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Abstract. A basis-free formula for the generalized trace of a linear map be-
tween tensor products of vector spaces is proposed which does not refer to
scalar multiplication or scalar valued functions. The main application is to
real vector spaces with complex structure operators.

1. Introduction

Defining the trace of a square matrix as the sum of its diagonal entries is simple
and useful, and generalizes to the contraction operation on multi-indexed tensors
as a sum over repeated indices. It is then well-known that the trace is an invariant
quantity under change of basis. So, for a finite dimensional vector space V , the trace
TrV (A) of a linear map A : V → V is independent of any matrix representation
for A. There are other ways to compute, or define, TrV (A) that do not require
any initial choice of basis; we will recall one such formula in Proposition 2.11,
after developing some notation for a more abstract approach to linear algebra as
in [Bourbaki]. An abstract analogue of tensor contraction is the generalized trace,
which takes as input a linear map between tensor products, A : V ⊗ U → V ⊗W ,
and returns as output a linear map U → W ; Proposition 2.12 shows how a basis-free
definition coincides with the repeated index summation.

The abstract, basis-free approach to the trace and generalized trace is well-known
in category theory, because it can be adapted to define a trace of a morphism,
in categories that have enough structure in common with the category of finite
dimensional vector spaces. For example, a generalized trace can be defined in
some monoidal categories ([A], [EGNO], [JSV]), where for two objects U and V
there is another object U ⊗ V , subject to certain properties including a notion of
associativity and the existence of a unit object K so that V ⊗ K is isomorphic to
V .

This article, in Section 3, will propose new abstract formulas for the generalized
trace in the category of vector spaces (Theorem 3.7, Proposition 3.8). The novelty
is that the formulas do not rely on the existence of, or a choice of, any unit object
for tensor products. So in addition to being basis-free, the formulation will be
scalar-free, and adaptable to some other categories without a unit object for ⊗
(a “semigroup category” as in Remark 2.2.9 of [EGNO], or [LYH]), although we
are going to focus on linear algebra rather than going into any depth in category
theory, tensor analysis, or other applications. We will consider vector spaces over
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a fixed field; the main results of Section 3 show that the claimed formulas for the
generalized trace coincide with the usual coordinate-based notion.

Section 4 presents the main motivating example of the general framework set up
in Section 3, a category where the objects are real vector spaces with complex struc-
ture operators (real linear maps J with J ◦ J = −Id), and the morphisms are real
linear maps that are compatible with the complex structures. Applying the ideas of
Sections 2 and 3 to this category was originally motivated by differential-geometric
calculations in vector bundles (as in [S], [VZ]), where J can vary continuously from
point to point, and wanting to find a way to define a complex trace in almost
complex geometry that relies only on J and the real linear structure at each point.

A previously known matrix formula that will be generalized in Section 5 is:

(1.1) TrV(A) =
1

2

(
TrV (A)−

√−1TrV (A ◦ J)) ,
from ([S], [VZ] Chapter 5). The LHS is a complex number valued trace of a complex
linear (A◦J = J◦A) map V → V with a size N×N complex matrix representation,
while the real valued RHS traces are applied to the same transformation considered
as a real linear map A, with 2N × 2N real matrix representations for A and A ◦ J .
Equation (1.1) is the last time any complex number appears in this article; in
Sections 2 and 3, the scalars are from an arbitrary field K, and in Sections 4 and
5, the scalar field is R and all maps are R-linear.

As a remark to conclude the Introduction, the methods used here are elementary
but maybe becoming old-fashioned; commutative diagrams, sums over repeated
indices, and in particular calculations involving a trace, can be more graphically
presented by various types of “string diagrams” as in [B], [CK], [JSV], [LYH], [PS1],
[PS2], [RL], [ST].

2. Notation

In this Section we recall some already known formulas for the trace, after devel-
oping enough notation to state them, and check that they coincide with the classical
summations after choosing a basis. Fix a field K, and consider vector spaces with
scalarsK. The same symbol K denotes itself considered as a one-dimensional vector
space.

Notation 2.1. For vector spaces U and V over K, the vector space of all K-
linear maps from U to V is denoted Hom(U, V ), and the term map will always
refer to a K-linear map. As a special case, we abbreviate Hom(V,K), the dual
space of V , by V ∗. For maps A : U ′ → U and B : V → V ′, the map denoted
Hom(A,B) : Hom(U, V ) → Hom(U ′, V ′) acts on F : U → V so that Hom(A,B) :
F �→ B ◦ F ◦A : U ′ → V ′.

Notation 2.2. The space U⊗V is the tensor product over K, spanned by elements
of the form �u⊗�v for �u ∈ U and �v ∈ V . The products U⊗(V ⊗W ) and (U⊗V )⊗W
will be identified with each other and with the triple U ⊗ V ⊗ W , so that these
elements are equal:

(�u⊗ �v)⊗ �w = �u⊗ (�v ⊗ �w) = �u⊗ �v ⊗ �w.

Notation 2.3. The invertible maps V ⊗ K → V and K ⊗ V → V corresponding
to scalar multiplication are denoted �. The space K, taken together with these
isomorphisms, is a (two-sided) unit for the tensor product operation.
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Notation 2.4. For any product V ⊗ U , the switching map s : V ⊗ U → U ⊗ V is
linear and defined on elements of the form �v ⊗ �u by the formula s : �v ⊗ �u �→ �u⊗ �v.

Notation 2.5. For maps A : U1 → U2, B : V1 → V2, denote (with square brackets)
the map

[A⊗B] : U1 ⊗ V1 → U2 ⊗ V2

defined by acting on elements of the form �u⊗�v by [A⊗B] : �u⊗�v �→ (A(�u))⊗(B(�v)).

Notation 2.6. For any vector space V , there is a canonical identity map IdV ∈
Hom(V, V ), so that IdV (�v) = �v.

Notation 2.7. For any vector space V , the operation of applying a linear map
φ ∈ V ∗ to a vector �v ∈ V to get the scalar φ(�v) ∈ K is bilinear in the pair (φ,�v).
This bilinear pairing defines a canonical evaluation map EvV : V ∗⊗V → K, acting
on elements of the form φ⊗ �v by EvV : φ⊗ �v �→ φ(�v).

Definition 2.8. A vector space V is dualizable means: there exists (D, ε, η), where
D is a vector space, and ε : D ⊗ V → K and η : K → V ⊗D are linear maps such
that the following diagrams are commutative.

K⊗ V

�

��

[η⊗IdV ] �� V ⊗D ⊗ V

[IdV ⊗ε]

��
V V ⊗K

���

D ⊗ K

�

��

[IdD⊗η] �� D ⊗ V ⊗D

[ε⊗IdD]

��
D K⊗D

���

Remark 2.9. In category theory and other areas using versions of this construction
([PS1], [ST]), ε is called an evaluation map and η a coevaluation map. A more
general notion, with left and right duals, is considered by [M].

Proposition 2.10. If V is finite dimensional then V is dualizable.

Proof. An example of a triple of duality data is D = V ∗, ε = EvV , and η chosen
in the following way. Let (�v1, . . . , �vN ) be a basis of V , and let (φ1, . . . , φN ) be the
dual basis so that φi(�vj) = δij . Then consider the following specific candidate for
a coevaluation, ηV , defined for α ∈ K by

(2.1) ηV : α �→ α · (�v1 ⊗ φ1 + · · ·+ �vN ⊗ φN ).

Checking that if η = ηV , then the identities from Definition 2.8 are satisfied is then

straightforward, using methods similar to the sums in the next Proof.

Proposition 2.11. If V is finite dimensional, then for any map A : V → V , and
any duality data (D, ε, η), the image of 1 ∈ K under the following composite map:

(2.2) K
η �� V ⊗D

s �� D ⊗ V
[IdD⊗A] �� D ⊗ V

ε �� K

is an element of K that depends only on A and not on the choice of (D, ε, η).

Proof. There exists some (D, ε, η) by Proposition 2.10, but the triple need not be
unique. Let (�v1, . . . , �vN ) be a basis of V , and let {ϕj : j ∈ J} be a basis for D,
with index set J, so that the set {�vi ⊗ ϕj : i = 1, . . . , N, j ∈ J} is a basis of V ⊗D.
There are finitely many coefficients ηij so that for α ∈ K,

η : α �→ α ·
N∑
i=1

M∑
j=1

ηij�vi ⊗ ϕj .
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For any i = 1, . . . , N , j ∈ J, there is some scalar εji so that ε : ϕj ⊗ �vi �→ εji. The
hypothesis that ε and η are an evaluation and coevaluation implies that for any
α ∈ K and basis element �vi′ ,

�(α⊗ �vi′ ) = (� ◦ [IdV ⊗ ε] ◦ [η ⊗ IdV ])(α⊗ �vi′ )

α�vi′ = �

⎛
⎝[IdV ⊗ ε]

⎛
⎝
⎛
⎝α

N∑
i=1

M∑
j=1

ηij�vi ⊗ ϕj

⎞
⎠⊗ �vi′

⎞
⎠
⎞
⎠

= �

⎛
⎝α

N∑
i=1

M∑
j=1

ηij�vi ⊗ εji′

⎞
⎠ = α

N∑
i=1

M∑
j=1

ηijεji′�vi,

so

(2.3)

M∑
j=1

ηijεji′ = δii′ .

This uses only the first diagram from Definition 2.8. Equation (2.3) can be inter-
preted as a one-sided matrix inverse property.

With respect to the chosen basis for V , there are coefficients Ai′i so that

A(�vi) =

N∑
i′=1

Ai′i�vi′ ,

and the image of 1 under the map (2.2) is:

ε([IdD ⊗A](s(η(1)))) = ε

⎛
⎝[IdD ⊗A]

⎛
⎝ N∑

i=1

M∑
j=1

ηijϕj ⊗ �vi

⎞
⎠
⎞
⎠

= ε

⎛
⎝ N∑

i=1

M∑
j=1

ηijϕj ⊗
(

n∑
i′=1

Ai′i�vi′

)⎞⎠

=
N∑
i=1

M∑
j=1

N∑
i′=1

ηijAi′iεji′ =
N∑
i=1

N∑
i′=1

δii′Ai′i =
N∑
i=1

Aii,

which is the trace of A : V → V , denoted TrV (A), and, as mentioned previously,

does not depend on the choice of basis for V .

The above formula (2.2) for the trace, and the following formula (2.4) for the
generalized trace, are well-known, although different authors ([JSV], [PS2]) may
use different orderings for the products of spaces or composites of maps.
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Proposition 2.12. If V is finite dimensional, then for any vector spaces U and
W , and any map A : V ⊗ U → V ⊗W , and any duality data (D, ε, η) for V , the
following composite map from U to W :

(2.4)

V ⊗D ⊗ U
[s⊗IdU ] �� D ⊗ V ⊗ U

[IdD⊗A] �� D ⊗ V ⊗W

[ε⊗IdW ]

��
K⊗ U

[η⊗IdU ]

��

K⊗W

�

��
U

�−1

��

W

is an element of Hom(U,W ) that depends only on A and not on the choice of
(D, ε, η).

Proof. Using the same notation and basis as in the previous Proof for V and D,
let {�ul : l ∈ L} be a basis for U and let {�wk : k ∈ K} be a basis for W . For each
basis element �vi ⊗ �ul of V ⊗U , there are coefficients Ai′kil (finitely many non-zero
for each l) so that

(2.5) A(�vi ⊗ �ul) =
∑
k∈K

N∑
i′=1

Ai′kil�vi′ ⊗ �wk.

The above composite map (2.4) then maps basis element �ul to:

� ◦ [ε⊗ IdW ] ◦ [IdD ⊗A] ◦ [s⊗ IdU ] ◦ [η ⊗ IdU ] ◦ �−1 :

�ul �→ �([ε⊗ IdW ]([IdD ⊗A]([(s ◦ η)⊗ IdU ](1⊗ �ul))))

= �

⎛
⎝[ε⊗ IdW ]

⎛
⎝[IdD ⊗A]

⎛
⎝
⎛
⎝ N∑

i=1

M∑
j=1

ηijϕj ⊗ �vi

⎞
⎠⊗ �ul

⎞
⎠
⎞
⎠
⎞
⎠

= �

⎛
⎝[ε⊗ IdW ]

⎛
⎝ N∑

i=1

M∑
j=1

ηijϕj ⊗
(∑

k∈K

N∑
i′=1

Ai′kil�vi′ ⊗ �wk

)⎞
⎠
⎞
⎠

= �

⎛
⎝ N∑

i=1

M∑
j=1

∑
k∈K

N∑
i′=1

ηijAi′kil (εji′ ⊗ �wk)

⎞
⎠

=

N∑
i=1

M∑
j=1

∑
k∈K

N∑
i′=1

ηijAi′kilεji′ �wk =

N∑
i=1

∑
k∈K

N∑
i′=1

δii′Ai′kil �wk

=
∑
k∈K

N∑
i=1

Aikil �wk.(2.6)

The last sum (2.6) is an element of W depending on A and the input �ul from U but
not on (D, ε, η). The map (2.4) is denoted TrV ;U,W (A) : U → W , the generalized

trace of A.

Neither of the above formulas (2.4) nor (2.6) for the generalized trace requires
U or W to have finite dimension. This generalized trace TrV ;U,W is, in some
applications, also called a partial trace ([CK], [FKV]) or twisted trace ([PS2]). As
mentioned in the Introduction, both the abstract formulation of the trace TrV ;U,W
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from the statement of Proposition 2.12, and multi-indexed summations such as
those in its Proof, appear in calculations in local differential geometry and other
applications of tensor analysis.

Example 2.13. The scalar valued trace of a map A : V → V is related to a
generalized trace by the following formula, using � : V ⊗K → V :

(2.7) TrV ;K,K(�
−1 ◦A ◦ �) = TrV (A) · IdK : 1 �→ TrV (A).

It is easy to check, without choosing any basis, that the map (2.2) from Proposition
2.11 is the same as the special case U = W = K of the map (2.4) from Proposition
2.12 applied to �−1 ◦A ◦ �.

3. A new formula for the generalized trace

Our main goal is to state an expression equal to the generalized trace, (2.6), in a
basis-free way analogous to the expression (2.4), but which uses an abstract notion
of dualizability that does not refer to the space of scalars K.

One approach might be to just replace each column of vertical arrows in the
diagram (2.4) by the corresponding composite to get abstract maps U → V ⊗D⊗U
and D⊗ V ⊗W → W ; this bypasses the steps where K appears, but the notion of
dualizability in Definition 2.8 would then need to be adjusted to take into account
U and W , in addition to V and D. In fact, this is the general idea, but the
construction in Theorem 3.7 will be organized differently, motivated in part by the
existence and convenience of the following canonical map.

Notation 3.1. For any vector spaces V and W , there is a distinguished map

EvV W : Hom(V,W )⊗ V → W,

defined on elements of the form A⊗ �v by evaluation:

EvV W : A⊗ �v �→ A(�v).

