
Complexification of the CR Cross-Cap

Adam Coffman

December 1997

1 Introduction

These notes are based on research conducted at the University of Chicago. They
represent a more self-contained version of a chapter from my dissertation [C1].
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The main result of [C1] established a normal form for a generic complex
tangent of a real m-submanifold in a complex n-manifold, in the case m < n.
“Generic” refers to a point where the real tangent space contains exactly one
complex line, and so that the defining functions satisfy certain non-degeneracy
conditions. The “formal stability” theorem says that for a generic complex tan-
gent of a submanifold defined by real analytic functions in a neighborhood of the
origin of Cn, there exists a formal holomorphic coordinate change transforming
the submanifold into a fixed real algebraic variety Mm. This variety depends
only on m and n (there are no continuous invariants, unlike the m = n case)
and its defining functions are linear and quadratic polynomials. In these notes,
the geometry of these real varieties and their complexifications is considered.

There is some choice in the algebraic normal form. The following two are
formally equivalent equations for M4 in C5; these dimensions are the smallest
where the non-degeneracy conditions are satisfied.

The non-degenerate normal form

y2 = y3 = 0

z4 = x2(z̄1 + z1) + ix3(z̄1 − z1) + z21 + z̄21

z5 = z1z̄1

has the advantage of using real-valued functions, and the z5 = z1z̄1 expression
is both simple and geometrically familiar. Another normal form,

y2 = y3 = 0

z4 = (z̄1 + x2 + ix3)
2

z5 = z1(z̄1 + x2 + ix3),

has complex-valued defining functions and more monomials, but has the ad-
vantage of having the same “antiholomorphic variable” z̄1 + x2 + ix3 in both

1Note added in 2016: Some of these ideas more recently appeared in [C2], [C3], [C4], and
[C5].
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expressions. These were the equations used in the proof of the formal stability
theorem, and this normal form will be preferred in Section 3 notes to simplify
calculations.

Section 2 considers some degenerate cases, and normal forms for complex
tangents in higher dimensions. Section 3 of the paper will consider an approach
to complexification of the real varieties, and an interesting multi-valued reflec-
tion. Section 4 is a purely algebraic computation showing M4 is indeed totally
real away from the origin.

2 Examples of Normal Forms

The coordinates z1, . . . z5 of C5 define real coordinates x1, y1, . . . x5, y5, with the
usual complex structure. The 4-plane T0 spanned by x1, y1, x2, x3 contains the
complex line with coordinate z1 and two real directions.

Example 2.1 The normal form varieties mentioned in the Introduction are
graphs over the plane T0, which is the real tangent space at the origin in C5.
They are smooth affine varieties, and it can be shown (Section 4) that they are
totally real except for the isolated point at the origin.

Example 2.2 Complex conjugation on C5 reverses orientation. If an orien-
tation on T0 space is chosen, complex conjugation maps z1 �→ z̄1, and preserves
x2, x3, reversing the chosen orientation. The first normal form for M4 is not
conjugation invariant— its image under conjugation is

y2 = y3 = 0

z4 = x2(z̄1 + z1)− ix3(z̄1 − z1) + z21 + z̄21

z5 = z1z̄1,

This variety is related to M4 by the holomorphic transformation z3 �→ −z3,
but when restricted to T0, this transformation also reverses orientation. The
second normal form is also not invariant under complex conjugation of all five
coordinates. In fact, if the formal coordinate changes of the stability theorem
are also required to preserve an orientation given to T0, there are two cases of
the non-degenerate normal form, corresponding to a choice of +i or −i in either
of the equations for z4.

In [C1], it was shown that the locus of complex tangents, for generically
immersed, oriented, compact, real submanifolds of complex submanifolds, can
be described by characteristic class formulas. When the complex tangents are
generically isolated, there are formulas in chern and pontrjagin numbers count-
ing an “index sum” of complex tangents. These indices represent an oriented
intersection number, and are generically +1 or −1; the two cases represent the
inequivalent normal forms under orientation-preserving transformations.
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Example 2.3 The following variety, defined by quadratic and linear poly-
nomials, does not satisfy the second non-degeneracy condition of [C1]:

y2 = y3 = 0

z4 = x2(z̄1 + z1) + z21 + z̄21

z5 = z1z̄1.

