to case (1) of Proposition 5.1.
A representative coefficient matrix is Q = (0, 0, 1), and the map

Q ◦ v ◦ δ : [u0 : u1] �→ [u2
1]

is undefined (with a double root) at [1 : 0] ∈ RP 1.
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Example 5.6. For case (2) of the Theorem, a representative coefficient matrix is
Q = (0, 1, 0). Its kernel is the set {(λ, 0, µ)T : λ, µ ∈ C}, whose image under k is
the normal form derived in the above Proof, where the singular elements form the
two lines, spanned by (k ◦ v)((1, 0)T ) and (k ◦ v)((0, 1)T ). The map

Q ◦ v ◦ δ : [u0 : u1] �→ [u0u1]

is undefined at two points in RP 1, [1 : 0] and [0 : 1].

Example 5.7. For case (3) of the Theorem, a representative coefficient matrix is
Q = (1, 2i,−1). Its kernel is the set {(µ− iλ, λ, µ + iλ)T : λ, µ ∈ C}, whose image
under k is the normal form derived in the above Proof, where the singular elements
form exactly one line, spanned by (k ◦ v)((1, i)T ). The map

Q ◦ v ◦ δ : [u0 : u1] �→ [u2
0 + 2iu0u1 − u2

1] = [(u0 + iu1)2]

is well-defined at every point in RP 1, although Q ◦ v is undefined at [1 : i].

Example 5.8. For each value of t in case (4) of the Theorem, a representative
coefficient matrix is Q = (t, i(1 + t),−1). k(ker(Q)) meets the complex affine
Veronese variety in two lines, spanned by (k ◦ v)((1, i)T ) and (k ◦ v)((1, it)T ),
−1 ≤ t < 1. At t = 0, one of these lines non-trivially meets the real affine Veronese
variety. The map

Q ◦ v ◦ δ : [u0 : u1] �→ [tu2
0 + i(1 + t)u0u1 − u2

1] = [(tu0 + iu1)(u0 + iu1)]

is well-defined at every point in RP 1 if t �= 0. The map Q ◦ v is undefined at [1 : i]
and [1 : it], the previously mentioned North pole and point on the meridian (so
t = 0 is the intersection with the real equator, and t = −1 is the South pole).

Note that for t �= 0, the maps from this Example, Q ◦ v ◦ δ : RP 1 → {[1]}, are
all equal to each other, even though the corresponding coefficient matrices Q are
not r-equivalent. In fact, these maps are equal to the map from Example 5.7, even
though the coefficient matrix (1, 2i,−1) is in a different c-equivalence class.

6. The real projective plane in CP 4

In the case m = 2, n = 4, a 5 × 6 matrix P with rank 5 determines a map
P ◦ v ◦ δ : RP 2 → CP 4. Although P ◦ v ◦ δ may not be defined on all of RP 2, the
image will be a real surface in the complex projective 4-space, with a homogeneous
parametric equation of the form

[u0 : u1 : u2] �→ P · [u2
0 : u0u1 : u2

1 : u0u2 : u1u2 : u2
2].

As in the previous two Sections, the c-equivalence problem is an easy place to start.
In this case, k(ker(P)) will be a one-dimensional pencil of 3×3 complex symmetric
matrices, and as in Examples 4.1 and 4.2, the only invariant under congruence is
the rank: 1, 2, or 3. Geometrically, there will be three types of projections of the
complex Veronese variety from CP 5 to CP 4, a well-known fact in complex algebraic
geometry ([H]).

Example 6.1. Given P, if k(ker(P)) is a line spanned by a matrix of rank 1, then
this line is in the image of v, and it is congruent to

{λ ·


 0 0 0

0 0 0
0 0 1


 : λ ∈ C}.
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P is c-equivalent to

Q =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


 .

The composite map from CP 2 to CP 4 is

Q ◦ v : [z0 : z1 : z2] �→ [z2
0 : z0z1 : z2

1 : z0z2 : z1z2],

which is undefined only at [0 : 0 : 1], and nonsingular and one-to-one elsewhere. Its
image is contained in the smooth complex surface

{Z0Z2 − Z2
1 = 0, Z4Z0 − Z1Z3 = 0, Z4Z1 − Z2Z3 = 0},

a “cubic scroll” ([H]).

Example 6.2. Given P, if k(ker(P)) is a line spanned by a matrix of rank 2, then
this line is congruent to

{λ ·


 0 0 0

0 1 0
0 0 1


 : λ ∈ C},

and P is c-equivalent to

Q =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 −1
0 0 0 1 0 0
0 0 0 0 1 0


 .

The composite map from CP 2 to CP 4 is well-defined:

Q ◦ v : [z0 : z1 : z2] �→ [z2
0 : z0z1 : z2

1 − z2
2 : z0z2 : z1z2].

When restricted to the {z0 �= 0} affine neighborhood, it is a graph over the Z1, Z3-
plane,

[1 : z1 : z2] �→ [1 : z1 : z2
1 − z2

2 : z2 : z1z2],

so it is one-to-one and nonsingular. However, on the complement of this neighbor-
hood, the map restricts to

[0 : z1 : z2] �→ [0 : 0 : z2
1 − z2

2 : 0 : z1z2],

which is two-to-one, except for two singular points, at [0 : 1 : ±i]. For reference in
later Examples, denote by D the projective line which is equal to the union of the
two-to-one locus and the singular locus of a map P ◦ v in this c-equivalence class,
and denote by S1 and S2 the two singular points. The image of Q ◦ v is equal to
the complex surface

{−Z2
1 + Z0Z2 + Z2

3 = 0, Z4Z0 − Z1Z3 = 0},

which is singular along the line {Z0 = Z1 = Z3 = 0} (the image of the line D).