This generalizes the construction from Notation 2.7: in the W = K case, EvV K is
the distinguished element EvV ∈ (V ∗⊗V )∗. We want to generalize further, from the
canonical map EvV W to a more abstract evaluation map ε : Hom(X,W )⊗V → W ,
where Hom(X,−) plays the role of D ⊗ − appearing in Definition 2.8 and Propo-
sition 2.12. The canonical evaluation maps have some elementary properties as in
the following Lemmas, one of which (Lemma 3.6) we will also want to generalize
to the abstract evaluation maps.

Lemma 3.2. For any vector spaces U , V , W , and any map B : U → W , the
following diagram is commutative.

U
B �� W

Hom(V, U)⊗ V

EvV U

��

[Hom(IdV ,B)⊗IdV ]
�� Hom(V,W )⊗ V

EvV W

��

Proof. Both paths take A⊗ �v ∈ Hom(V, U)⊗ V to B(A(�v)).

One more bit of notation will be needed for Theorem 3.7.
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Notation 3.3. For any vector spaces U , V , X , there is a canonical map

(3.1) nU : V ⊗Hom(X,U) → Hom(X,V ⊗ U)

defined on elements of the form �v ⊗A ∈ V ⊗Hom(X,U) and �x ∈ X by:

nU (�v ⊗A) : �x �→ �v ⊗ (A(�x)).

Analogously (and equally canonically except the ordering of spaces is different),
define for any W ,

(3.2) nW : Hom(X,W )⊗ V → Hom(X,V ⊗W )

so that

nW (B ⊗ �v) : �x �→ �v ⊗ (B(�x)).

Lemma 3.4. If X or V is finite dimensional, then nU and nW are invertible.

Proof. We refer to [AF] §20, or [Bourbaki] §II.7.7.
Lemma 3.5. For any U , V , W , the following diagram is commutative.

U ⊗Hom(V,W )⊗ V

[n1⊗IdV ]

��

[IdU⊗EvV W ] �� U ⊗W

Hom(V, U ⊗W )⊗ V

EvV,U⊗W

������������������������

Proof. The n1 map is a version of (3.1) from Notation 3.3. Both paths in the
diagram take an element of the form �u⊗A⊗�v ∈ U⊗Hom(V,W )⊗V to �u⊗(A(�v)) ∈
U ⊗W .

Lemma 3.6. For any vector spaces V , U , W , and any map F : V ⊗U → V ⊗W ,
if V is finite dimensional then the n maps in the following diagram are invertible:

V ⊗ U
F �� V ⊗W

V ⊗Hom(V, U)⊗ V

[n2⊗IdV ]

��

[IdV ⊗EvV U ]

��

V ⊗Hom(V,W )⊗ V

[n3⊗IdV ]

��

[IdV ⊗EvV W ]

��

Hom(V, V ⊗ U)⊗ V
[Hom(IdV ,F )⊗IdV ]

�� Hom(V, V ⊗W )⊗ V

and the diagram is commutative, in the sense that

F ◦ [IdV ⊗ EvV U ] ◦ [n2 ⊗ IdV ]
−1

= [IdV ⊗ EvV W ] ◦ [n3 ⊗ IdV ]
−1 ◦ [Hom(IdV , F )⊗ IdV ].

Proof. The n2, n3 maps are versions of (3.1) from Notation 3.3; they are invertible
by Lemma 3.4, and of course the inverse of [n2⊗IdV ] is [(n2)

−1⊗IdV ]. By Lemma
3.5, the upward composite on the left, [IdV ⊗ EvV U ] ◦ [n2 ⊗ IdV ]

−1, is equal to
EvV,V⊗U , and similarly the upward composite on the right is equal to EvV,V⊗W .

The claim then follows from Lemma 3.2.
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The following Theorem is the main result of this Section. It gives a formula for
the generalized trace, in terms of abstractly defined evaluation and coevaluation
maps. There is no reference to the scalar field K, but the trade-off is that instead
of one evaluation map ε for a given space V as in Definition 2.8, there are different
evaluation maps εU and εW corresponding to pairs (V, U) and (V,W ), and that
satisfy a certain compatibility condition (3.4) analogous to the property of EvV U

and EvV W from Lemma 3.6. There is also a twisted coevaluation map ηU which is
a generalization of the η from Definition 2.8.

Theorem 3.7. Given vector spaces U , V , W , suppose there exist a vector space
X and maps

ηU : U → V ⊗Hom(X,U)

εU : Hom(X,U)⊗ V → U

εW : Hom(X,W )⊗ V → W

such that the following diagram is commutative:

(3.3)

U ⊗ V
[ηU⊗IdV ] ��

s
�����

����
����

����
���

V ⊗Hom(X,U)⊗ V

[IdV ⊗εU ]

��
V ⊗ U

meaning that the composite is equal to a switching map:

[IdV ⊗ εU ] ◦ [ηU ⊗ IdV ] = s : U ⊗ V → V ⊗ U.

Suppose further that V and X are both finite dimensional, so that the n maps in
the following diagram are invertible, and that the diagram is commutative for any
F : V ⊗ U → V ⊗W ,

(3.4)

V ⊗ U
F �� V ⊗W

V ⊗Hom(X,U)⊗ V

[nU⊗IdV ]

��

[IdV ⊗εU ]

��

V ⊗Hom(X,W )⊗ V

[n4⊗IdV ]

��

[IdV ⊗εW ]

��

Hom(X,V ⊗ U)⊗ V
[Hom(IdX ,F )⊗IdV ]

�� Hom(X,V ⊗W )⊗ V

in the sense that

F ◦ [IdV ⊗ εU ] ◦ [nU ⊗ IdV ]
−1

= [IdV ⊗ εW ] ◦ [n4 ⊗ IdV ]
−1 ◦ [Hom(IdX , F )⊗ IdV ].

Then the canonical map

nW : Hom(X,W )⊗ V → Hom(X,V ⊗W )
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is also invertible, and for any A : V ⊗U → V ⊗W , the composite map clockwise from
U to W in the following diagram depends only on A and not on (X, ηU , εU , εW ).

(3.5)

Hom(X,V ⊗ U)
Hom(IdX ,A) �� Hom(X,V ⊗W )

n−1
W

��
V ⊗Hom(X,U)

nU

��

Hom(X,W )⊗ V

εW

��
U

ηU

��

TrV ;U,W (A)
�� W

The diagram is commutative, so the composite map is equal to the generalized trace:

(3.6) TrV ;U,W (A) = εW ◦ n−1
W ◦Hom(IdX , A) ◦ nU ◦ ηU : U → W.

Proof. We start with some remarks before the calculation proving the claims. The
diagram (3.3) with the abstract evaluation εU and abstract coevaluation ηU is
analogous to the first diagram from Definition 2.8, and like the Proof of Proposition
2.11, this Theorem does not need an analogue of the second diagram from Definition
2.8. The diagram (3.4) is a generalization of the property of the canonical evaluation
maps from Lemma 3.6, so that the two abstract evaluations are suitably compatible.
All the n maps are invertible by Lemma 3.4.

The following steps use the same notation for the basis sets of V , U , and W
as in Proposition 2.11 and Proposition 2.12, which assumed only that V has finite
dimension. Now assume X has finite dimension, with basis {�xq, q = 1, . . . , Q}; the
finite dimension also allows the existence of a basis set for Hom(X,U) of the form
{Φql : q = 1, . . . , Q, l ∈ L} where each basis element is defined by

(3.7) Φql : �xq′ �→ δq′q�ul.

Then, for each basis element �ul′ of U , there are coefficients ηUiqll′ (finitely many

non-zero for each l′) so that

ηU : �ul′ �→
N∑
i=1

Q∑
q=1

∑
l∈L

ηUiqll′�vi ⊗ Φql.

For each basis element Φql⊗�vi ∈ Hom(X,U)⊗V , there are coefficients εUl′qli (finitely

many non-zero for each l) so that

εU : Φql ⊗ �vi �→
∑
l′∈L

εUl′qli�ul′ .

The hypothesis (3.3) then gives this equality for any basis element �ul′ ⊗�vi′ of U⊗V :

s(�ul′ ⊗ �vi′) = ([IdV ⊗ εU ] ◦ [ηU ⊗ IdV ])(�ul′ ⊗ �vi′)

�vi′ ⊗ �ul′ = [IdV ⊗ εU ]

((
N∑
i=1

Q∑
q=1

∑
l∈L

ηUiqll′�vi ⊗ Φql

)
⊗ �vi′

)

=

N∑
i=1

Q∑
q=1

∑
l∈L

ηUiqll′�vi ⊗
(∑

l′′∈L

εUl′′qli′�ul′′

)
,
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so for any i′ = 1, . . . , N , l′ ∈ L, this sum has finitely many non-zero terms:

(3.8)

Q∑
q=1

∑
l∈L

ηUiqll′ ε
U
l′′qli′ = δii′δl′l′′ .

This is analogous to Equation (2.3).
Similarly for hypothesis (3.4), let Hom(X,W ) have basis set

{Ψqk : q = 1, . . . , Q, k ∈ K},
with Ψqk : �xq′ �→ δqq′ �wk. Then for each basis element Ψqk ⊗ �vi ∈ Hom(X,W )⊗ V ,
there are coefficients εWk′qki (finitely many non-zero for each k) so that

εW : Ψqk ⊗ �vi �→
∑
k′∈K

εWk′qki �wk′ .

For F : V ⊗U → V ⊗W , and each basis element �vi⊗�ul, there are coefficients Fi′kil
(finitely many non-zero for each l) so that

F : �vi ⊗ �ul �→
N∑

i′=1

∑
k∈K

Fi′kil�vi′ ⊗ �wk.

A basis for Hom(X,V ⊗ U) can be chosen in the same way as (3.7), with maps
�xq′ �→ δqq′�vi ⊗ �ul, but this map is exactly the same as nU (�vi ⊗ Φql). Similarly, the
maps n4(�vi ⊗Ψqk) : �xq′ �→ δqq′�vi ⊗ �wk form a basis for Hom(X,V ⊗W ).

To calculate the composites in the diagram (3.4), start with:

(Hom(IdX , F ) ◦ nU )(�vi ⊗ Φql) :

�xq′ �→ (F ◦ (nU (�vi ⊗ Φql)))(�xq′ ) = F (�vi ⊗ (Φql(�xq′ ))) = F (�vi ⊗ (δqq′�ul))

= δqq′
N∑

i′′=1

∑
k∈K

Fi′′kil�vi′′ ⊗ �wk

=

N∑
i′′=1

∑
k∈K

Fi′′kil(n4(�vi′′ ⊗Ψqk))(�xq′ ).

It follows that

(3.9) n−1
4 ◦Hom(IdX , F ) ◦ nU : �vi ⊗ Φql �→

N∑
i′′=1

∑
k∈K

Fi′′kil�vi′′ ⊗Ψqk,

and

[IdV ⊗ εW ] ◦ [(n−1
4 ◦Hom(IdX , F ) ◦ nU )⊗ IdV ] :

�vi ⊗ Φql ⊗ �vi′ �→ [IdV ⊗ εW ]

((
N∑

i′′=1

∑
k∈K

Fi′′kil�vi′′ ⊗Ψqk

)
⊗ �vi′

)

=

N∑
i′′=1

∑
k∈K

∑
k′∈K

Fi′′kilε
W
k′qki′�vi′′ ⊗ �wk′ .(3.10)
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The hypothesis (3.4) is that for any F , the expressions (3.10) and (3.11) are equal:

F ◦ [IdV ⊗ εU ] : �vi ⊗ Φql ⊗ �vi′ �→ F

(
�vi ⊗

∑
l′∈L

εUl′qli′�ul′

)

=
∑
l′∈L

N∑
i′′=1

∑
k′∈K

εUl′qli′Fi′′k′il′�vi′′ ⊗ �wk′ ,(3.11)

so for any i, q, l, i′, i′′, k′, these finite sums are equal:

(3.12)
∑
k∈K

Fi′′kilε
W
k′qki′ =

∑
l′∈L

εUl′qli′Fi′′k′il′ .

For the RHS composite from (3.6) in the conclusion of the Theorem, a calculation
analogous to (3.9) gives, for any A as in (2.5):

(3.13) n−1
W ◦Hom(IdX , A) ◦ nU : �vi ⊗ Φql �→

N∑
i′=1

∑
k∈K

Ai′kilΨqk ⊗ �vi′ .

The next steps use (3.8), (3.12), and (3.13).

εW ◦ n−1
W ◦Hom(IdX , A) ◦ nU ◦ ηU :

�ul �→ εW

(
(n−1

W ◦Hom(IdX , A) ◦ nU )

(
N∑
i=1

Q∑
q=1

∑
l′∈L

ηUiql′l�vi ⊗ Φql′

))

= εW

(
N∑
i=1

Q∑
q=1

∑
l′∈L

ηUiql′l

N∑
i′=1

∑
k∈K

Ai′kil′Ψqk ⊗ �vi′

)

=

N∑
i=1

Q∑
q=1

∑
l′∈L

N∑
i′=1

∑
k∈K

∑
k′∈K

ηUiql′lAi′kil′ε
W
k′qki′ �wk′

=
N∑
i=1

Q∑
q=1

∑
l′∈L

N∑
i′=1

∑
k′∈K

∑
l′′∈L

ηUiql′lε
U
l′′ql′i′Ai′k′il′′ �wk′(3.14)

=

N∑
i=1

N∑
i′=1

∑
k′∈K

∑
l′′∈L

δii′δll′′Ai′k′il′′ �wk′

=
N∑
i=1

∑
k′∈K

Aik′il �wk′ .(3.15)

The last sum (3.15) is the same as (2.6), the generalized trace.

Theorem 3.7 is still true even without the assumption that X has finite dimen-
sion, and can be given a proof without choosing a basis for everything, although this
turns out to be more complicated than the above proof. Also, the property (3.4)
of εU and εW is only used in step (3.14), so to compute the trace of a particular
map A, one could assume the commutativity of (3.4) only for F = A, instead of for
all F . However, our goal is to find a formula (3.6) for the operator TrV ;U,W that
works for any input.
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The following result on the generalized trace has a conclusion analogous to that
of Theorem 3.7 (Equations (3.6) and (3.17) are the same), but replaces its assump-
tion (3.4) about two evaluation maps with a dual statement about two compatible
coevaluation maps. The proof is omitted but would be very similar to the previous
proof.

Proposition 3.8. Given vector spaces U , V , W , suppose there exist a vector space
X and maps

ηU : U → V ⊗Hom(X,U)

ηW : W → V ⊗Hom(X,W )

εW : Hom(X,W )⊗ V → W

such that this composite is a switching map:

[IdV ⊗ εW ] ◦ [ηW ⊗ IdV ] = s : W ⊗ V → V ⊗W,

and the following diagram is commutative for any F : U ⊗ V → U ⊗W .