This manifold has complex tangent locus N1 equal to the x3-axis. It is the prod-
uct of a 3-manifold with an isolated complex tangent in complex (z1, z2, z4, z5)
space with a real line in the z3 space. Both phenomena, complex tangents of
M3 ⊆ C4, and non-isolated complex tangents of M4 ⊆ C5, are topologically
unstable.

Since the hypotheses of the formal stability theorem are not satisfied, there
are submanifolds whose defining functions have the above quadratic terms, but
also higher-order terms which cannot be eliminated by formal holomorphic co-
ordinate changes.

Example 2.4 The following variety also has a topologically unstable, but
isolated, complex tangent; it is a surface in C3:

z2 = z̄21

z3 = z1z̄1.

Example 2.5 A generic 6-manifold in C8 has an isolated complex tangent,
as modeled by the following graph over the z1, x2, . . . , x5 plane:

y2 = y3 = y4 = y5 = 0

z6 = x4(z̄1 + z1) + ix5(z̄1 − z1)

z7 = x2(z̄1 + z1) + ix3(z̄1 − z1) + z21 + z̄21

z8 = z1z̄1.

The origin is the only complex tangent.
Example 2.6 A higher-dimensional example, but where n−m, and there-

fore the codimension of N1, is the same as the previous example, is a generic
8-manifold M8 in C10. N1 is expected to be a codimension 6 surface, and a
model for M8 is a product of a totally real R2 with the above 6-manifold:

y2 = y3 = y4 = y5 = y6 = y7 = 0

z8 = x4(z̄1 + z1) + ix5(z̄1 − z1)

z9 = x2(z̄1 + z1) + ix3(z̄1 − z1) + z21 + z̄21

z10 = z1z̄1.

The complex tangent locus N1 is the plane with coordinates x6, x7. The tangent
plane to M8 is constant along this locus and always contains a complex line
parallel to the z1-axis. If the defining equations for the manifold have these
quadratic parts, but also higher-order terms, the locus N1 is a surface tangent
to the x6, x7-plane.
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3 Complexification and Reflection

The second choice of the normal form for the non-degenerate complex tangent
of a 4-manifold in C

5 is the real variety M4 defined by

y2 = y3 = 0

z4 = (z̄1 + x2 + ix3)
2

z5 = z1(z̄1 + x2 + ix3).

It is easy to see that M4 is contained in the complex hypersurface H4 defined
by

z21z4 − z25 = 0.

As in Example 2.2, M4 is not conjugation-invariant, but its conjugate is con-
tained in the same “complex envelope” H4.

H4 is singular along the coordinate plane H3
s = {z1 = z5 = 0}, which meets

M4 in the totally real surface T 2 = {z1 = y2 = y3 = 0, z4 = (x2+ix3)
2, z5 = 0}.

If the defining equations are rewritten in terms of only z and z̄, and then
z̄ are replaced by independent holomorphic variables w, the six real defining
polynomials become six complex polynomials in z, w, defining the “complexifi-
cation” M4

C
, a smooth complex 4-manifold in C

10:

z2 − w2 = z3 − w3 = 0

z4 = (w1 + z2 + iz3)
2

w4 = (z1 + z2 − iz3)
2

z5 = z1(w1 + z2 + iz3)

w5 = w1(z1 + z2 − iz3).

These implicit equations could also be considered as a holomorphic parametric
map C4 → C10 with image M4

C
, with global parameters z1, w1, z2, z3.

The map ρ : (z, w) �→ (w̄, z̄) is a real structure on C10 (a complex-antilinear
involution). Its fixed point set is the totally real 10-plane {w = z̄}, and it
restricts to an antiholomorphic involution on M4

C
. The intersection M4

C
∩ {w =

z̄} is the “real part” M4
R
of the complex manifold M4

C
. M4

R
is a totally real

submanifold of C10, and a graph over M4. It could be considered a “totally real
resolution” of the CR-singular submanifold M4.

The image under π, the projection C10 → C5 onto the original z variables,
of M4

C
in C5 is the singular variety H4; such projections are considered in [W84].

An algebraic interpretation of the projection geometry is an “elimination” of
the w variables, as in classical elimination theory; see [CLO]. The projection
M4

C
→ H4 is one-to-one over most points— for a fixed z ∈ H4, solving the

complexified equations for w1 gives the solution w1 = z5
z1

−z2− iz3 when z1 �= 0.