REAL CONGRUENCE AND COMPLEX PROJECTIONS 23

Example 6.3. Given P, if k(ker(P)) is a line spanned by a matrix of rank 3, then
this line is congruent to

{λ ·


 1 0 0

0 1 0
0 0 1


 : λ ∈ C},

and P is c-equivalent to

Q =




1 0 −1 0 0 0
0 1 0 0 0 0
0 0 1 0 0 −1
0 0 0 1 0 0
0 0 0 0 1 0


 .

The composite map from CP 2 to CP 4 is well-defined, nonsingular, and one-to-one
(an embedding):

Q ◦ v : [z0 : z1 : z2] �→ [z2
0 − z2

1 : z0z1 : z2
1 − z2

2 : z0z2 : z1z2].

From these three c-equivalence classes, we can get some idea of how the r-
equivalence will go. In the c-equivalence class from Example 6.1, the real projective
plane δ(RP 2) inside CP 2 may intersect the point where P ◦ v is undefined, or it
may miss it. In Example 6.2, the complex projective line D will intersect the real
projective plane in a real projective line or just one point, and this intersection may
contain none, one, or both of the singular points S1, S2. If P is as in Example 6.3,
then P ◦ v ◦ δ : RP 2 → CP 4 will be a composition of smooth embeddings, and since
P ◦v is a complex analytic diffeomorphism onto its image, the image (P ◦v◦δ)(RP 2)
will be totally real in CP 4. From the chart in Section 3, we expect M(2, 4) = 2.

The following classification of one-dimensional matrix pencils is recalled from
[W], and the rank of each representative is also listed.

Proposition 6.4. If K is a non-zero matrix in S(3,C), then there is a matrix in
the list below equal to λ·A·K·AT for some nonsingular real matrix A and non-zero
complex scalar λ.

(1)


 1 0 0

0 0 0
0 0 0


, rank 1;

(2)


 0 1/2 0

1/2 i 0
0 0 0


, rank 2;

(3)


 1 0 0

0 α 0
0 0 0


, α = eiθ, 0 ≤ θ ≤ π, rank 2;

(4)


 −it2 1 0

1 i 0
0 0 0


, 0 < t ≤ 1, rank 1 for t = 1, rank 2 for 0 < t < 1;

(5)


 0 0 1/2

0 0 i/2
1/2 i/2 0


, rank 2;

(6)


 0 1/2 0

1/2 0 i/2
0 i/2 1


, rank 3;
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(7)


 0 1/2 0

1/2 i 0
0 0 eiθ


, 0 ≤ θ < 2π, rank 3;

(8)


 1 0 0

0 −i 1
0 1 i


, rank 2;

(9)


 1 0 0

0 −it2β β
0 β iβ


, 0 < t < 1, β = eiθ, 0 ≤ θ < π, rank 3;

(10)


 eiθ 0 0

0 eiφ 0
0 0 eiψ


, 0 ≤ θ ≤ φ ≤ ψ < 2π, rank 3.

The cases are mutually inequivalent, except for the last case, where the three entries
can be changed by an arbitrary rotation of the circle.

The last two cases show that there are, as expected, two real moduli for the
r-equivalence subclasses of the rank 3 c-equivalence class. Since the embeddings in
these rank 3 classes have no self-intersections, singularities, or complex tangents,
any geometric interpretation of these invariants would be rather subtle, in analogy
with the ellipses and their images from Example 4.10. So, we do not investigate
the coefficient matrices corresponding to cases (6), (7), (9), (10), and instead look
for more easily detectable geometric properties in the rank 1 and 2 cases.

Exactly as in Examples 4.4, 4.5, the rank 1 c-equivalence class, where P ◦ v
is undefined at one point, will split into two r-equivalence classes, depending on
whether this point is in the image of δ.

Example 6.5. A parametric map RP 2 → CP 4 which represents case (1) of the
Proposition is

[u0 : u1 : u2] �→ [u0u1 : u2
1 : u0u2 : u1u2 : u2

2].

As in Example 6.1, it is not defined at one point, but it is smooth and one-to-one
everywhere else. The image is contained in a real projective space RP 4 inside CP 4.

Example 6.6. The other rank 1 matrix from Proposition 6.4 is in case (4), with
t = 1. A representative coefficient matrix is

Q =




1 0 1 0 0 0
0 1 i 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 .

The induced map is a well-defined, totally real embedding of RP 2 in CP 4,

Q ◦ v ◦ δ : [u0 : u1 : u2] �→ [u2
0 + u2

1 : u0u1 + iu2
1 : u0u2 : u1u2 : u2

2],

although Q ◦ v is not defined at [1 : i : 0].

The remaining Examples will be representatives of the rank 2 r-equivalence
classes. The maps RP 2 → CP 4 will all be well-defined, and the geometric property
to watch will be the intersection of δ(RP 2) with the locus D and the points S1 and
S2.
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Example 6.7. The first rank 2 matrix from the Proposition is in case (2), and a
representative coefficient matrix is

Q =




1 0 0 0 0 0
0 2 i 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 .

The induced map is one-to-one:

Q ◦ v ◦ δ : [u0 : u1 : u2] �→ [u2
0 : 2u0u1 + iu2

1 : u0u2 : u1u2 : u2
2].