(3.16)

V ⊗ U
F ��

[IdV ⊗ηU ]

��

V ⊗W

[IdV ⊗ηW ]

��
V ⊗ V ⊗Hom(X,U)

[IdV ⊗s1]

��

V ⊗ V ⊗Hom(X,W )

[IdV ⊗s2]

��
V ⊗Hom(X,U)⊗ V

[nU⊗IdV ]

��

V ⊗Hom(X,W )⊗ V

[n4⊗IdV ]

��
Hom(X,V ⊗ U)⊗ V

[Hom(IdX ,F )⊗IdV ]
�� Hom(X,V ⊗W )⊗ V

If V and X are finite dimensional, then for any A : V ⊗ U → V ⊗W ,

(3.17) TrV ;U,W (A) = εW ◦ n−1
W ◦Hom(IdX , A) ◦ nU ◦ ηU : U → W,

so the RHS composite does not depend on (X, ηU , ηW , εW ).

The following Corollary is another scalar-free formula for the generalized trace
of A : V ⊗ U → V ⊗W , in the special case where A can be factored into the form
[B ⊗ C].

Corollary 3.9. If V , U , W , X, ηU , and εW satisfy the hypothesis of either Theo-
rem 3.7 or Proposition 3.8, and s : V ⊗Hom(X,U) → Hom(X,U)⊗V is a switching
map, then for any B : V → V and C : U → W ,

TrV ;U,W ([B ⊗ C]) = εW ◦ [Hom(IdX , C)⊗B] ◦ s ◦ ηU .

Proof. The following diagram is copied from (3.5) with A = [B⊗C], and the arrows
added in the middle correspond to the maps in the claimed formula, so the lower
block with the switching map is analogous to the diagram (2.4), but without the
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scalars.

Hom(X,V ⊗ U)
Hom(IdX ,[B⊗C]) �� Hom(X,V ⊗W )

V ⊗Hom(X,U)

nU

��

s �� Hom(X,U)⊗ V
[Hom(IdX ,C)⊗B] �� Hom(X,W )⊗ V

εW

��

nW

��

U

ηU

��

TrV ;U,W ([B⊗C])
�� W

The upper block is easily checked to be commutative for any B and C: both paths
from V ⊗Hom(X,U) to Hom(X,V ⊗W ) take an element of the form �v⊗D to a map
�x �→ (B(�v))⊗ (C(D(�x))). The commutativity around the outside of the diagram is
the conclusion from either Theorem 3.7 or Proposition 3.8, so the commutativity
of the lower block follows, and this is the claim of the Corollary.

We remark that the assumption about the finite dimension of V is sufficient for
the invertibility of the canonical map from Notation 2.5:

Hom(V, V )⊗Hom(U,W ) → Hom(V ⊗ U, V ⊗W ) : B ⊗ C �→ [B ⊗ C]

([Bourbaki] §II.7.7.), so any map A : V ⊗ U → V ⊗ W can be written as a finite

sum of maps of the form [B ⊗ C].

Calculations similar to the commutativity of the upper block from the above
diagram will appear again in the next Sections, so we state a general result as the
following Lemma. The canonical maps n and n′ are of the form (3.1), but there are
analogous results for other versions of n maps such as (3.2), or for composites with
switching maps as in Corollary 3.9. (The Lemma can be interpreted as a statement
about the naturality of the n maps, in a technical sense of category theory.)

Lemma 3.10. For any vector spaces X, X ′, V , V ′, U , U ′, and maps F : X ′ → X,
B : V → V ′, C : U → U ′, this diagram is commutative.

V ⊗Hom(X,U)
n ��

[B⊗Hom(F,C)]

��

Hom(X,V ⊗ U)

Hom(F,[B⊗C])

��
V ′ ⊗Hom(X ′, U ′) n′

�� Hom(X ′, V ′ ⊗ U ′)

Proof. For elements in the domain of the form �v ⊗ A with A ∈ Hom(X,U) and
�v ∈ V , and for �x ∈ X ′,

�v ⊗A �→ (Hom(F, [B ⊗ C]) ◦ n)(�v ⊗A) = [B ⊗ C] ◦ (n(�v ⊗A)) ◦ F :

�x �→ [B ⊗ C](�v ⊗ (A(F (�x)))) = (B(�v))⊗ ((C ◦A ◦ F )(�x)),

�v ⊗A �→ (n′ ◦ [B ⊗Hom(F,C)])(�v ⊗A) = n′((B(�v))⊗ (C ◦A ◦ F )) :

�x �→ (B(�v))⊗ ((C ◦A ◦ F )(�x)).
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Example 3.11. Let V be finite dimensional. A specific example of a coevaluation
ηU corresponding to X = V and the canonical evaluation map εU = EvV U :
Hom(V, U) ⊗ V → U is the following map ηV U : U → V ⊗ Hom(V, U), defined on
basis elements of U by:

(3.18) ηV U : �ul �→
N∑
i=1

�vi ⊗ Φil,

where Φil ∈ Hom(V, U) is as in (3.7) with basis elements �xq replaced by �vi. (This is
analogous to the example (2.1) from Proposition 2.10.) Property (3.3) is satisfied
with ηU = ηV U and εU = EvV U :

�ul ⊗ �vi �→ ([IdV ⊗ EvV U ] ◦ [ηV U ⊗ IdV ])(�ul ⊗ �vi)

= [IdV ⊗ EvV U ]

((
N∑

i′=1

�vi′ ⊗ Φi′l

)
⊗ �vi

)
=

N∑
i′=1

�vi′ ⊗ (EvV U (Φi′l ⊗ �vi))

=
N∑

i′=1

�vi′ ⊗ (Φi′l(�vi)) =
N∑

i′=1

�vi′ ⊗ (δi′i�ul) = �vi ⊗ �ul.

The coevaluations ηU = ηV U and ηW = ηV W also satisfy the compatibility condi-
tion (3.16). Using (3.9),

[(n−1
4 ◦Hom(IdX , F ) ◦ nU )⊗ IdV ] ◦ [IdV ⊗ (s1 ◦ ηV U )] :

�vi ⊗ �ul �→ [(n−1
4 ◦Hom(IdX , F ) ◦ nU )⊗ IdV ]

(
�vi ⊗

(
N∑

i′=1

Φi′l ⊗ �vi′

))

=

N∑
i′=1

(
N∑

i′′=1

∑
k∈K

Fi′′kil�vi′′ ⊗Ψi′k

)
⊗ �vi′ ,

[IdV ⊗ (s2 ◦ ηVW )] ◦ F :

�vi ⊗ �ul �→ [IdV ⊗ (s2 ◦ ηVW )]

(
N∑

i′′=1

∑
k∈K

Fi′′kil�vi′′ ⊗ �wk

)

=

N∑
i′′=1

∑
k∈K

Fi′′kil�vi′′ ⊗
(

N∑
i′=1

Ψi′k ⊗ �vi′

)
.

The following Lemma, which will be used in Section 4, states an identity for the
above coevaluation map which does not depend on choices of basis, but which does
need one more canonical n map,

n5 : Hom(V, V )⊗ U → Hom(V, V ⊗ U),

defined as in Notation 3.3 by n5(A⊗ �u) : �v �→ (A(�v))⊗ �u.
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Lemma 3.12. For any �u ∈ U , ηV U (�u) = n−1
U (n5(IdV ⊗ �u)).

Proof. The map nU is as in (3.1) with X = V , so it is the same as n2 from Lemma
3.5. It is enough to check that for basis elements �ul, nU (ηV U (�ul)) = n5(IdV ⊗ �ul).

nU (ηV U (�ul)) : �vi′ �→
(
nU

(
N∑
i=1

�vi ⊗ Φil

))
(�vi′)

=
N∑
i=1

�vi ⊗ (Φil(�vi′ )) =
N∑
i=1

�vi ⊗ (δii′�ul) = �vi′ ⊗ �ul

= (n5(IdV ⊗ �ul))(�vi′ ).

The following Lemma is a coevaluation version of Lemma 3.2.

Lemma 3.13. For V with finite dimension and any map B : U → W ,

ηV W ◦B = [IdV ⊗Hom(IdV , B)] ◦ ηV U : U → V ⊗Hom(V,W ).

Proof. The claim is that the upper block in the following diagram is commutative.
Three of the n maps have appeared previously, the map n6 is analogous to n5 as
indicated in the diagram, and all the n maps are invertible.

U
B ��

ηV U

��

W

ηV W

��
V ⊗Hom(V, U)

nU

��

[IdV ⊗Hom(IdV ,B)] �� V ⊗Hom(V,W )

n3

��
Hom(V, V ⊗ U)

Hom(IdV ,[IdV ⊗B]) �� Hom(V, V ⊗W )

Hom(V, V )⊗ U

n5

��

[Hom(IdV ,IdV )⊗B] �� Hom(V, V )⊗W

n6

��

The lower two blocks are commutative by Lemma 3.10. Using Lemma 3.12, for
�u ∈ U ,

�u �→ ([Hom(IdV , IdV )⊗ B] ◦ n−1
5 ◦ nU ◦ ηV U )(�u)

= IdV ⊗ (B(�u))

= (n−1
6 ◦ n3 ◦ ηVW ◦B)(�u).

So, the two paths from U to Hom(V, V )⊗W are equal composites, which is enough

to show that the upper block is commutative as claimed.

The formula (3.6) from Theorem 3.7 can be used to prove some well-known
elementary properties of the generalized trace (as in [FKV], [JSV]). We will state
just one such result, which will be used later.

Theorem 3.14. For V with finite dimension, and maps A : V ⊗ U → V ⊗ W ,
B : U ′ → U and G : W → W ′, the composite [IdV ⊗G] ◦A ◦ [IdV ⊗B] : V ⊗U ′ →
V ⊗W ′ has trace

TrV ;U ′,W ′([IdV ⊗G] ◦A ◦ [IdV ⊗B]) = G ◦ (TrV ;U,W (A)) ◦B.
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Proof. Theorem 3.7 showed that any evaluation and coevaluation maps satisfying
its hypotheses can be used to calculate the trace, so we use the canonical evaluation
and the coevaluation from Example 3.11 with X = V .

LHS = EvV W ′ ◦ n−1
W ′ ◦Hom(IdV , [IdV ⊗G] ◦A ◦ [IdV ⊗B]) ◦ nU ′ ◦ ηV U ′

= EvV W ′ ◦ n−1
W ′ ◦Hom(IdV , [IdV ⊗G]) ◦Hom(IdV , A) ◦

Hom(IdV , [IdV ⊗B]) ◦ nU ′ ◦ ηV U ′

= EvV W ′ ◦ [Hom(IdV , G)⊗ IdV ] ◦ n−1
W ◦Hom(IdV , A) ◦

nU ◦ [IdV ⊗Hom(IdV , B)] ◦ ηV U ′(3.19)

= G ◦ EvVW ◦ n−1
W ◦Hom(IdV , A) ◦ nU ◦ ηV U ◦B = RHS.(3.20)

Line (3.19) follows from the previous by Lemma 3.10, and line (3.20) uses Lemma

3.2 and Lemma 3.13.

4. Complex linear algebra without complex numbers

Formula (3.6) could be taken as a definition of the trace TrV ;U,W in categories
of vector spaces that do not include K as an object, but otherwise have enough
structure (including some natural transformations n), to support the hypotheses of
either Theorem 3.7 or Proposition 3.8. Examples of such categories include some
subcategories of the category of finite dimensional vector spaces which are closed
under −⊗− and Hom(−,−), e.g., where the objects are just the vector spaces with
dimensions N satisfying N > 1, or N = 2K > 1, or N = 2K > 1, etc.

In categories where there is a unit object for ⊗ but it is not unique, then using
(3.6) to define the trace shows that the trace does not depend on any choice of unit
object or scalar multiplication morphisms.

An example of such a category, and the original motivation for this approach,
is the category C of real vector spaces with linear complex structures. Each object
of C is a pair (V, J), where V is a real vector space, and J is a real linear map
V → V such that J ◦ J = −IdV , called a complex structure operator (CSO). The
morphisms from (U, JU ) to (V, JV ) are real linear maps A : U → V such that
A ◦ JU = JV ◦A. Clearly, IdV is the identity morphism for any object (V, J), and
the composite of morphisms is a morphism. We call such maps c-linear, and it
may be useful to think of them as “complex linear,” commuting with some choice
of complex scalar multiplication such as (α · IdU ± β · JU )(�u) = α · �u ± β · JU (�u),
but we are intentionally avoiding the introduction of the field of complex numbers
as scalars or for any other use. In particular, we will not attempt to consider
any scalar valued trace for morphisms (V, JV ) → (V, JV ); this without-complex-
numbers approach will only apply to the generalized trace, where the output is
another morphism.

In this Section, we will review just enough of the ideas and notation for linear
complex structures to propose a definition of the generalized trace for the category
C. See [C] for notes giving a more detailed development of complex structure
operators.

When the vector space V has a CSO JV , it is sometimes convenient to abbreviate
the pair (V, JV ) by one letter, V. However, a real vector space V may have several
complex structures (and this itself is a situation where doing linear algebra with
CSOs can be more clear than with complex scalars). Two CSOs can (but do not
necessarily) commute, as in the following Lemma (left as an exercise).
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Lemma 4.1. Given V and two CSOs J1, J2, the following are equivalent:

(1) J1 and J2 commute, i.e., J1 ◦ J2 = J2 ◦ J1;
(2) The composite J1 ◦ J2 is an involution, i.e., (J1 ◦ J2) ◦ (J1 ◦ J2) = IdV .

Any involution B on a real vector space produces a direct sum V = V1 ⊕ V2,
where V1 is the +1 eigenspace (the fixed point set) and V2 is the −1 eigenspace.
The projection onto V2 with kernel V1 is P = 1

2 · (IdV −B).

Notation 4.2. In the case of commuting CSOs on V , and the involution J1 ◦J2 as
in Lemma 4.1, let Vc denote the −1 eigenspace, so that �v ∈ Vc ⇐⇒ J1(J2(�v)) =
−�v ⇐⇒ J1(�v) = J2(�v). So, Vc is exactly the real subspace of V where J1 = J2,
and J1|Vc = J2|Vc is a canonically induced CSO on Vc. The projection from V to
Vc, where the kernel is the +1 eigenspace, is Pc =

1
2 · (IdV − J1 ◦ J2). Pc is c-linear

from both (V, J1) and (V, J2) to (Vc, J1|Vc). If Va denotes the +1 eigenspace of
J1 ◦ J2, then V = Vc ⊕ Va and Va is the subspace of V where the two CSOs are
opposite, J1|Va = −J2|Va .