Since z21z4 = z25 , the z4 equation is satisfied and w2, . . . , w5 are determined
uniquely. Points with z1 = 0 project to the singular locus H3

s, and there may
be two inverse images, with w1 = ±√

z4− z2− iz3 unique only if z4 = 0. Let D3

denote the two-to-one locus M4
C
∩{z1 = 0} = π−1H3

s. D3 is a complex manifold
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and admits a holomorphic involution τ which exchanges the two inverse images
of the projection:

τ : w1 �→ −(w1 + 2z2 + 2iz3),

w5 �→ −(w5 + 2z22 + 2z23)

Considering M4
C
as parametrized by z1, w1, z2, z3 and composing these func-

tions with the projection π, gives a map C4 → C5. This map has rank 4 except
along the subspace z1 = 0, w1+ z2+ iz3 = 0, where it has rank 3. The image of
this subspace in M4

C
is the fixed-point set of τ , and its (one-to-one) projection by

π is the complex plane H4
p = {z1 = z4 = z5 = 0} inside H3

s. If H4 is considered
as the “Whitney umbrella” variety × C

2, then H3
s is its double line × C

2, and
H4

p is the pinch point × C2.
Points (0, x2, x3, (x2 + ix3)

2, 0) in T 2 = M4 ∩ H3
s have inverse image given

by (z1, w1, . . . , z5, w5) =

(0, 0, x2, x2, x3, x3, (x2 + ix3)
2, (x2 − ix3)

2, 0, 0), or,

(0,−2(x2+ ix3), x2, x2, x3, x3, (x2+ ix3)
2, (x2− ix3)

2, 0,−2(x2+ ix3)(x2− ix3)).

Both these surfaces are totally real; the first is contained in the w = z̄ plane,
but the second intersects this plane only at the origin of C10.

The variety H4 is “ruled” in the sense that its intersection with each hy-
perplane z4 = k ∈ C is a pair of intersecting complex 3-planes {z4 = k, z5 =
±√

kz1}. When k = 0, these two 3-planes coincide, and are equal to T0 + iT0,
the smallest complex subspace containing the real tangent plane T0. The inverse
image under π of these two planes is a pair of varieties, disjoint for k �= 0:

w1 = ±
√
k − z2 − iz3

z2 − w2 = z3 − w3 = 0

z4 = k

w4 = (z1 + z2 − iz3)
2

z5 = ±
√
kz1

w5 = (±
√
k − z2 − iz3)(z1 + z2 − iz3).

The real variety M4 is similarly ruled by totally real 2-planes parametrized by
constant z4-value k ∈ C: the two planes {z̄1+x2+ix3 = ±√

k, y2 = y3 = 0, z4 =
k, z5 = ±√

kz1} are parallel and disjoint if k �= 0.
The reflection ρ, restricted to M4

C
, induces an antiholomorphic correspon-

dence (cf [W94], [W96]) Q = πρπ−1 on H4. For z = (z1, . . . , z5) ∈ H \ Hs,

Q(z) = (
z5
z1

− z2 − iz3, z̄2, z̄3, (z1 + z2 − iz3)
2
, (
z5
z1

− z2 − iz3)(z1 + z2 − iz3)).

For z ∈ Hs, Q is double-valued outside Hp:

Q(0, z2, z3, z4, 0) = (±√
z4 − z2 − iz3, z̄2, z̄3, (z2 − iz3)

2
, (±√

z4 − z2 − iz3)(z2 − iz3)).
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For z ∈ Hp ⊆ Hs (z4 = 0), the two reflections coincide. The real manifold M4

is contained in Q(M4), with points outside T 2 = M4∩Hs fixed. Also the origin
is a fixed point. The image of z = (0, x2, x3, (x2 + ix3)

2, 0) ∈ T 2 is the pair
z (fixed) and (−2(x2 − ix3), x2, x3, (x2 + ix3)

2,−2(x2
2 + x2

3)). So Q(T 2) is the
union of T 2 with another surface T̃ 2 which is also totally real, meets H3

s (and
M4) only at the origin, and whose (single-valued) image under Q is T 2.