The locus D of the map Q ◦ v is {[z0 : z1 : 0]}, and the singular points are S1 =
[0 : 1 : 0] and S2 = [1 : i : 0]. So, the image of δ meets D in a real projective line,
which includes S1, but not S2. The restriction

Q ◦ v ◦ δ : [u0 : u1 : 0] �→ [u2
0 : 2u0u1 + iu2

1 : 0 : 0 : 0]

is essentially the same as the map from Example 4.6, a real curve with a cusp at
(Q ◦ v ◦ δ)([0 : 1 : 0]) = [0 : 1 : 0 : 0 : 0]. The real Jacobian of Q ◦ v ◦ δ drops rank
only at [0 : 1 : 0], and at other points, the map is nonsingular and totally real.

Example 6.8. The next case of the Proposition is the family of rank 2 matrices
in (3), with representative coefficient matrices of the form

Q =




α 0 −1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 .

The induced map is:

Q ◦ v ◦ δ : [u0 : u1 : u2] �→ [αu2
0 − u2

1 : u0u1 : u0u2 : u1u2 : u2
2].

The restriction to an affine neighborhood,

Q ◦ v ◦ δ : [u0 : u1 : 1] �→ [αu2
0 − u2

1 : u0u1 : u0 : u1 : 1],

is a graph over the X2, X3-plane, so it is one-to-one, nonsingular and totally real.
The locus D of the map Q ◦ v is {[z0 : z1 : 0]}, and the two singular points are
[1 : ±

√
−α : 0]. So, the image of δ meets D in a real projective line, which

either misses both S1 and S2, or, if α = −1, contains both S1 = [1 : 1 : 0] and
S2 = [1 : −1 : 0]. The restriction

Q ◦ v ◦ δ : [u0 : u1 : 0] �→ [αu2
0 − u2

1 : u0u1 : 0 : 0 : 0]

falls into the three cases from Examples 4.7, 4.8 and 4.9. If α �= ±1, the surface is
a totally real immersion, with a single point of self-intersection (corresponding to
the double point from Example 4.9). If α = −1, the image (P ◦ v ◦ δ)(RP 2) has a
line segment of double points, connecting two differential-topological singularities,
as in Example 4.8. If α = 1, the image is a totally real immersion where the double
points form a real projective line, as in Example 4.7. These two differently behaved
double lines in the α = ±1 cases resemble those in the real Steiner surfaces of types
7 and 8 in the classification of [CSS].
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Example 6.9. The next case of the Proposition is the family of rank 2 matrices
in (4), with 0 < t < 1 and representative coefficient matrices of the form

Q =




1 0 t2 0 0 0
0 1 i 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 .

The induced map is one-to-one:

Q ◦ v ◦ δ : [u0 : u1 : u2] �→ [u2
0 + t2u2

1 : u0u1 + iu2
1 : u0u2 : u1u2 : u2

2].

The locus D of the map Q ◦ v is {[z0 : z1 : 0]}, and the singular points are [i(−1 ±√
1 − t2) : 1 : 0]. So, the image of δ meets D in a real projective line, which, for

each t, misses S1 and S2. The restriction

Q ◦ v ◦ δ : [u0 : u1 : 0] �→ [u2
0 + t2u2

1 : u0u1 + iu2
1 : 0 : 0 : 0]

is essentially the same as a map from Example 4.10, a real ellipse. These maps
Q ◦ v ◦ δ are totally real embeddings, and as t→ 1−, they approach the embedding
from Example 6.6.

In the above three Examples, δ(RP 2) met D in a real projective line, and the
r-equivalence class could be detected by the behavior of P ◦ v on D. In the next
two Examples, representing cases (5) and (8) of Proposition 6.4, the matrix repre-
sentatives of the congruence classes don’t contain copies of the 2× 2 matrices from
Proposition 4.3 as block submatrices. The intersection of the real projective plane
with D will be just one point.

Example 6.10. A representative coefficient matrix for case (5) is

Q =




0 0 0 1 i 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1


 .

The induced map is one-to-one:

Q ◦ v ◦ δ : [u0 : u1 : u2] �→ [u0u2 + iu1u2 : u2
0 : u0u1 : u2

1 : u2
2].

The locus D of the map Q ◦ v is the line {z1 = iz0} in CP 2, where [z0 : iz0 : z2]
and [−z0 : −iz0 : z2] are mapped to the same point. The singular points are
S1 = [0 : 0 : 1] and S2 = [1 : i : 0]. So, the image of δ meets D only at the point
S1. The map Q ◦ v ◦ δ is a smooth embedding, and its image has a CR singularity
at [0 : 0 : 0 : 0 : 1]: a restriction to affine neighborhoods is

[u0 : u1 : 1] �→ [u0 + iu1 : u2
0 : u0u1 : u2

1 : 1],

a real polynomial graph over its complex tangent space, the Z0-axis. This CR
singularity is unstable, in the sense that the embedding Q ◦ v ◦ δ, which is totally
real except for an isolated complex tangent, can be perturbed, by small changes of
the entries of Q, to become totally real everywhere.
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Example 6.11. A representative coefficient matrix for case (8) is

Q =




1 0 −i 0 0 0
1 0 0 0 −1 0
0 0 1 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0


 .

The induced map is one-to-one:

Q ◦ v ◦ δ : [u0 : u1 : u2] �→ [u2
0 − iu2

1 : u2
0 − u1u2 : u2

1 + u2
2 : u0u1 : u0u2].

The locus D of the map Q ◦ v is the line {z2 = iz1} in CP 2, where [z0 : z1 : iz1]
and [−iz1 : z0 : iz0] are mapped to the same point. The singular points are
[±

√
−i : 1 : i]. So, the image of δ meets D only at the point [1 : 0 : 0], and misses

both singular points. The map Q ◦ v ◦ δ is a totally real embedding.