Example 4.3. Given U = (U, JU ) and V = (V, JV ), the maps Hom(IdU , JV ) and
Hom(JU , IdV ) are commuting CSOs on Hom(U, V ), so Lemma 4.1 applies. The
real subspace of Hom(U, V ) where the two CSOs agree, as in Notation 4.2, is the
vector space of c-linear maps, and also the set of morphisms in C from U to V:

Homc((U, JU ), (V, JV )) = {A ∈ Hom(U, V ) : A ◦ JU = JV ◦A}.
The projection onto the subspace is

Pc =
1

2
· (IdHom(U,V ) −Hom(IdU , JV ) ◦Hom(JU , IdV ))

=
1

2
· (IdHom(U,V ) −Hom(JU , JV )) : A �→ 1

2
· (A− JV ◦A ◦ JU ).

The subspace has a canonical CSO, so as an object in C, the pair can be denoted

Homc(U,V) = (Homc((U, JU ), (V, JV )),Hom(IdU , JV )|Homc((U,JU ),(V,JV ))).

Example 4.4. Given U = (U, JU ) and V = (V, JV ), the two maps [IdU ⊗ JV ],
[JU ⊗ IdV ] ∈ Hom(U ⊗ V, U ⊗ V ) are commuting CSOs on U ⊗ V , so Lemma 4.1
applies. The direct sum from Notation 4.2 is denoted:

(4.1) U ⊗ V = (U ⊗c V )⊕ (U ⊗a V ),

so that the subspace of U ⊗ V where the two CSOs agree is

(4.2) U ⊗c V = {�w ∈ U ⊗ V : [IdU ⊗ JV ](�w) = [JU ⊗ IdV ](�w)},
and it has a canonical CSO, JU⊗cV = [IdU ⊗ JV ]|U⊗cV = [JU ⊗ IdV ]|U⊗cV . The
symbol U⊗cV will be used to denote the object in C given by this subspace paired
with the CSO.

So, the category C has a tensor product ⊗c; it is associative as described in the
Proof of Lemma 4.12. (In terms of complex linear algebra, the idea is that the
real subspace U ⊗c V corresponds to the tensor product “over C” where complex
scalars can move from U to V. The elements of the complementary subspace
U ⊗a V , corresponding to Va in Notation 4.2, are the “antilinear” tensors where
moving a complex scalar introduces a conjugation.)
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Example 4.5. The vector space R2 =

{[
x
y

]}
admits distinct CSOs; for exam-

ple, the following matrices all satisfy the definition:

J1 =

[
0 −1
1 0

]
, J2 =

[
0 1
−1 0

]
, J3 =

[
47 −34
65 −47

]
, J4 =

[ −5 26
−1 5

]
, . . .

None of these is any more canonical than the others, although the first one could
be called the “standard” CSO for R2 with the (x, y) coordinate system, due to its
resemblance to a +90◦ rotation matrix. For any object V in C, there exists some
(not necessarily unique or canonical) invertible c-linear map from V⊗c (R

2, J1) to
V (more details appear in Example 5.12). So the tensor product ⊗c does have at
least one unit object in C, and it is unique only up to isomorphism. The interesting
difference between C and the category of all vector spaces is not whether there
exists a tensor unit, but that C does not have a distinguished unit object and scalar
multiplication isomorphisms in the same way that the category of all vector spaces
has the canonical object K and the canonical � maps.

Lemma 4.6. For V with commuting CSOs J1, J2, and another space V ′ with
commuting CSOs J ′

1, J ′
2, if a map H : V → V ′ satisfies H ◦ J1 = J ′

1 ◦ H and
H ◦J2 = J ′

2 ◦H, then H respects the direct sums of ±1 eigenspaces, and H restricts
to a c-linear map Vc → V ′

c , which is invertible if H is.

Proof. The statement about respecting the direct sum means that if �v is a −1
eigenvector of J1 ◦ J2 (so (J1 ◦ J2)(�v) = −�v ⇐⇒ J1(�v) = J2(�v) ⇐⇒ �v ∈ Vc),
then H(�v) is a −1 eigenvector of J ′

1 ◦ J ′
2. This is easily checked (using only the

weaker property H ◦ J1 ◦ J2 = J ′
1 ◦ J ′

2 ◦H), and also holds for the +1 eigenspace.
The c-linear property refers to the canonical CSOs on Vc and V ′

c : if �v ∈ Vc, then
J1|Vc(�v) ∈ Vc, and

H |Vc(J1|Vc(�v)) = H(J1(�v)) = H(J2(�v))

= J ′
2(H(�v)) = J ′

1(H(�v)) = J ′
1|V ′

c
(H |Vc(�v)).

If H has an inverse, then it also respects the direct sum and the restriction of the

inverse to V ′
c is the inverse of H |Vc : Vc → V ′

c .

Example 4.7. If U = (U, JU ) and V = (V, JV ), then U ⊗ V and V ⊗ U both
have commuting pairs of CSOs as in Example 4.4, and the switching map s :
U ⊗ V → V ⊗ U (as in Notation 2.4) satisfies s ◦ [JU ⊗ IdV ] = [IdV ⊗ JU ] ◦ s and
s ◦ [IdV ⊗ JV ] = [JV ⊗ IdV ] ◦ s, so Lemma 4.6 applies and s restricts to a c-linear
map s : U⊗c V → V ⊗c U.

Example 4.8. For c-linear maps A : U → U′ and B : V → V′, the map

[A⊗B] : U ⊗ V → U ′ ⊗ V ′

satisfies both [A⊗B]◦ [JU ⊗IdV ] = [JU ′ ⊗IdV ′ ]◦ [A⊗B] and [A⊗B]◦ [IdU ⊗JV ] =
[IdU ′ ⊗JV ′ ]◦ [A⊗B], so Lemma 4.6 applies and [A⊗B] restricts to a c-linear map,
denoted [A⊗c B] : U⊗c V → U′ ⊗c V

′.

Example 4.9. For c-linear maps A : U′ → U and B : V → V′, Lemma 4.6 applies
to the map

Hom(A,B) : Hom(U, V ) → Hom(U ′, V ′)
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and the corresponding pairs of CSOs from Example 4.3. The restricted c-linear
map can be denoted

Homc(A,B) : Homc(U,V) → Homc(U
′,V′) : F �→ B ◦ F ◦A.

We will need to work with some spaces with three mutually commuting CSOs,
as in the following Example 4.10. Lemma 4.6 can be generalized for maps between
such spaces, but we will just sketch the following special case that will be needed
later.

Example 4.10. For any objects U = (U, JU ), V = (V, JV ), X = (X, JX), a
canonical map from Notation 3.3, such as (3.1),

n : V ⊗Hom(X,U) → Hom(X,V ⊗ U),

is c-linear with respect to each of the three corresponding pairs of CSOs on the
domain and target:

n ◦ [JV ⊗ IdHom(X,U)] = Hom(IdX , [JV ⊗ IdU ]) ◦ n,
n ◦ [IdV ⊗Hom(JX , IdU )] = Hom(JX , IdV ⊗U ) ◦ n,
n ◦ [IdV ⊗Hom(IdX , JU )] = Hom(IdX , [IdV ⊗ JU ]) ◦ n.

Each of these three equations follows from Lemma 3.10. The three CSOs on the
domain commute pairwise, and similarly for the target. Lemma 4.6 applies to
any two out of the three CSO pairs; an example we will need later is these two
CSOs on the domain: [JV ⊗ IdHom(X,U)] and [IdV ⊗ Hom(JX , IdU )]. The sub-
space of V ⊗Hom(X,U) where these two complex structures agree can be denoted
V ⊗c Hom(X, U), as in Example 4.4, where the bold letters indicate the tensor
product in C of the objects V and

Hom(X, U) = (Hom(X,U),Hom(JX , IdU )).

Similarly in the target, the subspace of Hom(X,V ⊗ U) where the two CSOs
Hom(IdX , [JV ⊗ IdU ]) and Hom(JX , IdV⊗U ) agree can be denoted
Homc(X,V ⊗ U) as in Example 4.3. The map n respects these direct sums and
restricts to a c-linear map n : V⊗cHom(X, U) → Homc(X,V⊗U). The third CSO
in the domain, [IdV ⊗Hom(IdX , JU )], also respects the direct sum and restricts to
a CSO on the subspace V⊗c Hom(X, U) that commutes with the CSO induced by
the first two. The subspace of V ⊗c Hom(X, U) where these two restricted CSOs
agree is exactly the subspace of V ⊗ Hom(X,U) where all three CSOs agree, and
can be denoted V ⊗c Homc(X,U). (This subspace does not depend on which two
out of three CSOs start the construction.) The projection from Notation 4.2 will
be denoted

(4.3) Pc : V ⊗c Hom(X, U) → V ⊗c Hom(X,U).

Similarly in the target, the third CSO [IdV ⊗ Hom(JX , IdU )] restricts to the sub-
space Homc(X,V⊗U) and commutes with the induced CSO, so the subspace where
all three CSOs agree is Homc(X,V ⊗c U). If we denote Pc : V ⊗ U → V ⊗c U,
then this projection map can be denoted:

Homc(IdX , Pc) : Homc(X,V ⊗ U) → Homc(X,V ⊗c U).
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The map n restricts to a c-linear map between the subspaces where all three com-
muting CSOs agree, denoted n, as in the following commutative diagram.

V ⊗c Hom(X, U)

n

��

Pc �� V ⊗c Homc(X,U)

n

��
Homc(X,V ⊗ U)

Homc(IdX ,Pc)
�� Homc(X,V ⊗c U)

If n : V ⊗Hom(X,U) → Hom(X,V ⊗U) is invertible, then so are the restrictions n
and n in the diagram. There is a similar construction for other versions of n maps
such as (3.2).

Lemma 4.11. If V is finite dimensional with CSO JV , then there exists an ordered
basis for V of the form

(4.4) (�v1, JV (�v1), �v2, JV (�v2), . . . , �vN , JV (�vN )).

For any U with CSO JU and basis {�ul}, the set

(4.5) {�vi ⊗ �ul − (JV (�vi))⊗ (JU (�ul)) : i = 1, . . . , N, l ∈ L}
is a basis of V ⊗c U.

Proof. The existence of such a basis for V is elementary (although it uses K = R

and may not work for other fields of scalars; we refer to [C]), but note that in this
Section, V has real dimension 2N , which is a change from the notation in Sections
2 and 3.

Every element in U ⊗ V is a finite sum of the form

(4.6)

(
N∑
i=1

∑
l∈L

ail�vi ⊗ �ul

)
+

(
N∑

i′=1

∑
l′∈L

bi′l′(JV (�vi′))⊗ �ul′

)
.

If this element is in U⊗c V, then(
N∑
i=1

∑
l∈L

ail(JV (�vi))⊗ �ul

)
−
(

N∑
i′=1

∑
l′∈L

bi′l′�vi′ ⊗ �ul′

)

=

(
N∑
i=1

∑
l∈L

ail�vi ⊗ (JU (�ul))

)
+

(
N∑

i′=1

∑
l′∈L

bi′l′(JV (�vi′ ))⊗ (JU (�ul′))

)
.

By the independence (over R) of the set {�vi ⊗ �ul} ∪ {(JV (�vi′ ))⊗ �ul′} in U ⊗ V ,

−
N∑

i′=1

∑
l′∈L

bi′l′�vi′ ⊗ �ul′ =

N∑
i=1

∑
l∈L

ail�vi ⊗ (JU (�ul)),

and applying [JV ⊗ IdU ] to both sides gives

−
N∑

i′=1

∑
l′∈L

bi′l′(JV (�vi′ ))⊗ �ul′ =

N∑
i=1

∑
l∈L

ail(JV (�vi))⊗ (JU (�ul));

we can conclude that if any element (4.6) is in U⊗c V, then it is of the form

N∑
i=1

∑
l∈L

ail (�vi ⊗ �ul − (JV (�vi))⊗ (JV (�ul))) ,
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so the set (4.5) spans U ⊗c V. The independence of (4.5) also follows from the

independence of the set {�vi ⊗ �ul} ∪ {(JV (�vi′ ))⊗ �ul′} in U ⊗ V .

Lemma 4.12. Given vector spaces U , V , X, if V is finite dimensional with CSO
JV and basis

(�v1, JV (�v1), . . . , �vN , JV (�vN )),

and X is finite dimensional with CSO JX and basis

(�x1, JX(�x1), . . . , �xQ, JX(�xQ)),

then for any CSO JU and basis {�ul} for U , the set

{�vi ⊗ �ul ⊗ �xq − (JV (�vi))⊗ (JU (�ul))⊗ �xq

−(JV (�vi))⊗ �ul ⊗ (JX(�xq))− �vi ⊗ (JU (�ul))⊗ (JX(�xq))}(4.7)

is a basis of V ⊗c U⊗c X.

Proof. Recall from Example 4.4 that V ⊗c U is the subspace of V ⊗ U where the
CSOs [IdV ⊗JU ] and [JV ⊗IdU ] agree, and that the CSO onV⊗cU is their common
restriction [IdV ⊗ JU ]|V⊗cU = [JV ⊗ IdU ]|V⊗cU. In the same way, (V ⊗c U)⊗c X
is the subspace of (V ⊗c U) ⊗ X where the CSOs [[JV ⊗ IdU ]|V⊗cU ⊗ IdX ] and
[IdV⊗cU⊗JX ] agree. By Lemma 4.11, (V⊗cU)⊗cX is spanned by basis elements
of the form

(�vi ⊗ �ul − (JV (�vi))⊗ (JU (�ul)))⊗ �xq

− ([JV ⊗ IdU ]|V⊗cU (�vi ⊗ �ul − (JV (�vi))⊗ (JU (�ul))))⊗ (JX(�xq))

= (�vi ⊗ �ul − (JV (�vi))⊗ (JU (�ul)))⊗ �xq

− ((JV (�vi))⊗ �ul + �vi ⊗ (JU (�ul)))⊗ (JX(�xq)).(4.8)

Similarly using Lemma 4.11 again, V⊗c (U⊗c X) is spanned by basis elements of
the form

�vi ⊗ (�ul ⊗ �xq − (JU (�ul))⊗ (JX(�xq)))

−(JV (�vi))⊗ ((JU (�ul))⊗ �xq + �ul ⊗ (JX(�xq))) .(4.9)

Under the identification of the real tensor products (V ⊗U)⊗X and V ⊗ (U ⊗X)
with the triple product V ⊗ U ⊗ X as mentioned in Notation 2.2, both (4.8) and
(4.9) can be expanded out and parentheses removed, so that they are equal to each
other and to the expression in (4.7). The subspace of V ⊗U ⊗X spanned by these
elements can be unambiguously denoted V⊗c U⊗c X; it is the subspace where all
three of these commuting CSOs on V ⊗ U ⊗X are equal:

[[JV ⊗ IdU ]⊗ IdX ] = [JV ⊗ IdU⊗X ]

[[IdV ⊗ JU ]⊗ IdX ] = [IdV ⊗ [JU ⊗ IdX ]]

[IdV ⊗ [IdU ⊗ JX ]] = [IdV ⊗U ⊗ JX ] .