The set D is not ρ-invariant, and in fact ρD is the two-to-one locus of the
projection π2 onto the w-space C5. The intersection D ∩ ρD is the complex
surface {z1 = w1 = z2−w2 = z3−w3 = 0, z4 = (z2+iz3)

2, w4 = (z2−iz3)
2, z5 =

w5 = 0}, and equal to the complexification T 2
C
of T 2. Its projection by π is the

complex surface {z1 = 0, z4 = (z2 + iz3)
2, z5 = 0} ⊆ H3

s. D ∩ ρD is not τ -
invariant; the image τ(D ∩ ρD) = D ∩ τρD is the complex surface

z1 = z5 = 0

w1 = −2(z2 + iz3)

z2 − w2 = z3 − w3 = 0

z4 = (z2 + iz3)
2

w4 = (z2 − iz3)
2

w5 = −2(z22 + z23).

The reflection of this surface, ρτ(D ∩ ρD) = ρD ∩ ρτρD, is the complexification
of T̃ 2, and projects by π to the surface {z1 = −2(z2− iz3), z4 = (z2+ iz3)

2, z5 =
−2(z22 + z23)}.

4 A Standard Basis Calculation

The first normal form for M4 is a graph over the plane T0, and a smooth affine
subvariety of R10:

y2 = 0

y3 = 0

z4 = x2(z̄1 + z1) + ix3(z̄1 − z1) + z21 + z̄21

z5 = z1z̄1,

or, in terms of the real coordinates, y2 = y3 = y4 = y5 = 0 and

x4 = 2(x2
1 − y21 + x1x2 + x3y1)

x5 = x2
1 + y21 .

This intersection of two quadric hypersurfaces and four real hyperplanes defines
a codimension six submanifold of C5, with a complex tangent at the origin by
construction. N1 is not only isolated, as expected, but a singleton. If r1, . . . , r10
are the coordinates for the tangent bundle of C5 in the x1, y1, . . . , x5, y5 direc-
tions, the six defining equations for the 4-plane tangent to M4 at the point
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(x1, . . . , y5) are r4 = r6 = r8 = r10 = 0 and

0 = −4x1r1 − 2x2r1 + 4y1r2 − 2x3r2 − 2x1r3 − 2y1r5 + r7

0 = −2x1r1 − 2y1r2 + r9,

and for the rotation of the tangent bundle by i are r3 = r5 = r7 = r9 = 0 and

0 = 4y1r1 − 2x3r1 + 4x1r2 + 2x2r2 + 2x1r4 + 2y1r6 − r8

0 = −2y1r1 + 2x1r2 − r10.

Weighting x4 and x5 to make the graphing functions homogeneous, and com-
puting a Gröbner basis (see [CLO]) of the ideal f given by eighteen functions
defining the manifold and its complex tangents, gives twenty-five basis elements,
of which twelve are (y2, y3, y4, y5, r3, . . . , r10) and the remaining are

f13 = x5r2

f14 = x5r1

f15 = x4r1 + y1x2r2 − x1x3r2

f16 = x3r1 − 4x1r2 − x2r2

f17 = x2r1 − 4y1r2 + x3r2

f18 = x2
2r2 − 8y1x3r2 + x2

3r2 + 4x4r2

f19 = y1r1 − x1r2

f20 = y1x2x3r2 − x1x
2
3r2 + 4x1x4r2 + x2x4r2

f21 = y21 − 1/2x1x2 − 1/2y1x3 + 1/4x4 − 1/2x5

f22 = x1r1 + y1r2

f23 = x1x2r2 + y1x3r2 − x4r2

f24 = x1y1r2 + 1/4y1x2r2 − 1/4x1x3r2

f25 = x2
1 + 1/2x1x2 + 1/2y1x3 − 1/4x4 − 1/2x5.

The polynomials x5r2, x5r1 indicate a zero-dimensional intersection of the tan-
gent space with its rotation by i unless x5 = 0, which, since x5 = x2

1 + y2,
happens only when x1 and y1 are both zero. Concatenating the ideal f with the
ideal (x1, y1) gives a new ideal with basis (x1, y1, (x

2
2+x2

3)r2, x2r1+x3r2, x3r1−
x2r2, y2, y3, x4, y4, x5, y5, r3, . . . r10). Now, by inspection, the only complex tan-
gent is at the origin.
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