7. Real projections of real Veronese varieties

This Section will briefly consider a construction related to that of Section 2,
where we restrict our attention to real coefficient matrices. There are two closely
related approaches to defining a “real projection,” the first being to forget about C,
to consider P as having only real number entries, and defining the Veronese map
vR for real spaces as in Subsection 2.1. Then, the composition P ◦ vR induces a
map RPm → RPn that can be analyzed algebraically and geometrically.

The second approach would be to consider complex coefficient matrices P which
satisfy the equality P = C1◦P◦C2, where C1 and C2 are the conjugation operators
on Cn+1 and C(m+1)(m+2)/2, respectively. Then, the map P ◦ v ◦ δ : RPm → CPn

will have an image contained in the fixed point set of C1, so it, too, could be
considered as a map to RPn.

An interesting problem is then the classification of such maps, up to real auto-
morphisms of both the domain and the target, which we’ll call “R-equivalence” (the
precise definition will be statement (1) of the Theorem below). For certain values
of m, n, the classification of real projections has been studied, and is known to be
somewhat different from the c-equivalence problem. Real projections of the real
Veronese variety also appear in areas of mathematics related to algebraic geometry
([AF], [A], [Degen]).

Obviously, R-equivalence is not the same as r-equivalence, where complex coef-
ficients of the parametrization, and complex transformations of the target space,
are allowed, but there is a connection.

Theorem 7.1. Given integers m, n, and two real coefficient matrices P and Q,
the following are equivalent.

(1) There exist matrices A1 ∈ GL(m+ 1,R), B ∈ GL(n + 1,R) such that for
all u ∈ Rm+1 \ {0},

Q · (vR(u)) = B ·P · (vR(A1 · u)).

(2) There exists A2 ∈ GL(m+ 1,R) such that the following (m(m+ 3)/2− n)-
dimensional subspaces of S(m+ 1,R) are equal:

k(kerR(P)) = A2 · (k(kerR(Q))) · AT
2 .

(3) P + i0 and Q + i0 are r-equivalent complex coefficient matrices.
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Proof. The equivalence of (1) and (2) is proved by copying the Proof of Theorem
2.6, changing C to R. Without going into too much detail, the equivalence of (2)
and (3) looks like a statement from Theorem 2.15, and the only technicality worth
mentioning is that the notion of “kernel” has changed, so there is something to be
checked.

Another näıve count, as in Section 3, gives the difference between the dimension
of the real parameter space and the dimension of the real group acting on it:

MR(m,n) =
1
2
(m2n+ 3mn−m2 − 2n2 −m− 2n).

Some easy applications of the Theorem occur when the dimension n is just one
less than the target dimension (1

2 (m + 1)(m + 2) − 1) of the real Veronese map,
so the kernel of the projection matrix is a real one-dimensional subspace. The
real congruence classes of real symmetric matrices are characterized by rank and
signature (Sylvester’s Law of Inertia, [Searle]), and are represented by diagonal
matrices with 1, −1, and 0 entries. The real congruence classes of one-dimensional
pencils, where we can multiply by −1, are represented by (lines spanned by) non-
zero matrices with at least as many +1 as −1 entries. So, for n = 1

2 (m+1)(m+2)−2,
there are finitely many R-equivalence classes (and MR ≤ 0 for all m).

Example 7.2. The congruence classes of one-dimensional subspaces of S(2,R) are
represented by lines spanned by one of these three normal forms:(

1 0
0 0

)
,

(
1 0
0 1

)
,

(
1 0
0 −1

)
.

So, there are three R-equivalence classes of real coefficient matrices, defining maps
RP 1 → RP 1 (MR(1, 1) = −1). These three correspond to the representatives of
r-equivalence classes from Section 4, which happened to have all real coefficients:
Examples 4.4, 4.7, 4.8.

Example 7.3. The congruence classes of one-dimensional subspaces of S(3,R) are
represented by lines spanned by one of these normal forms:
 1 0 0

0 0 0
0 0 0


,

 1 0 0

0 1 0
0 0 0


,

 1 0 0

0 −1 0
0 0 0


,

 1 0 0

0 1 0
0 0 1


,

 1 0 0

0 1 0
0 0 −1


 .

So, there are five R-equivalence classes of real coefficient matrices, defining maps
RP 2 → RP 4 (MR(2, 4) = −3). The first three correspond to those representatives
of r-equivalence classes from Section 6, where we were able to choose coefficient
matrices with all real entries: the real cubic scroll of Example 6.5, and the α = ±1
cases of Example 6.8. The last two of five represent Case (10) of Proposition
6.4. The fourth matrix appeared, with a representative real coefficient matrix, in
Example 6.3. A representative real coefficient matrix for the last of these five is

Q =




1 0 1 0 0 2
1 0 −1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


 ,

and the parametric map

Q ◦ v ◦ δ : [u0 : u1 : u2] �→ [u2
0 + u2

1 + 2u2
2 : u2

0 − u2
1 : u0u1 : u0u2 : u1u2]
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has an image which is contained in the {X0 �= 0} real affine neighborhood of RP 4,
so it defines a smooth embedding RP 2 → R4. Projecting the real Veronese surface
into R4 is a well-known way to construct embeddings of the projective plane ([A]).

Example 7.4. If P4×6 is a real coefficient matrix, then the image of P ◦ v ◦ δ :
RP 2 → RP 3 is called a real Steiner surface. By finding the real congruence classes
of two-dimensional subspaces of S(3,R), the R-equivalence problem for m = 2,
n = 3 was solved by [CSS], resulting in finitely many types of real Steiner surfaces
(MR(2, 3) = 0).

Example 7.5. If P3×6 is a real coefficient matrix, it defines a map P ◦v◦δ : RP 2 →
RP 2. The R-equivalence classification was found by [Degtyarev], and shown to have
one continuous invariant (consistent with MR(2, 2) = 1).