As in Example 4.4, the notation V⊗cU⊗cX will also be used to denote the object
in C given by pairing this real subspace with the CSO equal to the restriction of

any of the above three.
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Lemma 4.13. If X is finite dimensional with CSO JX and ordered basis of the
form

(�x1, JX(�x1), . . . , �xQ, JX(�xQ)),

then for any U with CSO JU and basis {�ul}, the set of maps

(4.10) {Φc
ql : q = 1, . . . , Q, l ∈ L},

with each Φc
ql defined on basis elements of X by the formula:

�xq′ �→ δqq′�ul

JX(�xq′) �→ δqq′JU (�ul)

is a basis of Homc(X,U).

Proof. It is straightforward to check that each Φc
ql ∈ Homc(X,U). Any element

A ∈ Homc(X,U) is determined by its values on the �x1, . . . , �xQ basis elements of X :

(4.11) A(�xq) =
∑
l∈L

Alq�ul =⇒ A(JX(�xq)) = JU (A(�xq)) =
∑
l∈L

AlqJU (�ul).

Homc(X,U) is spanned by the set (4.10): corresponding to the finite list of coeffi-
cients from (4.11) for any A ∈ Homc(X,U),

Q∑
q=1

∑
l∈L

AlqΦ
c
ql : �xq′ �→

Q∑
q=1

∑
l∈L

Alqδqq′�ul =
∑
l∈L

Alq′�ul = A(�xq′ ).

To show that (4.10) is an independent set, suppose

Q∑
q=1

∑
l∈L

bqlΦ
c
ql = 0Homc(U,V ).

Then, for any q′,

�0U =

Q∑
q=1

∑
l∈L

bqlΦ
c
ql(�xq′ ) =

Q∑
q=1

∑
l∈L

bqlδqq′�ul =
∑
l∈L

bq′l�ul,

so every coefficient is zero by the independence of the basis for U .

The next Theorem is the main result of this Section; there is enough structure
in the category C to use an analogue of formula (3.6) to define a c-linear trace.
However, C is different enough from the category of all vector spaces, so that there
is a need to give another Proof showing that the formula is independent of the
choices of evaluation and coevaluation.

Theorem 4.14. Given objects in C, U = (U, JU ), V = (V, JV ), W = (W,JW ),
suppose there exist an object X = (X, JX) and morphisms

ηU : U → V ⊗c Homc(X,U)

εU : Homc(X,U)⊗c V → U

εW : Homc(X,W)⊗c V → W

such that this composite is equal to a switching morphism:

(4.12) [IdV ⊗c ε
U] ◦ [ηU ⊗c IdV ] = s : U⊗c V → V ⊗c U.
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Suppose further that V and X are both finite dimensional, so that the n morphisms
in the following diagram are invertible, and that the diagram is commutative for
any morphism F : V ⊗c U → V ⊗c W,

(4.13)

V ⊗c U
F �� V ⊗c W

V ⊗c Homc(X,U) ⊗c V

[nU⊗cIdV ]

��

[IdV ⊗cε
U]

��

V ⊗c Homc(X,W)⊗c V

[n4⊗cIdV ]

��

[IdV ⊗cε
W]

��

Homc(X,V ⊗c U)⊗c V
[Homc(IdX ,F )⊗cIdV ]

�� Homc(X,V ⊗c W)⊗c V

in the sense that

F ◦ [IdV ⊗c ε
U] ◦ [nU ⊗c IdV ]

−1

= [IdV ⊗c ε
W] ◦ [n4 ⊗c IdV ]

−1 ◦ [Homc(IdX , F )⊗c IdV ].

Then the canonical map

nW : Homc(X,W)⊗c V → Homc(X,V ⊗c W)

is also invertible, and for any morphism A : V ⊗c U → V ⊗c W, the compos-
ite map from U to W in the following diagram depends only on A and not on
(X, JX , ηU, εU, εW).

(4.14)

Homc(X,V ⊗c U)
Homc(IdX ,A) �� Homc(X,V ⊗c W)

n−1
W

��
V ⊗c Homc(X,U)

nU

��

Homc(X,W)⊗c V

εW

��
U

ηU

��

W

Proof. The proof proceeds in the same way as the Proof of Theorem 3.7; the dif-
ference is in choosing basis sets, using Lemma 4.11, Lemma 4.12, and Lemma 4.13.

Using the basis (4.10) for Homc(X,U), the basis (4.4) for V , and the basis (4.5)
for the tensor product, the set

{�vi ⊗ Φc
ql − (JV (�vi))⊗ (JU ◦ Φc

ql)}
is a basis for V ⊗c Homc(X,U). For each basis element �ul′ of U , there are real
coefficients ηUiqll′ (finitely many non-zero for each l′) so that

ηU : �ul′ �→
N∑
i=1

Q∑
q=1

∑
l∈L

ηUiqll′
(
�vi ⊗ Φc

ql − (JV (�vi))⊗ (JU ◦ Φc
ql)
)
.

Similarly, there are real coefficients εUl′qli (finitely many non-zero for each l) so that

(4.15) εU : Φc
ql ⊗ �vi − (JU ◦ Φc

ql)⊗ (JV (�vi)) �→
∑
l′∈L

εUl′qli�ul′ .
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By the c-linearity of εU,

εU : (JU ◦ Φc
ql)⊗ �vi +Φc

ql ⊗ (JV (�vi)) �→
∑
l′∈L

εUl′qliJU (�ul′).

The switching morphism from (4.12) acts on basis elements of U⊗c V by:

s : �ul′ ⊗ �vi′ − (JU (�ul′))⊗ (JV (�vi′ )) �→ �vi′ ⊗ �ul′ − (JV (�vi′ ))⊗ (JU (�ul′)).

The first hypothesis on ηU and εU is that this gives the same output:

[IdV ⊗c ε
U] ◦ [ηU ⊗c IdV ] : �ul′ ⊗ �vi′ − (JU (�ul′))⊗ (JV (�vi′ ))

�→ [IdV ⊗c ε
U]((ηU(�ul′))⊗ �vi′ − ([JV ⊗IdHomc(X,U)](η

U(�ul′)))⊗(JV (�vi′)))

= [IdV ⊗c ε
U]

((
N∑
i=1

Q∑
q=1

∑
l∈L

ηUiqll′ (�vi ⊗ Φc
ql − (JV (�vi))⊗ (JU ◦ Φc

ql))

)
⊗ �vi′

−
(

N∑
i=1

Q∑
q=1

∑
l∈L

ηUiqll′ ((JV (�vi))⊗ Φc
ql + �vi ⊗ (JU ◦ Φc

ql))

)
⊗ (JV (�vi′))

)

=

N∑
i=1

Q∑
q=1

∑
l∈L

ηUiqll′
(
�vi ⊗ (εU(Φc

ql ⊗ �vi′ − (JU ◦ Φc
ql)⊗ (JV (�vi′))))

− (JV (�vi))⊗ (εU((JU ◦ Φc
ql)⊗ �vi′ +Φc

ql ⊗ (JV (�vi′))))
)

=

N∑
i=1

Q∑
q=1

∑
l∈L

ηUiqll′

(
�vi ⊗

(∑
l′′∈L

εUl′′qli′�ul′′

)
− (JV (�vi))⊗

(∑
l′′∈L

εUl′′qli′JU (�ul′′ )

))

=
N∑
i=1

Q∑
q=1

∑
l∈L

∑
l′′∈L

ηUiqll′ε
U
l′′qli′ (�vi ⊗ �ul′′ − (JV (�vi))⊗ (JU (�ul′′))).

The step from the above first line to the second uses the c-linearity of ηU. The last
sum matches the output of the switching map when:

(4.16)

Q∑
q=1

∑
l∈L

ηUiqll′ ε
U
l′′qli′ = δii′δl′l′′ ,

which is analogous to (3.8).
As in (4.10), choose the basis set for Homc(X,W):

{Ψc
qk : q = 1, . . . , n, k ∈ K},

with each Ψc
qk defined on basis elements of X by the formula:

�xq′ �→ δqq′ �wk

JX(�xq′ ) �→ δqq′JW (�wk).

Then as in (4.15), there are real coefficients εWk′qki (finitely many non-zero for each

k) so that

εW : Ψc
qk ⊗ �vi − (JW ◦Ψc

qk)⊗ (JV (�vi)) �→
∑
k′∈K

εWk′qki �wk′ .
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For F : V⊗cU → V⊗cW, and each basis element �vi⊗�ul− (JV (�vi))⊗ (JU (�ul)),
there are real coefficients Fi′kil (finitely many non-zero for each l) so that

F : �vi ⊗ �ul − (JV (�vi))⊗ (JU (�ul))

�→
N∑

i′=1

∑
k∈K

Fi′kil (�vi′ ⊗ �wk − (JV (�vi′))⊗ (JW (�wk))) .(4.17)

A basis for Homc(X,V ⊗c U) can be chosen in the same way as (4.10), with

�xq′ �→ δqq′(�vi ⊗ �ul − (JV (�vi))⊗ (JU (�ul))),

JX(�xq′) �→ δqq′ [IdV ⊗ JU ]|V⊗cU(�vi ⊗ �ul − (JV (�vi))⊗ (JU (�ul))),

but this map is exactly the same as

nU(�vi ⊗ Φc
ql − (JV (�vi))⊗ (JU ◦ Φc

ql)) :

�xq′ �→ �vi ⊗ (Φc
ql(�xq′ ))− (JV (�vi))⊗ (JU (Φ

c
ql(�xq′)))

= �vi ⊗ (δqq′�ul)− (JV (�vi))⊗ (δqq′JU (�ul)),

JX(�xq′ ) �→ �vi ⊗ (Φc
ql(JX(�xq′ )))− (JV (�vi))⊗ (JU (Φ

c
ql(JX(�xq′ ))))

= �vi ⊗ (δqq′JU (�ul)) + (JV (�vi))⊗ (δqq′�ul).

Similarly, the maps

n4(�vi ⊗Ψc
qk − (JV (�vi))⊗ (JW ◦Ψc

qk)) :

�xq′ �→ δqq′(�vi ⊗ �wk − (JV (�vi))⊗ (JW (�wk))),

JX(�xq′) �→ δqq′ [IdV ⊗ JW ]|V⊗cW(�vi ⊗ �wk − (JV (�vi))⊗ (JW (�wk)))

form a basis for Homc(X,V ⊗c W).
To calculate the composites in the diagram (4.13), start with:

(Homc(IdX , F ) ◦ nU)(�vi ⊗ Φc
ql − (JV (�vi))⊗ (JU ◦ Φc

ql)) :

�xq′ �→ (F ◦ (nU(�vi ⊗ Φc
ql − (JV (�vi))⊗ (JU ◦ Φc

ql))))(�xq′ )

= F (�vi ⊗ (δqq′�ul)− (JV (�vi))⊗ (δqq′JU (�ul)))

= δqq′
N∑

i′′=1

∑
k∈K

Fi′′kil(�vi′′ ⊗ �wk − (JV (�vi′′)) ⊗ (JW (�wk)))

=

N∑
i′′=1

∑
k∈K

Fi′′kil(n4(�vi′′ ⊗Ψc
qk − (JV (�vi′′ ))⊗ (JW ◦Ψc

qk)))(�xq′ ).

Since c-linear maps from X are determined by their values on �xq′ , it follows that

n−1
4 ◦Homc(IdX , F ) ◦ nU : �vi ⊗ Φc

ql − (JV (�vi))⊗ (JU ◦ Φc
ql)

�→
N∑

i′′=1

∑
k∈K

Fi′′kil(�vi′′ ⊗Ψc
qk − (JV (�vi′′ ))⊗ (JW ◦Ψc

qk)),(4.18)

which is analogous to (3.9).
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For basis elements of V ⊗c Homc(X,U)⊗c V as in Lemma 4.12,

[(n−1
4 ◦Homc(IdX , F ) ◦ nU)⊗c IdV ] :

�vi ⊗ Φql ⊗ �vi′ − (JV (�vi))⊗ (JU ◦ Φc
ql)⊗ �vi′

−(JV (�vi))⊗ Φc
ql ⊗ (JV (�vi′)) − �vi ⊗ (JU ◦ Φc

ql)⊗ (JV (�vi′ ))

�→ ((n−1
4 ◦Homc(IdX , F ) ◦ nU)(�vi ⊗ Φc

ql − (JV (�vi))⊗ (JU ◦ Φc
ql))) ⊗ �vi′

−((n−1
4 ◦Homc(IdX , F ) ◦ nU ◦ [JV ⊗ IdHomc(X,U)])(�vi ⊗ Φc

ql

−(JV (�vi))⊗ (JU ◦Φc
ql))) ⊗ (JV (�vi′))

=

(
N∑

i′′=1

∑
k∈K

Fi′′kil(�vi′′ ⊗Ψc
qk − (JV (�vi′′ ))⊗ (JW ◦Ψc

qk))

)
⊗ �vi′

−
(
[JV ⊗ IdHomc(X,W )]

(
N∑

i′′=1

∑
k∈K

Fi′′kil(�vi′′ ⊗Ψc
qk

− (JV (�vi′′ ))⊗ (JW ◦Ψc
qk))

))
⊗ (JV (�vi′))

=

N∑
i′′=1

∑
k∈K

Fi′′kil(�vi′′ ⊗ (Ψc
qk ⊗ �vi′ − (JW ◦Ψc

qk)⊗ (JV (�vi′ )))

−(JV (�vi′′ ))⊗ ((JW ◦Ψc
qk)⊗ �vi′ +Ψc

qk ⊗ (JV (�vi′)))).

The c-linear map [IdV ⊗c ε
W] takes the above output to:

(4.19)
N∑

i′′=1

∑
k∈K

∑
k′∈K

Fi′′kilε
W
k′qki′ (�vi′′ ⊗ �wk′ − (JV (�vi′′ ))⊗ (JW (�wk′ ))),

which is analogous to (3.10).
The hypothesis (4.13) is that for any c-linear F , the expressions (4.19) and (4.20)

are equal:

F ◦ [IdV ⊗ εU] :

�vi ⊗ Φql ⊗ �vi′ − �vi ⊗ (JU ◦ Φc
ql)⊗ (JV (�vi′))

−(JV (�vi))⊗ (JU ◦ Φc
ql)⊗ �vi′ − (JV (�vi))⊗ Φc

ql ⊗ (JV (�vi′ ))

�→ F

(
�vi ⊗

(∑
l′∈L

εUl′qli′�ul′

)
− (JV (�vi))⊗

(∑
l′∈L

εUl′qli′JU (�ul′)

))

=
∑
l′∈L

εUl′qli′

N∑
i′′=1

∑
k′∈K

Fi′′k′il′ (�vi′′⊗ �wk′ − (JV (�vi′′))⊗ (JW (�wk′ ))),(4.20)

so, in analogy with (3.11), for any i, q, l, i′, i′′, k′, these finite sums are equal:

(4.21)
∑
k∈K

Fi′′kilε
W
k′qki′ =

∑
l′∈L

εUl′qli′Fi′′k′il′ ,

which is the same relation as (3.12).
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For the composite from the diagram (4.14) in the conclusion of the Theorem, a
calculation analogous to (4.18) gives, for any A as in (4.17):

n−1
W ◦Homc(IdX , A) ◦ nU : �vi ⊗ Φc

ql − (JV (�vi))⊗ (JU ◦ Φc
ql)

�→
N∑

i′=1

∑
k∈K

Ai′kil(Ψ
c
qk ⊗ �vi′ − (JW ◦Ψc

qk)⊗ (JV (�vi′ ))).(4.22)

The next steps use (4.16), (4.21), and (4.22).