Example 7.6. If P2×6 is a real coefficient matrix, it defines a map P ◦ v ◦ δ :
RP 2 → RP 1. Rather than considering the geometry of that map, we briefly change
our point of view, and consider the two polynomials defined by the rows, Pk(u) =∑
pi,jk uiuj , k = 0, 1, as the basis for a “pencil of quadratic forms.” Evidently,

matrices P and Q are R-equivalent if and only if λP1 +µP2 and λQ1 +µQ2 are real
projectively equivalent pencils of forms, as described by ([L] §IV.11), which finds
finitely many equivalence classes, consistent with MR(2, 1) = 0. There are nine
classes of pencils containing nondegenerate conics, and four classes of pencils with
only degenerate conics.

8. A few examples in other dimensions

The r-equivalence problem in higher dimensions seems to be complicated, mostly
by the large number of moduli, M(m,n). Instead of attempting any more congru-
ence calculations, this Section will consider some Examples which demonstrate just
some of the various possible geometric properties of quadratically parametrized
maps P ◦ v ◦ δ : RPm → CPn.

8.1. Images of real projective spaces.

Example 8.1. The following construction of J. Vrabec appears in [F2] §3. It
describes a real projective plane embedded in C

2. When restricted to the unit
sphere S2 ⊆ C×R, the map F : C×R → C2 : (z, u) �→ (z2, zu) identifies antipodal
points, and its image is totally real except for one point with a complex tangent.
The image F (S2) admits a parametrization of the form:

P ◦ v ◦ δ : [u0 : u1 : u2] �→ [u2
0 + u2

1 + u2
2 : (u0 + iu1)2 : (u0 + iu1)u2].

The image of P ◦v◦δ is exactly F (S2) because for any non-zero point (u0+iu1, u2) ∈
C × R, the point (z, u) = ( u0+iu1√

u2
0+u

2
1+u2

2

, u2√
u2
0+u

2
1+u2

2

) is on S2, and F (z, u) has the

form of a pair of quadratic rational functions. As pointed out in [F2], generalizing
this map to any parametrization of the form

[u2
0 + u2

1 + u2
2 : P1(u0, u1, u2) : P2(u0, u1, u2)]

gives an image (P ◦ v ◦ δ)(RP 2) which is contained in the affine neighborhood
{Z0 �= 0} of CP 2.
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Example 8.2. A construction of [F1] gives an embedding of RP 3 in the {Z0 �= 0}
neighborhood of CP 3, which is the image of the unit sphere S3 in C2, under the map
F : C2 → C3 : (z1, z2)T �→ (z2

1 , z
2
2 ,
√

2z1z2)T . Similarly to the previous Example,
the submanifold can be parametrized by a map P ◦v ◦δ that takes [u0 : u1 : u2 : u3]
to

[u2
0 + u2

1 + u2
2 + u2

3 : (u0 + iu1)2 : (u2 + iu3)2 :
√

2(u0 + iu1)(u2 + iu3)].

The map P ◦ v : CP 3 → CP 3 is singular at every point; its image is contained
in the hypersurface H2 = {2Z1Z2 − Z2

3 = 0}. The image (P ◦ v ◦ δ)(RP 3) is
contained in H2, and in fact is equal to the intersection of H2 with the real unit
sphere S5 in the {Z0 = 1} affine neighborhood. So, this embedded RP 3 is a real
hypersurface in a complex surface, and with respect to the ambient space CP 3, it
is CR singular at every point: each tangent 3-plane contains a complex line. This
is a topologically unstable phenomenon: the CR singular locus of a 3-manifold in
three complex dimensions is expected to have codimension 2. In fact, [F1] shows
how this submanifold can be perturbed so that it becomes totally real.

8.2. Images of complex projective spaces. This Subsection will show that for
any odd m = 2k + 1, there are some maps P ◦ v ◦ δ : RP 2k+1 → CPn which
are many-to-one, and which have an image homeomorphic to a complex projective
space CP k. The basic construction will be a map a1 : RP 2k+1 → CP k which is
double covered by the well-known Hopf fibration S2k+1 → CP k.

Once all the arrows have been defined, the following diagram will be commuta-
tive:

C2k+2

vC

��

R2k+2
δ�� a1 ��

vR

��

Ck+1

∆
��

R(k+1)(2k+3)

δ′

��������������
a2

�������������� Ck+1 × Ck+1

s

��

C(k+1)(2k+3)
a3 ��

P◦a3

�������������� C(k+1)2

P

���������������

Cn+1

The maps vC = v, vR, δ, and δ′ are as in Section 2. The map ∆ is defined by
∆ : z �→ (z,C(z)). The map s is defined on pairs of vectors by

s : (z,w) �→ (z0w0, . . . , zjw�, . . . , zkwk)T ,

the entries of the matrix z ·wT , put in some (unimportant) order. The set Ck+1 ×
Ck+1 is just considered as a set of ordered pairs, not a vector space, so strictly
speaking, it does not make sense to check whether ∆ or s satisfy properties (2.1)
or (2.2). However, they are related to the following well-known maps: the totally
real diagonal embedding,

∆ : CP k → CP k × CP k : z �→ (z, C(z)),

and the holomorphic Segre embedding,

s : CP k × CP k → CP (k+1)2−1 : (z, w) �→ [z0w0 : . . . : zjw� : . . . : zkwk].



REAL CONGRUENCE AND COMPLEX PROJECTIONS 31

The image of ∆ is exactly the totally real submanifold

∆(CP k) = {(z, w) : w = C(z)}.
The composition

s ◦ ∆ : z �→ (z0z̄0, . . . , zj z̄�, . . . , zkz̄k)T

does satisfy (2.1) and (2.2), and the induced map s ◦ ∆ : CP k → CP k(k+2) is a
totally real embedding.