εW ◦ n−1
W ◦Homc(IdX , A) ◦ nU ◦ ηU :

�ul �→ εW

(
(n−1

W ◦Homc(IdX , A) ◦ nU)

(
N∑
i=1

Q∑
q=1

∑
l′∈L

ηUiql′l(�vi ⊗ Φql′

− (JV (�vi))⊗ (JU ◦ Φc
ql′ ))

))

= εW

(
N∑
i=1

Q∑
q=1

∑
l′∈L

ηUiql′l

N∑
i′=1

∑
k∈K

Ai′kil′ (Ψ
c
qk⊗ �vi′− (JW ◦Ψc

qk)⊗(JV (�vi′)))

)

=

N∑
i=1

Q∑
q=1

∑
l′∈L

N∑
i′=1

∑
k∈K

∑
k′∈K

ηUiql′lAi′kil′ ε
W
k′qki′ �wk′

=

N∑
i=1

Q∑
q=1

∑
l′∈L

N∑
i′=1

∑
k′∈K

∑
l′′∈L

ηUiql′lε
U
l′′ql′i′Ai′k′il′′ �wk′

=

N∑
i=1

N∑
i′=1

∑
k′∈K

∑
l′′∈L

δii′δll′′Ai′k′il′′ �wk′

=
N∑
i=1

∑
k′∈K

Aik′il �wk′ .(4.23)

The conclusion is that (4.23) does not depend on the choices of X , JX , ηU, εU, or

εW.

The output of the composite (4.14), the last sum (4.23), ends up looking a lot
like (2.6) and (3.15), as a result of the choices made for a basis. One difference
is that in (4.23), the sum from 1 to N is only over half the real dimension of V .
The composite map (4.14) from the conclusion of Theorem 4.14 can be used as a
definition of the generalized trace for morphisms A : V ⊗c U → V ⊗c W in the
category C:
(4.24) TrV;U,W(A) = εW ◦ n−1

W ◦Homc(IdX , A) ◦ nU ◦ ηU : U → W.

Another conclusion from Theorem 4.14 is that the generalized trace does not depend
on any choice of unit object for ⊗c in C as discussed in Example 4.4, and formula
(4.24) does not even require that such a choice be made.

Theorem 4.14 can only be used to find the generalized trace of a map between
tensor products in C defined as in Example 4.4; if you have N2 complex numbers
arranged into a square and you want a complex number for the trace of the corre-
sponding linear transformation as in (1.1), this approach won’t help and you should
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add up the diagonal entries. However, in the interest of giving a concrete, real ma-
trix calculation to illustrate formulas (4.23) and (4.24), Example 4.17 makes some
simple choices for objects (V, JV ) and (U, JU ) in C. We first need to find some
specific evaluation and coevaluation morphisms in C — so that the hypothesis of
Theorem 4.14 is non-vacuous.

Example 4.15. Recall, for any real vector spaces V , U , the canonical evaluation
map from Notation 3.1:

EvV U : Hom(V, U)⊗ V → U : A⊗ �v �→ A(�v).

If V and U have CSOs JV and JU , the subspace of Hom(V, U)⊗ V where all three
induced CSOs agree,

[Hom(JV , IdU )⊗ IdV ] = [Hom(IdV , JU )⊗ IdV ] = [IdHom(V,U) ⊗ JV ],

is spanned by elements of the form

A⊗ �v − (JU ◦A)⊗ (JV (�v)),

for c-linear maps A. The restriction of EvV U to this subspace, denoted

EvcVU : Homc(V,U)⊗c V → U,

acts on such elements:

EvcVU : A⊗ �v − (JU ◦A)⊗ (JV (�v)) �→ A(�v)− (JU ◦A)(JV (�v)) = 2A(�v),

the last step using the c-linearity of A. EvcVU is itself c-linear:

EvcVU ◦ [Hom(IdV , JU )⊗ IdV ] :

A⊗ �v − (JU ◦A)⊗ (JV (�v)) �→ EvcVU((JU ◦A)⊗ �v +A⊗ (JV (�v)))

= JU (A(�v)) +A(JV (�v)) = 2JU (A(�v))

= (JU ◦ EvcVU)(A⊗ �v − (JU ◦A)⊗ (JV (�v))).

ForW = (W,JW ), EvcVU andEvcVW satisfy c-linear versions of Lemma 3.2, Lemma
3.5, and Lemma 3.6 (the details are omitted here), so the compatibility condition
(4.13) is satisfied for X = V, εU = EvcVU, εW = EvcVW, and any c-linear F .

Example 4.16. To find a coevaluation in C corresponding to the evaluation from
Example 4.15, recall the result of Lemma 3.12,

ηV U : U → V ⊗Hom(V, U) : �u �→ n−1
U (n5(IdV ⊗ �u)).

This gives a formula for this real coevaluation that does not depend on a choice of
basis. Both nU and n5 are c-linear on corresponding pairs of the three commuting
CSOs on each domain and target, as in Example 4.10. ηV U is c-linear with respect
to JU and [IdV ⊗Hom(IdV , JU )]:

ηV U : JU (�u) �→ n−1
U (n5(IdV ⊗ (JU (�u))))

= n−1
U (n5([IdHom(V,V ) ⊗ JU ](IdV ⊗ �u)))

= [IdV ⊗Hom(IdV , JU )](n
−1
U (n5(IdV ⊗ �u)))

= [IdV ⊗Hom(IdV , JU )](ηV U (�u)).

Also by the c-linearity of the n maps, because IdV is c-linear, the image of ηV U is
contained in the subspace of V ⊗ Hom(V, U) where two of the three CSOs agree,
[JV ⊗IdHom(V,U)] and [IdV ⊗Hom(JV , IdU )] — this is the subspaceV⊗cHom(V, U)
from Example 4.10 with X = V. So, to get a c-linear map from U to the subspace
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of V ⊗ Hom(V, U) where all three CSOs agree, compose ηV U with the c-linear
projection map Pc from (4.3), which equals the restriction of the following map to
the subspace V ⊗c Hom(V, U):

(4.25)
1

2

(
IdV ⊗Hom(V,U) − [JV ⊗ IdHom(V,U)] ◦ [IdV ⊗Hom(IdV , JU )]

)
.

Define the c-linear map

(4.26) ηcVU = Pc ◦ ηV U : U → V ⊗c Homc(V,U).

To get an expression for ηV U in terms of the basis {�ul} for U , we need to adapt the
expression (3.18) to the 2N -element basis (4.4) for V :

ηV U : �ul �→
N∑
i=1

(�vi ⊗ Φil + (JV (�vi))⊗ Φ′
il) ,

where

Φil : �vi′ �→ δii′�ul,

Φil : JV (�vi′) �→ �0U ,

Φ′
il : �vi′ �→ �0U ,

Φ′
il : JV (�vi′) �→ δii′�ul.

With this notation, the maps (4.10) from Lemma 4.13 in the case X = V satisfy:

Φc
il = Φil + JU ◦ Φ′

il.

Then the composite ηcVU is given by the formula

Pc ◦ ηV U : �ul �→ 1

2

N∑
i=1

(�vi ⊗ Φil + (JV (�vi))⊗ Φ′
il)

−1

2

N∑
i=1

((JV (�vi))⊗ (JU ◦ Φil)− �vi ⊗ (JU ◦ Φ′
il))

=
1

2

N∑
i=1

(�vi ⊗ Φc
il − (JV (�vi))⊗ (JU ◦ Φc

il)) .

This choice for ηU = ηcVU, together with εU = EvcVU from Example 4.15, satisfies
the hypothesis (4.12) from Theorem 4.14. The following composite is equal to the
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switching map on U⊗c V.

�ul ⊗ �vi − (JU (�ul))⊗ (JV (�vi))

�→ ([IdV ⊗c EvcVU] ◦ [ηcVU ⊗c IdV ])(�ul ⊗ �vi − (JU (�ul))⊗ (JV (�vi)))

= [IdV ⊗c EvcVU]((ηcVU(�ul))⊗ �vi

−([IdV ⊗Hom(IdV , JU )](η
c
VU(�ul)))⊗ (JV (�vi)))

= [IdV ⊗c EvcVU]

(
1

2

(
N∑

i′=1

(�vi′ ⊗ Φc
i′l ⊗ �vi − (JV (�vi′))⊗ (JU ◦ Φc

i′l)⊗ �vi)

)

−1

2

(
N∑

i′=1

(�vi′ ⊗ (JU ◦ Φc
i′l)⊗ (JV (�vi)) + (JV (�vi′ ))⊗ Φc

i′l ⊗ (JV (�vi)))

))

=
1

2

N∑
i′=1

(�vi′ ⊗ (EvcVU(Φc
i′l ⊗ �vi − (JU ◦ Φc

i′l)⊗ (JV (�vi))))

− (JV (�vi′))⊗ (JU ◦ EvcVU)(Φc
i′l ⊗ �vi − (JU ◦ Φc

i′l)⊗ (JV (�vi))))

=
1

2

N∑
i′=1

(�vi′ ⊗ (2Φc
i′l(�vi))− (JV (�vi′ ))⊗ (JU (2Φ

c
i′l(�vi))))

=
1

2

N∑
i′=1

(�vi′ ⊗ (2δii′�ul)− (JV (�vi′ ))⊗ (JU (2δii′�ul)))

= �vi ⊗ �ul − (JV (�vi))⊗ (JU (�ul)).

Example 4.17. Let V = R4, with a CSO given by the matrix

JV =

⎡
⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎤
⎥⎥⎦ ,

so that this list is an ordered basis for V as in (4.4):

(�v1, JV (�v1), �v2, JV (�v2)) =

⎛
⎜⎜⎝
⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦
⎞
⎟⎟⎠ .

Let U = W = R
2, with CSO JU =

[
0 −1
1 0

]
, and the ordered basis

(�u1, �u2) =

([
1
0

]
,

[
0
1

])
.

A basis for V ⊗c U, as in Lemma 4.11, has four elements:

{�v1 ⊗ �u1 − (JV (�v1))⊗ (JU (�u1)), . . . , �v2 ⊗ �u2 − (JV (�v2))⊗ (JU (�u2))} .
For real constants a, . . . , h, the following matrix defines a c-linear transformation

(V, JV ) → (V, JV ):

B =

⎡
⎢⎢⎣

a b c d
−b a −d c
e f g h
−f e −h g

⎤
⎥⎥⎦ .
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The c-linear map

A = [B ⊗c IdU ] : V ⊗c U → V ⊗c U

has trace as in (4.24):

TrV;U,U(A) = εU ◦ n−1
U ◦Homc(IdX , [B ⊗c IdU ]) ◦ nU ◦ ηU : U → U.

To get a 2× 2 matrix representation for this c-linear map, we need the coefficients
Aili′l′ as in (4.17). For example,

A(�v1 ⊗ �u1 − (JV (�v1))⊗ (JU (�u1)))

= [B ⊗c IdU ]

⎛
⎜⎜⎝
⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦⊗

[
1
0

]
−

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦⊗

[
0
1

]⎞⎟⎟⎠

=

⎛
⎜⎜⎝
⎡
⎢⎢⎣

a
−b
e
−f

⎤
⎥⎥⎦⊗

[
1
0

]
−

⎡
⎢⎢⎣

b
a
f
e

⎤
⎥⎥⎦⊗

[
0
1

]⎞⎟⎟⎠

=

2∑
i=1

2∑
l=1

Ail11(�vi ⊗ �ul − (JV (�vi))⊗ (JU (�ul))),

with

A1111 = a, A1211 = −b, A2111 = e, A2211 = −f.

Similarly,

A1112 = b, A1212 = a, A2112 = f, A2212 = e,

A1121 = c, A1221 = −d, A2121 = g, A2221 = −h,

A1122 = d, A1222 = c, A2122 = h, A2222 = g.

Then, formula (4.23) gives:

�u1 �→
2∑

i=1

2∑
l=1

Aili1�ul

= (A1111 +A2121)�u1 + (A1211 +A2221)�u2 =

[
a+ g
−b− h

]
,

�u2 �→
2∑

i=1

2∑
l=1

Aili2�ul

= (A1112 +A2122)�u1 + (A1212 +A2222)�u2 =

[
b+ h
a+ g

]
,

T rV;U,U(A) =

[
a+ g b+ h

−(b+ h) a+ g

]
.(4.27)
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5. Relating the complex trace to the real trace

Given V with finite dimension and a CSO J , a c-linear map (V, J) → (V, J) has a
real matrix representation A2N×2N with respect to some real basis. In this Section,
we continue the without-complex-numbers approach in order to find an analogue
of (1.1) for such matrices A2N×2N , and to see how (1.1) and the generalized trace
expression (4.27) from Example 4.17 are related.

When comparing the trace in the category C to the trace in the category of real
vector spaces, there is some risk of confusing them, and as seen in Example 4.15
and Example 4.16, there are some factors of 2 and 1

2 that merit close attention. Our
first step is to be more precise about direct sums (which have already appeared in
Section 4) by introducing some notation. The following Definition is an “external
direct sum” construction (as in [AF] §6).
Definition 5.1. Given real vector spaces U , U1, U2, and ordered pairs of maps
(P1, P2) and (Q1, Q2), where Pi : U → Ui, Qi : Ui → U for i = 1, 2, U is a
direct sum of U1 and U2 means:

Q1 ◦ P1 +Q2 ◦ P2 = IdU

P1 ◦Q1 = IdU1

P2 ◦Q2 = IdU2 .

Notation 5.2. The data from Definition 5.1 will be abbreviated U = U1 ⊕ U2,
when the maps Pi (called projections) and Qi (inclusions) are understood.

It follows from Definition 5.1 that Pi ◦QI = 0Hom(UI ,Ui) for i �= I.

Example 5.3. For an involution K : U → U , consider the ±1 eigenspaces, U1 =
{�u ∈ U : K(�u) = �u}, and U2 = {�u ∈ U : K(�u) = −�u}. Then U = U1 ⊕ U2, where
Qi are the subspace inclusion maps, and the projections are:

P1 =
1

2
· (IdU +K), P2 =

1

2
· (IdU −K).

A special case of Example 5.3 already appeared in Notation 4.2.

Lemma 5.4. Given U , the following are equivalent:

(1) U = U1 ⊕ U2 and there exists an invertible map R : U1 → U2;
(2) U admits a CSO J and an involution C which anticommutes with J (i.e.,

C ◦ C = IdU and C ◦ J = −J ◦ C).

Proof. The significance of the Lemma is not whether there exist such structures,
but how one can be constructed from the other.

To show (1) =⇒ (2), let U1, U2, Q1, Q2, P1, P2 be as in Definition 5.1. Then
for R as in (1),

(5.1) J = Q2 ◦R ◦ P1 −Q1 ◦R−1 ◦ P2

is a CSO (easily checked), and

(5.2) C = Q1 ◦ P1 −Q2 ◦ P2

is an involution anticommuting with J .
Conversely, to show (2) =⇒ (1), the involution C produces, as in Example 5.3,

a direct sum U = U1 ⊕ U2 with projections

(5.3) P ′
1 =

1

2
(IdU + C), P ′

2 =
1

2
(IdU − C)
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and corresponding subspace inclusions Q′
1, Q

′
2. In particular, Q′

1 ◦ P ′
1 : U → U is

also given by the formula 1
2 (IdU + C), and similarly for Q′

2 ◦ P ′
2. The composite

(5.4) P ′
2 ◦ J ◦Q′

1 : U1 → U2

is invertible, with inverse

(5.5) −P ′
1 ◦ J ◦Q′

2 : U2 → U1,

so (1) holds.

In the above Proof, neither implication is given by a canonical construction;
some signs in (5.1), (5.2), (5.4), (5.5) could have been chosen differently. The
above choices are, however, consistent with each other, in the sense that (2) =⇒
(1) =⇒ (2) returns the same data J , C.

Definition 5.5. Given a real vector space U with a CSO J , a real linear map C :
U → U is a real structure operator means: C is an involution that anticommutes
with J .

Notation 5.6. More briefly, a real structure operator is called a RSO with respect
to the given J , and (U, J) is said to have a real structure. There is a canonical
(unordered) pair of subspaces, where U1 is the fixed point set of C and U2 is the
−1 eigenspace, so the notational convention will be to order them with U1 first,
and to refer to the direct sum produced by C as in Lemma 5.4 as U1⊕U2. (Having
chosen C and this ordering, the maps P ′

1, P
′
2, Q

′
1, Q

′
2 are canonical even if the map

R from (5.4) in Lemma 5.4 is not.)

Lemma 5.7. Given U with CSO JU and RSO CU , and another space W with CSO
JW , any c-linear map A : (U, JU ) → (W,JW ) is determined by its values on the
fixed point subspace U1.

Proof. The meaning of the Lemma is that if B : U → W is another c-linear map,
and A ◦Q′

1 = B ◦Q′
1 : U1 → W , then A = B. An analogous idea, but depending

on a choice of basis, was used in Section 4. Here, the result follows from only the
properties of the direct sum from Lemma 5.4.

A = A ◦ (Q′
1 ◦ P ′

1 +Q′
2 ◦ P ′

2)

= A ◦Q′
1 ◦ P ′

1 −A ◦ JU ◦ JU ◦
(
1

2
· (IdU − C)

)

= A ◦Q′
1 ◦ P ′

1 − JW ◦A ◦
(
1

2
· (IdU + C)

)
◦ JU

= (A ◦Q′
1) ◦ P ′

1 − JW ◦ (A ◦Q′
1) ◦ P ′

1 ◦ JU .(5.6)

Example 5.8. Given U with any CSO JU and RSO CU , and the direct sum
structure U = U1 ⊕ U2 produced by CU as in Notation 5.6, and another space
V with CSO JV , there are two commuting CSOs on V ⊗ U . An involution on
V ⊗U is [IdV ⊗CU ], which commutes with the CSO [JV ⊗ IdU ] and anticommutes
with the other CSO [IdV ⊗ JU ]. The involution [IdV ⊗CU ] produces a direct sum
(V ⊗ U1)⊕ (V ⊗ U2), as in Example 5.3. This notation is justified by the equality
of the projection maps

P1 =
1

2
(IdV ⊗U + [IdV ⊗ CU ]) = [IdV ⊗ P ′

1] = [IdV ⊗ (
1

2
(IdU + CU ))]
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and similarly for P2 = [IdV ⊗ P ′
2], so Q1 = [IdV ⊗ Q′

1] and Q2 = [IdV ⊗ Q′
2] are

the subspace inclusion maps for the images of the projections. Because [JV ⊗ IdU ]
commutes with the involution [IdV ⊗ CU ], it respects the direct sum and restricts
to a CSO on each subspace, V ⊗ U1 and V ⊗ U2. Another involution on V ⊗ U is
[JV ⊗ IdU ] ◦ [IdV ⊗ JU ], as in Example 4.4; this produces a different direct sum
structure for V ⊗ U . Let

(5.7) Pc =
1

2
(IdV ⊗U − [JV ⊗ JU ]) : V ⊗ U → V ⊗c U

denote the projection onto the −1 eigenspace as in Notation 4.2. Let Pa =
1
2 (IdV ⊗U + [JV ⊗ JU ]) denote the projection on the +1 eigenspace V ⊗a U , with
corresponding subspace inclusions Qc and Qa. The composite Qc ◦Pc is also given
by the formula (5.7). The composite

(5.8) Pc ◦Q1 : (V ⊗ U1, [JV ⊗ IdU ]|V ⊗U1) → V ⊗c U

is c-linear:

Pc ◦Q1 ◦ [JV ⊗ IdU ]|V ⊗U1 = Pc ◦ [JV ⊗ IdU ] ◦Q1 = [JV ⊗ IdU ]|V⊗cU ◦ Pc ◦Q1,

and similarly for Pc ◦Q2. The map Pc ◦Q1 is also invertible; an inverse is given by

(5.9) (Pc ◦Q1)
−1 = 2P1 ◦Qc : V ⊗c U → V ⊗ U1.

First, note that the involution [IdV ⊗ CU ] satisfies:

Qc ◦ Pc ◦ [IdV ⊗ CU ] =
1

2
(IdV ⊗U − [JV ⊗ JU ]) ◦ [IdV ⊗ CU ]

= [IdV ⊗ CU ] ◦ 1

2
(IdV ⊗U + [JV ⊗ JU ])

= [IdV ⊗ CU ] ◦Qa ◦ Pa.

Then

Pc ◦Q1 ◦ (2P1 ◦Qc) = 2Pc ◦Qc ◦ Pc ◦ (1
2
(IdV ⊗U + [IdV ⊗ CU ])) ◦Qc

= Pc ◦Qc ◦ Pc ◦Qc + Pc ◦ [IdV ⊗ CU ] ◦Qa ◦ Pa ◦Qc

= IdV⊗cU + 0Hom(V⊗cU,V⊗cU).

Similarly, the composite in the other order is (2P1 ◦Qc) ◦ (Pc ◦Q1) = IdV ⊗U1 .

Remark 5.9. The two maps in (5.9) could be re-scaled to (
√
2Pc◦Q1)

−1 =
√
2P1◦Qc

to have a more symmetric appearance, and such a re-scaling would not affect the
results in the rest of this Section.

The following Theorem 5.10 is the main result of this Section; it finds an expres-
sion for the trace in C in terms of real traces. The maps A1 and A2 are analogous
to, respectively, A and A from (1.1). The object V = (V, JV ) and the object
U = (U, JU ) with RSO CU and direct sum structure U = U1 ⊕ U2 are as in Ex-
ample 5.8. The map from (5.7) is re-labeled PU

c , with corresponding inclusion
QU

c = Qc. The inclusion Q1 : V ⊗ U1 → V ⊗ U is re-labeled QU
1 . The object

W = (W,JW ) has RSO CW and direct sum structure W = W1⊕W2 as in Notation
5.6, with projections P ′′

1 : W → W1, P
′′
2 : W → W2 and corresponding inclusions

Q′′
1 , Q

′′
2 . Denote the map corresponding to (5.7) by PW

c : V ⊗ W → V ⊗c W,
and denote the inclusion QW

1 : V ⊗ W1 → V ⊗ W . The hypothesis (5.10) with
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the invertible composites PU
c ◦QU

1 and PW
c ◦QW

1 states the commutativity of the
following diagram,

V ⊗ U1
A1 ��

PU
c ◦QU

1

��

V ⊗W1

PW
c ◦QW

1

��
V ⊗c U

A2 �� V ⊗c W

which can be thought of as showing that A1 and A2 are real and complex versions
of each other.

Theorem 5.10. Given V = (V, JV ) with finite dimension, U = (U, JU ) with RSO
CU , and W = (W,JW ) with RSO CW , if A1 : V ⊗ U1 → V ⊗W1 is c-linear with
respect to [JV ⊗ IdU1 ] and [JV ⊗ IdW1 ], and A2 : V ⊗c U → V ⊗c W is c-linear
with respect to the induced CSOs, and

(5.10) A2 ◦ PU
c ◦QU

1 = PW
c ◦QW

1 ◦A1 : V ⊗ U1 → V ⊗c W,

then

TrV;U,W(A2) =
1

2
Q′′

1 ◦ (TrV ;U1,W1(A1)) ◦ P ′
1

−1

2
JW ◦Q′′

1 ◦ (TrV ;U1,W1([JV ⊗ IdW1 ] ◦A1)) ◦ P ′
1

−1

2
JW ◦Q′′

1 ◦ (TrV ;U1,W1(A1)) ◦ P ′
1 ◦ JU

−1

2
Q′′

1 ◦ (TrV ;U1,W1([JV ⊗ IdW1 ] ◦A1)) ◦ P ′
1 ◦ JU .

Proof. The following diagram shows composites that define a real trace on the left
and a trace in C on the right. The notation will be explained below.

U1

Q′
1 ��

ηV U1

��

U

ηV U

��

ηc
VU

�����
����

����
����

���

V ⊗c Hom(V, U1)
[IdV ⊗cHom(IdV ,Q′

1)]

��

nU1

��

V ⊗c Hom(V, U)

nU

��

PU
c �� V ⊗c Homc(V,U)

nU

��
Homc(V,V ⊗ U1)

Homc(IdV ,QU
1 )

��

Homc(IdV ,A1)

��

Homc(V,V ⊗ U)
Homc(IdV ,PU

c )

�� Homc(V,V ⊗c U)

Homc(IdV ,A2)

��
Homc(V,V ⊗W1)

Homc(IdV ,QW
1 )

�� Homc(V,V ⊗W )
Homc(IdV ,PW

c )

�� Homc(V,V ⊗c W)

Hom(V,W1)⊗c V
[Hom(IdV ,Q′′

1 )⊗cIdV ]

��

nW1

��

EvV W1

��

Hom(V,W )⊗c V

nW

��

PW
c ��

EvV W

��

Homc(V,W)⊗c V

nW

��

Evc
VW

		����
����

����
����

�

W1

Q′′
1 �� W

By the main results from the previous Sections, Theorem 3.7 and Theorem 4.14, we
can choose any evaluation and coevaluation maps to compute the traces. On the
right side, the downward composite from U toW is TrV;U,W(A2) as in (4.24), using
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the canonical evaluation from Example 4.15, and the coevaluation constructed in
Example 4.16. In particular, the upper right triangle in the diagram is commutative
by the definition (4.26), where the map Pc from Example 4.16 has been re-labeled
PU

c . The square below that triangle, with nU and nU is commutative, as in Example
4.10. The lower square with nW , nW is also commutative as in Example 4.10, with
PW

c analogous to (4.3), but with some re-ordering of spaces and X = V, so that,
in analogy with (4.25), the projection PW

c is a restriction of this projection:

(5.11)
1

2

(
IdHom(V,W )⊗V − [IdHom(V,W ) ⊗ JV ] ◦ [Hom(IdV , JW )⊗ IdV ]

)
.

The center block with A1 and A2 is commutative by the hypothesis (5.10).
The left column starts with the coevaluation map ηV U1 from Example 3.11, and

takes advantage of the observation from Example 4.16 that its image is contained
in the subspace V⊗cHom(V, U1), as in Example 4.10 (but without a CSO on U1).
Every step in the composite stays in the subspaces where the two CSOs induced
by JV are equal, using the c-linearity of nU1 and nW1 (as in Example 4.10), and A1

(by hypothesis). The last map is the restriction of the canonical evaluation EvVW1

from Notation 3.1 to the subspace Hom(V,W1)⊗c V.
The commutativity of the block on the left with nU1 and nU follows from Lemma

3.10, and so does the commutativity of the block with nW1 and nW . The upper left
block with the coevaluations is then easily seen to be commutative using Lemma
3.12. The lower left block with the evaluations is commutative by Lemma 3.2.

The only block in the diagram that is not commutative, and this is the key step
for the Theorem, is the lower right triangle. An element of Hom(V,W )⊗cV of the
form

(5.12) B ⊗ �v − (B ◦ JV )⊗ (JV (�v)),

for a (real linear) B ∈ Hom(V,W ) as in Lemma 4.11, is mapped by EvV W to

B(�v)−B(JV (JV (�v))) = 2B(�v).

The quantity (5.12) is mapped by PW
c , as in (5.11), to:

1

2
(B ⊗ �v − (B ◦ JV )⊗ (JV (�v))− (JW ◦B)⊗ (JV (�v))− (JW ◦B ◦ JV )⊗ �v),

which is then mapped by EvcVW to

B(�v)− JW (B(JV (�v))).