In terms of the coordinates on R2k+2, define the map a1 by

a1 : (u0, u1, . . . , u2k+1)T �→ (u0 + iu1, . . . , u2j + iu2j+1, . . . , u2k + iu2k+1)T .

This is not particularly canonical, but it does satisfy (2.1) and (2.2), so it induces
a map a1 : RP 2k+1 → CP k, so that if z is some one-dimensional subspace of C

k+1,
then all the real lines in that complex line have the same image. In terms of the uj
coordinates, each component of the composition s ◦ ∆ ◦ a1 is of the form

zj z̄� = (u2j + iu2j+1)(u2� − iu2�+1) = u2ju2� + u2j+1u2�+1 + iu2j+1u2� − iu2ju2�+1,

which is a complex linear combination of the components of vR(u). This defines
the map a2, as a (k + 1)2 × (k + 1)(2k + 3) matrix whose entries are 0, 1, i, and
−i. The map a3 is defined using the same matrix, just extending a2 to the domain
C(k+1)(2k+3) by complex linearity.

To show that a3 has full rank, it is enough, by the commutativity of the diagram,
to show that the image of s◦∆ = a2 ◦vR ◦a−1

1 spans C(k+1)2 . This is equivalent to
checking that any (k+1)× (k+1) complex matrix is a complex linear combination
of matrices of the form z · z̄T . Let ej, j = 0, . . . , k, be the standard basis of Ck+1, so
that eje�T is a basis of the matrix space. The claim follows from the easily checked
identity:

eje�T =
1
2
(ej + e�)(ej + e�)

T
+
i

2
(ej + ie�)(ej + ie�)

T − 1 + i

2
(ejejT + e�e�T ).

A simple example is k = 0, where

(s ◦ ∆ ◦ a1)((u0, u1)T ) = (u2
0 + u2

1),

vR((u0, u1)T ) = (u2
0, u0u1, u

2
1)
T ,

so a2 and a3 are defined by the matrix (1, 0, 1)1×3. When a3 is considered as a
coefficient matrix, it falls into the t = −1 r-equivalence class from Theorem 5.4.
When k = 1, a2 and a3 are represented by a 4 × 10 matrix.

Finally, the map P in the diagram can be any full rank complex matrix, with
n+ 1 ≤ (k + 1)2, and it could be described as a coefficient matrix for maps of the
form

P ◦ s ◦ ∆ : CP k → CPn : z �→ [. . . :
∑
j,�

pj,�i zj z̄� : . . .]i=0...n.

Such maps were considered by [C1]. By the fact that the diagram commutes, any
map P ◦ s ◦∆ can be composed with a1, giving a map RP 2k+1 → CPn, so that the
image (P ◦ s ◦ ∆)(CP k) is exactly equal to the image (P ◦ a3 ◦ v ◦ δ)(RP 2k+1).

This shows that among all maps Q◦v ◦δ : RP 2k+1 → CPn, as defined in Section
2 with n+ 1 ≤ (k + 1)2, there are always some such that Q(n+1)×(k+1)(2k+3) is of
the form P(n+1)×(k+1)2 ◦ a3, so the image of Q ◦ v ◦ δ is equal to the image of some
complex projective space under the map P ◦ s ◦ ∆. The simple case k = n = 0
was considered in Section 5. The immersions of CP 1 and CP 2 constructed in [C1]
showed that maps P ◦s◦∆ can have many interesting geometric properties, including
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self-intersections, differential-topological singularities, and CR singularities. The
above construction shows that the classification of maps RP 2k+1 → CPn will be
at least as complicated as the equivalence problem for maps CP k → CPn stated in
[C1].

8.3. Normal forms for CR singularities. The local geometry of a real m-
submanifold M in Cn near CR singular points has been studied by several authors,
mostly when m ≤ n, by finding a holomorphic coordinate system in which the
defining equations of M in some neighborhood are in a simple “normal form.” For
some real analytic submanifolds M , it can be proved that there is a holomorphic co-
ordinate system where the definining equations are real polynomials, and for some
other real analytic submanifolds, M can be put into a polynomial normal form only
by a formal coordinate change.

Some of these normal form polynomials define real varieties in Cn which admit
parametrizations of the form P ◦v ◦ δ. The image of P ◦v will be contained in some
complex variety, which could be considered a “complexification” of M .

Example 8.3. The surface M2 = {(Z1, Z2) : Z2 = Z1Z̄1} ⊆ C2 is a paraboloid,
contained in the real hyperplane Im(Z2) = 0. It is one of the normal forms consid-
ered by [M], for a surface which is totally real in C2 except for a complex tangent
at the origin, with Bishop invariant equal to 0.

There are several ways to parametrize this surface by rational functions, all of
which add one “point at infinity,” so M ∪ {[0 : 0 : 1]} is a smooth 2-sphere in CP 2.

The first parametrization uses a complex coefficient matrix, P3×6, to define a
map P ◦ v ◦ δ : RP 2 → CP 2:

(8.1) [u0 : u1 : u2] �→ [u2
0 : u0(u1 + iu2) : (u1 + iu2)(u1 − iu2)].

The idea is simply to use u1, u2 as parameters for the real and imaginary parts of
the Z1-axis. The real line at infinity in the domain, [0 : u1 : u2], is mapped to a
single point, [0 : 0 : 1], in the complex line at infinity.

The second will use a coefficient matrix P3×4, to define a map P ◦s◦∆ : CP 1 →
CP 2, as in Subsection 8.2:

[z0 : z1] �→ [z0z̄0 : z̄0z1 : z1z̄1].

The image is projectively equivalent to the stereographic projection of the sphere,
described in [C1] §2, which has two complex tangents, so P ◦s◦∆ : CP 1 →M∪{[0 :
0 : 1]} is a diffeomorphism, with CR singularities at [1 : 0 : 0] and [0 : 0 : 1].

The third method is to take, as in Subsection 8.2, the real and imaginary parts
of the coordinates z0, z1 in the previous map to get a map RP 3 → CP 2, using a
coefficient matrix P3×10:

[u0 : u1 : u2 : u3] �→ [u2
0 + u2

1 : (u0 − iu1)(u2 + iu3) : u2
2 + u2

3].

Yet another method uses the fact that M is contained in a real 3-plane, so that
it can be parametrized as a real Steiner surface (Example 7.4). The real coefficient
matrix P4×6 defines a map P ◦ v ◦ δ : RP 2 → RP 3 ⊆ CP 3:

[u0 : u1 : u2] �→ [u2
0 : u0u1 : u0u2 : u2

1 + u2
2].

Again, the real line at infinity in the domain is mapped to a single point, [0 : 0 :
0 : 1]. The image is still a sphere, and equal to a paraboloid in the real affine
neighborhood {[1 : X : Y : Z]}. However the target space has changed: RP 3 is
totally real in CP 3, and the hyperplane {Im(Z2) = 0} is not totally real in CP 2.
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The CR geometry of the sphere is also different: it is totally real with respect to the
complex structure of the ambient space CP 3. Composing this map with another
projection, CP 3 → CP 2 : [Z0 : Z1 : Z2 : Z3] �→ [Z0 : Z1 + iZ2 : Z3], will recover the
map (8.1), taking the totally real sphere to the CR singular sphere in CP 2.

Example 8.4. [C2] considers the following real affine variety, a smooth real surface
in C3 with a CR singularity at the origin:

M2 = {(Z1, Z2, Z3) : Z2 = Z̄2
1 , Z3 = Z1Z̄1}.

This subset of C
3 is a graph over the Z1-axis, and it is equal to the image of the

parametrization

[u0 : u1 : u2] �→ [u2
0 : u0(u1 + iu2) : (u1 − iu2)2 : (u1 + iu2)(u1 − iu2)],

restricted to the {u0 = 1}, {Z0 = 1} neighborhoods. In fact, even including the
points at infinity, P ◦ v ◦ δ : RP 2 → CP 3 is a smooth embedding. The map

P ◦ v : [z0 : z1 : z2] �→ [z2
0 : z0z1 + iz0z2 : z2

1 − 2iz1z2 − z2
2 : z2

1 + z2
2 ]

is not defined at the point [0 : i : 1], and its Jacobian drops rank at [1 : 0 : 0] and
[0 : −i : 1]. It is a type of complex Steiner surface (Example 2.8). The image of P ◦v
in CP 3 is contained in the hypersurface H2 = {Z0Z

2
3−Z2

1Z2 = 0}. The intersection
of H2 with the neighborhood {Z0 = 1} is the complex Whitney umbrella, a ruled
cubic surface, and the smallest complex affine variety containing M2. The singular
locus of H2 is the double line {[Z0 : 0 : Z2 : 0]}, whose intersection with the image
of P ◦ v ◦ δ contains only the origin: (P ◦ v)([1 : 0 : 0]) = [1 : 0 : 0 : 0] ∈M2. So, the
CR singular point of M2 coincides with the “pinch point” of its complexification
in C3. (The real Whitney umbrella in R3, with its double line and pinch point, is
illustrated in [A].)

Example 8.5. [C2] considers the following real affine variety, a smooth real 4-
manifold in C5 with a CR singularity at the origin:

M4 = {Y2 = 0, Y3 = 0, Z4 = (Z̄1 +X2 + iX3)2, Z5 = Z1(Z̄1 +X2 + iX3)}.
This subset of C

5 is a graph over its tangent space at the origin, the real 4-plane
T0 with coordinates Z1, X2, X3 (where Zk = Xk + iYk for k = 1, . . . , 5), and it is
equal to the image of the parametrization

P ◦ v ◦ δ : RP 4 → CP 5 :
[u0 : u1 : u2 : u3 : u4] �→ [u2

0 : u0(u1 + iu2) : u0u3 : u0u4 :
(u1 − iu2 + u3 + iu4)2 :
(u1 + iu2)(u1 − iu2 + u3 + iu4)],

restricted to the {u0 = 1}, {Z0 = 1} neighborhoods. The map P ◦ v ◦ δ is not
defined on the set

{u0 = 0, u1 + u3 = 0, u2 − u4 = 0},
a real projective line in the RP 3 at infinity. The map P ◦ v : CP 4 → CP 5 is
undefined on the set

L = {z0 = 0, z1 − iz2 + z3 + iz4 = 0},
a complex projective plane in the CP 3 at infinity. The singular locus of the map
P ◦ v is the following subset of CP 4:

(8.2) ({z0 = 0} ∪ {z1 + iz2 = 0, z1 − iz2 + z3 + iz4 = 0}) \ L.
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The hyperplane at infinity, {z0 = 0}, is mapped to the line {[0 : 0 : 0 : 0 : Z4 : Z5]}
by P ◦ v (where it is defined), and the complex affine 3-space {z0 �= 0, z1 + iz2 =
0, z1 − iz2 + z3 + iz4 = 0} is mapped to the complex affine plane Hp = {[1 : 0 :
Z2 : Z3 : 0 : 0]}. The image of P ◦ v in CP 5 is contained in the hypersurface
H4 = {Z0Z

2
5 − Z2

1Z4 = 0}. The singular locus of H4 is the projective 3-space
Hs = {Z1 = 0, Z5 = 0}.