The conclusion is that

EvcVW ◦PW
c =

1

2
EvVW − 1

2
JW ◦ EvV W ◦ [IdHom(V,W ) ⊗c JV ].

The composite in the lowest two blocks of the diagram is then:
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EvcVW ◦PW
c ◦ [Hom(IdV , Q

′′
1)⊗c IdV ]

=
1

2
EvV W ◦ [Hom(IdV , Q

′′
1)⊗c IdV ]

−1

2
JW ◦ EvVW ◦ [IdHom(V,W ) ⊗c JV ] ◦ [Hom(IdV , Q

′′
1)⊗c IdV ]

=
1

2
EvV W ◦ [Hom(IdV , Q

′′
1)⊗c IdV ]

−1

2
JW ◦ EvVW ◦ [Hom(IdV , Q

′′
1)⊗c IdV ] ◦ [IdHom(V,W1) ⊗c JV ]

=
1

2
Q′′

1 ◦ EvV W1 −
1

2
JW ◦Q′′

1 ◦ EvV W1 ◦ [IdHom(V,W1) ⊗c JV ].(5.13)

Starting with the clockwise composite around the outside of the diagram from U1

to W , and then using the commutativity of the upper part of the diagram, step
(5.13), and the c-linearity of nW1 , gives:

TrV;U,W(A2) ◦Q′
1

= EvcVW ◦ n−1
W ◦Homc(IdV , A2) ◦ nU ◦ ηcVW ◦Q′

1

= EvcVW ◦PW
c ◦ [Hom(IdV , Q

′′
1)⊗c IdV ] ◦

n−1
W1

◦Homc(IdV , A1) ◦ nU1 ◦ ηV U1

=

(
1

2
Q′′

1 ◦ EvV W1 −
1

2
JW ◦Q′′

1 ◦ EvV W1 ◦ [IdHom(V,W1) ⊗c JV ]

)
◦

n−1
W1

◦Homc(IdV , A1) ◦ nU1 ◦ ηV U1

=
1

2
Q′′

1 ◦ EvV W1 ◦ n−1
W1

◦Homc(IdV , A1) ◦ nU1 ◦ ηV U1

−1

2
JW ◦Q′′

1 ◦ EvV W1◦ n−1
W1

◦Homc(IdV , [JV ⊗ IdW1 ] ◦A1) ◦nU1◦ ηV U1

=
1

2
Q′′

1 ◦ (TrV ;U1,W1(A1))− 1

2
JW ◦Q′′

1 ◦ (TrV ;U1,W1([JV ⊗ IdW1 ] ◦A1)).

Because TrV;U,W(A2) is c-linear, by Lemma 5.7 it is uniquely determined on U by
the above formula showing its restriction to U1, and the claimed result follows from
(5.6):

TrV;U,W(A2)(5.14)

= ((TrV;U,W(A2)) ◦Q′
1) ◦ P ′

1 − JW ◦ ((TrV;U,W(A2)) ◦Q′
1) ◦ P ′

1 ◦ JU
=

1

2
Q′′

1 ◦ (TrV ;U1,W1(A1)) ◦ P ′
1

−1

2
JW ◦Q′′

1 ◦ (TrV ;U1,W1([JV ⊗ IdW1 ] ◦A1)) ◦ P ′
1

−1

2
JW ◦Q′′

1 ◦ (TrV ;U1,W1(A1)) ◦ P ′
1 ◦ JU

−1

2
Q′′

1 ◦ (TrV ;U1,W1([JV ⊗ IdW1 ] ◦A1)) ◦ P ′
1 ◦ JU .(5.15)
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Remark 5.11. Both quantities, (5.14), and the sum of four terms (5.15), depend on
the CSOs JV , JU , JW . The first term out of the four depends only on the direct
sum structures U = U1⊕U2 and W = W1⊕W2, but not on either complex structure
JW or JU , nor on JV except for the hypothesis that A1 is c-linear. Because the
Proof of Theorem 5.10 used formula (4.24) to define the trace in C, (5.14) does not
depend on any choice of unit object for ⊗c in C. We remark further that the Proof
of Theorem 5.10 is not entirely basis-free; the properties of the coevaluation ηcVU

from Example 4.16 were developed using a choice of basis.

Example 5.12. Our goal in this example is to construct an object U in C and an
invertible morphism (5.18) from any object V = (V, JV ) in C to V⊗cU, in terms of
the construction of Example 5.8, and to elaborate on the statement from Example
4.5 that such an object is not unique by showing what sort of choices are involved
in the construction. The objects U = Uλ chosen for this Example depend on a real
parameter λ �= 0 and have a real structure, so that Theorem 5.10 can be applied in
Example 5.14.

We make the initial assumption that there exists a real vector space U that
admits a direct sum structure of the form U = R ⊕ R, and fix a choice of such a
direct sum, with projections (P1, P2) and inclusions (Q1, Q2) as in Definition 5.1.

The involution CU = Q1 ◦ P1 − Q2 ◦ P2 from (5.2) in Lemma 5.4 respects this
direct sum (in the sense that it commutes with Q1 ◦P1 and Q2 ◦P2; the involution
−CU also does this). The (2) =⇒ (1) construction from Lemma 5.4 applied
to the involution CU defines another direct sum U = U1 ⊕ U2, which is distinct
from the initial direct sum; it is an internal direct sum where U1 and U2 are both
subspaces of U with inclusions Q′

i and projections P ′
i depending on CU as in (5.3).

For i = 1, 2, the composite P ′
i ◦Qi : R → Ui is invertible, with inverse Pi ◦Q′

i.
The construction from Example 5.8 (and the notation from Theorem 5.10) ap-

plies to any V = (V, JV ) and any vector space U with an involution producing a
direct sum U = U1 ⊕ U2 to define the direct sum V ⊗ U = V ⊗ U1 ⊕ V ⊗ U2, with
an inclusion map QU

1 = [IdV ⊗ Q′
1] : V ⊗ U1 → V ⊗ U . This direct sum depends

only on the involution CU , and the CSO [JV ⊗ IdU ]|V ⊗U1 on V ⊗U1 depends only
on JV , it does not assume U has a complex structure.

From the (1) =⇒ (2) step of Lemma 5.4, any linear isomorphism R : R → R is
of the form R = λ · IdR for some λ �= 0, and a CSO for U from (5.1) is:

(5.16) JU,λ = λ ·Q2 ◦ P1 − λ−1 ·Q1 ◦ P2.

Recall that in general, even after choosing R, the choices made in Lemma 5.4 are
not the only choices for a CSO and RSO, but in this case, any CSO anticommuting
with CU = Q1 ◦ P1 − Q2 ◦ P2 must be of the form (5.16). Denote this object
Uλ = (U, JU,λ).

Example 5.8 also considered the other internal direct sum

(5.17) V ⊗ U = (V ⊗c U)⊕ (V ⊗a U)

defined in terms of both complex structures JV and JU,λ, as in (4.1) from Example
4.4; denote the object from (4.2) by V ⊗c Uλ = (V ⊗c U, JV⊗cU ). Denote by
PU,λ
c : V ⊗ U → V ⊗c Uλ the projection from (5.7), and similarly denote the

inclusion QU,λ
c : V⊗cUλ → V ⊗U . From (5.8), there is an invertible, c-linear map

PU,λ
c ◦QU

1 : V ⊗ U1 → V ⊗c Uλ.
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Using the above choices for CU and JU,λ, and the scalar multiplication map � :
V ⊗ R → V , gives the following sequence of maps,

(5.18) V
�−1

�� V ⊗ R
[IdV ⊗(P ′

1◦Q1)]�� V ⊗ U1

[IdV ⊗Q′
1] �� V ⊗ U

PU,λ
c �� V ⊗c Uλ.

The first three steps are c-linear with respect to the CSOs induced by JV , the last
step is c-linear with respect to the CSOs induced by JV and JU,λ, and the overall
composite is invertible and c-linear. Only the last step depends on the choice made
for JU,λ. Simplifying the middle steps using Q′

1 ◦P ′
1 ◦Q1 = Q1 gives the invertible,

c-linear map:

PU,λ
c ◦ [IdV ⊗Q1] ◦ �−1 : V → V ⊗c Uλ.

Remark 5.13. There is still some choice of scalar multiple for PU,λ
c ◦ QU

1 as in
Remark 5.9. For λ = 1, the direct sum (5.17) corresponds to the construction
usually denoted V 1,0 ⊕ V 0,1 in complex geometry, so (5.18) is a c-linear invertible
map V → V 1,0. In situations involving a metric or symplectic form on V , the scale
factor

√
2 from Remark 5.9 is sometimes preferred.

It was remarked after formula (4.24) for the trace in C that the trace TrV;U,W(A)
does not depend on any choice of unit object for ⊗c in C. An exception to this
remark occurs when such a choice has been made and it appears in (4.24) as either
V, U, or W. In the following Example 5.14, the unit object for ⊗c constructed in
Example 5.12 is used for both U and W in (4.24).

Example 5.14. In this example, we show how an analogue of (1.1) can be expressed
in terms of the above development of the generalized trace in C.

Let V = (V, JV ) be finite dimensional and let Uλ = (U, JU,λ) be the unit object
for ⊗c constructed in Example 5.12, with the same notation for the internal direct
sum U = U1 ⊕ U2 and the external direct sum U = R ⊕ R. Let A : V → V be
c-linear.

V
A �� V

V ⊗ R

�

��

[A⊗IdR] ��

[IdV ⊗(P ′
1◦Q1)]

��
[IdV ⊗Q1]

��
��

��
��



�
��

��
��

�

V ⊗ R

�

��

[IdV ⊗(P ′
1◦Q1)]

��
[IdV ⊗Q1]

��
��
��
��

����
��
��
��

V ⊗ U1
[A⊗IdU1 ]

��

PU,λ
c ◦QU

1

��

QU
1 ����

���
���

��
V ⊗ U1

QU
1			

			
			

	

PU,λ
c ◦QU

1

��

V ⊗ U
PU,λ

c

			
			

			
	 [A⊗IdU ]

�� V ⊗ U
PU,λ

c

����
���

���
��

V⊗c Uλ
[A⊗cIdU ]

�� V ⊗c Uλ

The above diagram is commutative. The downward composite on the left side
is the invertible c-linear map from (5.18), and is equal to the right side. The
commutativity of every block in the diagram is easily checked. For the lowest
block, recall that lowest arrow [A⊗c IdU ] is defined as the restriction of [A⊗ IdU ]
to the subspace V ⊗c Uλ of V ⊗ U , so [A ⊗c IdU ] = PU,λ

c ◦ [A ⊗ IdU ] ◦ QU,λ
c .
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Using (5.7) and the c-linearity of A and IdU (for any JU,λ), [A ⊗c IdU ] ◦ PU,λ
c =

PU,λ
c ◦ [A⊗ IdU ] ◦QU,λ

c ◦PU,λ
c = PU,λ

c ◦QU,λ
c ◦PU,λ

c ◦ [A⊗ IdU ] = PU,λ
c ◦ [A⊗ IdU ].

Theorem 5.10 applies, withW = U = Uλ, A1 = [A⊗IdU1 ], and A2 = [A⊗cIdU ].
The hypothesis (5.10) is satisfied by the commutativity of the above diagram. The
conclusion from Theorem 5.10 is this equality of maps U → U :

TrV;Uλ,Uλ
([A⊗c IdU ])

=
1

2
Q′

1 ◦ (TrV ;U1,U1([A⊗ IdU1 ])) ◦ P ′
1

−1

2
JU,λ ◦Q′

1 ◦ (TrV ;U1,U1([JV ⊗ IdU1 ] ◦ [A⊗ IdU1 ])) ◦ P ′
1

−1

2
JU,λ ◦Q′

1 ◦ (TrV ;U1,U1([A⊗ IdU1 ])) ◦ P ′
1 ◦ JU,λ

−1

2
Q′

1 ◦ (TrV ;U1,U1([JV ⊗ IdU1 ] ◦ [A⊗ IdU1 ])) ◦ P ′
1 ◦ JU,λ.(5.19)

From the diagram,

[A⊗ IdU1 ] = [IdV ⊗ (P ′
1 ◦Q1)] ◦ [A⊗ IdR] ◦ [IdV ⊗ (P1 ◦Q′

1)],

and similarly for [JV ⊗ IdU1 ] ◦ [A⊗ IdU1 ] = [(JV ◦A)⊗ IdU1 ]. Then Theorem 3.14
applies, so that (5.19) is equal to:

=
1

2
Q′

1 ◦ P ′
1 ◦Q1 ◦ (TrV ;R,R([A⊗ IdR])) ◦ P1 ◦Q′

1 ◦ P ′
1

−1

2
JU,λ ◦Q′

1 ◦ P ′
1 ◦Q1 ◦ (TrV ;R,R([(JV ◦A)⊗ IdR])) ◦ P1 ◦Q′

1 ◦ P ′
1

−1

2
JU,λ ◦Q′

1 ◦ P ′
1 ◦Q1 ◦ (TrV ;R,R([A⊗ IdR])) ◦ P1 ◦Q′

1 ◦ P ′
1 ◦ JU,λ

−1

2
Q′

1 ◦ P ′
1 ◦Q1 ◦ (TrV ;R,R([(JV ◦A)⊗ IdR])) ◦ P1 ◦Q′

1 ◦ P ′
1 ◦ JU,λ

=
1

2
Q1 ◦ (TrV ;R,R(�

−1 ◦A ◦ �)) ◦ P1

−1

2
JU,λ ◦Q1 ◦ (TrV ;R,R(�

−1 ◦ JV ◦A ◦ �)) ◦ P1

−1

2
JU,λ ◦Q1 ◦ (TrV ;R,R(�

−1 ◦A ◦ �)) ◦ P1 ◦ JU,λ

−1

2
Q1 ◦ (TrV ;R,R(�

−1 ◦ JV ◦A ◦ �)) ◦ P1 ◦ JU,λ.(5.20)

As previously remarked, the first of the four terms in (5.20) depends only on the di-
rect sum U = R⊕R from the beginning of Example 5.12, and not on the subsequent
choices for CU and JU,λ.
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The next step uses the formula (2.7) from Example 2.13, so that (5.20) is equal
to this expression involving the real scalar trace TrV (A):

=
1

2
Q1 ◦ (TrV (A) · IdR) ◦ P1(5.21)

−1

2
JU,λ ◦Q1 ◦ (TrV (JV ◦A) · IdR) ◦ P1

−1

2
JU,λ ◦Q1 ◦ (TrV (A) · IdR) ◦ P1 ◦ JU,λ

−1

2
Q1 ◦ (TrV (JV ◦A) · IdR) ◦ P1 ◦ JU,λ

=
1

2
TrV (A) · (Q1 ◦ P1 − JU,λ ◦Q1 ◦ P1 ◦ JU,λ)

−1

2
TrV (JV ◦A) · (JU,λ ◦Q1 ◦ P1 +Q1 ◦ P1 ◦ JU,λ).(5.22)

Finally, using the formula (5.16), JU,λ = λ ·Q2 ◦P1−λ−1 ·Q1 ◦P2, (5.22) simplifies
to:

TrV;Uλ,Uλ
([A⊗c IdU ]) =

1

2
TrV (A) · IdU − 1

2
TrV (JV ◦A) · JU,λ.(5.23)

The concluding observations are that (5.23) is the claimed generalization of (1.1),
and that the first term 1

2TrV (A) · IdU does not depend on any of the extra struc-
ture on U (the direct sum, RSO, or CSO from Example 5.12). The 2 × 2 matrix
representation of (5.23) in the case λ = 1 is consistent with the calculation (4.27)
from Example 4.17.

6. Conclusion

The construction of Sections 3–5 could be adapted to other categories of vector
spaces with supplemental structures, for example, the category of vector spaces
with real structures (V, J, C) and morphisms that respect both operators. The
category C, where only some of the objects have a real structure, would also be a
natural framework for a basis-free approach to vector valued Hermitian forms on
vector spaces (or vector bundles) and using the generalized trace to compute tensor
contraction with respect to a Hermitian metric.
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