Since P ◦ v behaves strangely on the hyperplane at infinity, for the rest of this
Example it will be restricted to the {z0 = 1}, {Z0 = 1} affine neighborhoods.
P ◦ v : C4 → C5 is well-defined but singular, and in affine space it will be easier to
see some of the geometry of M4, P ◦ v, and an interesting multi-valued reflection.

The intersection of H4 with the affine neighborhood {Z0 = 1} is the product of
a complex Whitney umbrella (from the previous Example) and an affine C2, and it
is the smallest complex affine variety containing M4.

The variety H4 is “ruled” in the sense that its intersection with each hyperplane
Z4 = k ∈ C is a pair of intersecting complex 3-planes {Z4 = k, Z5 = ±

√
kZ1}.

When k = 0, these two 3-planes coincide, and are equal to T0 + iT0, the smallest
complex subspace containing the real 4-plane T0 (this is the tangent space of M4

that contains a complex line). The inverse image under P ◦v of these two planes is a
pair of parallel affine 3-planes in C4, disjoint for k �= 0: {z1− iz2+z3+ iz4 = ±

√
k}.

The real variety M4 is similarly ruled by totally real 2-planes parametrized by
constant Z4-value k ∈ C: the two planes {Z̄1+X2 + iX3 = ±

√
k, Y2 = Y3 = 0, Z4 =

k, Z5 = ±
√
kZ1} are parallel and disjoint if k �= 0. Their inverse image under

P ◦v◦δ : R4 →M4 is the pair of planes {u1 +u3 = Re(±
√
k), u2+u4 = Im(±

√
k)}.

P ◦ v : C4 → H4 is one-to-one, except for a double point locus. A given point
(Z1, Z2, Z3, Z4, Z5)T in the image of P ◦ v is of the form:

Z1 = z1 + iz2

Z2 = z3

Z3 = z4

Z4 = (z1 − iz2 + z3 + iz4)2

Z5 = (z1 + iz2)(z1 − iz2 + z3 + iz4),

which uniquely determines z3 and z4. If Z1 �= 0, then the following system of
equations has exactly one solution for (z1, z2):

z1 + iz2 = Z1

z1 − iz2 =
Z5

Z1
− Z2 − iZ3.

If Z1 = 0, the quantity z1 − iz2 can be found using Z4, but the system:

z1 + iz2 = 0

z1 − iz2 = ±
√
Z4 − Z2 − iZ3

has two solutions if Z4 �= 0, and one solution if Z4 = 0. Define D3 = {z1 + iz2 =
0} ⊆ C4, so (P ◦ v)(D3) is exactly Hs in C5, which can be seen as the product of
C

2 with the umbrella’s double line. If w1 = −(z1 + z3 + iz4), then (z1, iz1, z3, z4)T

and (w1, iw1, z3, z4)T ∈ D3 have the same image in Hs. The map

τ : (z1, iz1, z3, z4)T �→ (−(z1 + z3 + iz4),−i(z1 + z3 + iz4), z3, z4)T
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is an involution of D3 which interchanges the two inverse images. The fixed point
set of τ is exactly the singular locus (8.2) of P ◦ v : C4 → C5, on which P ◦ v
is one-to-one, with image Hp, the product of C2 with the “pinch point” of the
umbrella.

The affine 3-space Hs meets M4 in the totally real surface T 2 = {Z1 = Y2 =
Y3 = 0, Z4 = (X2 + iX3)2, Z5 = 0}. The intersection of the complex plane
Hp = {Z1 = 0, Z4 = 0, Z5 = 0} and the real manifold M4 is a set containing
exactly one point, the CR singular point.

The conjugation map, C, an involution on the domain of P ◦ v : C4 → C5, can
be used to induce an “antiholomorphic correspondence,” ρ = (P ◦ v) ◦C ◦ (P ◦ v)−1

on the image, H4. For Z = (Z1, . . . , Z5)T ∈ H \ Hs,

ρ : Z �→ (
Z5

Z1
− Z2 − iZ3, Z̄2, Z̄3, (Z1 + Z2 − iZ3)

2
,

(
Z5

Z1
− Z2 − iZ3)(Z1 + Z2 − iZ3))T .

For Z = (0, Z2, Z3, Z4, 0)T ∈ Hs, ρ is double-valued outside Hp:

ρ : Z �→ (±
√
Z4 − Z2 − iZ3, Z̄2, Z̄3, (Z2 − iZ3)

2
,

(±
√
Z4 − Z2 − iZ3)(Z2 − iZ3))T .

For Z ∈ Hp ⊆ Hs (Z4 = 0), the two reflections coincide. The real manifold M4 is
contained in ρ(M4), with points outside T 2 = M4 ∩ Hs fixed. Also the origin is
a fixed point. The image of Z = (0, X2, X3, (X2 + iX3)2, 0)T ∈ T 2 is the pair Z
(fixed) and (−2(X2 − iX3), X2, X3, (X2 + iX3)2,−2(X2

2 +X2
3 ))T . So ρ(T 2) is the

union of T 2 with another surface T̃ 2 which is also totally real, meets H3
s, and M4,

only at the origin, and whose (single-valued) image under ρ is T 2.

Some of the unpublished papers in the references are available from the author’s
web site, www.ipfw.edu/math/Coffman/.

The author thanks the referee for comments which improved this paper.
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[F1] F. Forstnerič, Some totally real embeddings of three-manifolds, Manuscripta
Math. (1) 55 (1986), 1–7.
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