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6. Errata

The Zentralblatt Math number for reference [18] should be Zbl 0373.50005.
In reference [15], Mac Lane preferred to spell his name with a space.

7. Updates

Reference [6] will not appear under that title. The relevant material (cited on p.
468, [C1]) can be found in Reference [4], or in [C2] instead.

My contact information has changed, and the web address at the end of the
article is now obsolete. My current Purdue University Fort Wayne home page is:

http://users.pfw.edu/CoffmanA/

8. Citations

The article is cited in these papers: [G], [Slapar], [Starčič].

The following Sections of this addendum are a continuation of the consideration
of real manifolds immersed in Cn. They include some of the calculations omitted
from the paper [C1].

9. CP 2
in CP 5

, continued

This Section will examine maps from the complex projective plane to C5, con-
sidered as an affine neighborhood in CP 5. The following Example will fill in some
of the details from the t = −1/2 case of Example 5.2.

Example 9.1. Consider the following coefficient matrix:

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 + i 0 0 0 i
0 1 0 0 − 1

2 0 0 −1 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1 − 1

2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The top row is chosen so that P ◦ s ◦Δ will have an image contained in the Z0 �= 0
neighborhood. Deleting the top row and first, middle, and last columns leaves a
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2 A. COFFMAN

5 × 6 submatrix, in row-echelon form so that P has rank 6 and ker(P ) is a 3-
dimensional subspace of C9. Its last column (the eighth of nine in P ) is chosen so
that k(ker(P )), which is the following subspace of M(3,C):

{
⎛
⎝ −ic1 − (1 + i)c3 0 1

2c1 − c2
1
2c3 + c2 c3 c2

0 0 c1

⎞
⎠ : c1, c2, c3 ∈ C},

contains no matrices of rank 1, and so P ◦ s is defined for all (z, w) ∈ CP 2 ×CP 2.
Finally, the − 1

2 entries, which contribute z1z̄1 and z2z̄2 terms to the numerators of
the parametric functions, are needed so that P ◦ s ◦Δ will not have a triple point.

The composition P ◦ s ◦Δ : CP 2 → CP 5 is defined for all of CP 2. By inspection
of the parametric map taking [z0 : z1 : z2] to:

[z0z̄0 + (1 + i)z1z̄1 + iz2z̄2 : (z0 − z1
2

− z2)z̄1 : z0z̄2 : z1z̄0 : z1z̄2 : z2(z̄0 + z̄1 − z̄2
2
)],

the image of P ◦ s ◦Δ does not meet the Z0 = 0 hyperplane.
The singular locus of P ◦ s is a complex algebraic subvariety of the domain

CP 2×CP 2. In order to find its intersection with the image of Δ, it will be enough
to check the Jacobian matrix of P ◦ s, considered as a map C4 → C5 when it is
restricted to three of the nine affine charts in the domain, and the Z0 �= 0 chart in
the target. For example, the restriction of P ◦s to the z0 �= 0, w0 �= 0 neighborhood
defines a map

(z1, z2, w1, w2) �→ (
P1(z, w)

P0(z, w)
, . . . ,

P5(z, w)

P0(z, w)
).

The locus where the rank drops is the common zero locus of five 4×4 determinants,
which will be inhomogeneous rational functions in z1, z2, w1, w2. Since the image of
Δ does not meet the zero locus of the denominators (which are powers of P0), it is
enough to consider the numerators of these rational functions, and re-introduce z0
and w0 to get five bihomogeneous polynomials which define a subset of {(z, w) ∈
CP 2 ×CP 2 : z0 �= 0, w0 �= 0, P0(z, w) �= 0}. Repeating this procedure for the other
charts in the domain will give other subsets of CP 2 × CP 2, but with significant
overlaps, and which satisfy the same bihomogeneous polynomial equations. Using
Maple software to assist with the computations, these polynomials are:

z1w2(2w2z2 − 2w2z0 + (−2 + 2i)w1z1 + w2z1),(9.1)

z1w2((1 + i)w2z2 − 2w1z1 − 2z1w0 + w2z1),(9.2)

z1((−2 + 2i)z1w
2
0 + (−4 + 4i)z2w

2
0 − 8w2

1z1 + (−2 + 2i)w2w0z0

+(1− i)w2z1w0 + (4 + 4i)w1w2z2 + (−10 + 2i)w1z1w0

+(4− 4i)w1w0z0 + (2− 2i)w2z2w0 + 4w1w2z1 + (4 − 4i)z0w
2
0),(9.3)

w2(4z
2
2w2 + 2z1w2z2 + (−4 + 4i)z1w1z2 − (4 + 2i)w2z2z0 − iz0w2z1

+2iw2z
2
0 + 4iz2z0w0 − 4iw1z

2
0 + 2iw1z1z0 + 2iz1z0w0 − 4iz20w0),(9.4)

z0(−2w0 − 2w1 + w2)(2z0w0 − z1w0 − (2 + 2i)z1w1)

−2z2((1 − 2i)z0w0w2 + iz1w0w2 + 2iz2w2w0 − z1w1w2 − 2z0w
2
0).(9.5)

The real diagonal image of Δ, [w0 : w1 : w2] = [z̄0 : z̄1 : z̄2], meets this locus in a
real algebraic variety, which (again, according to Maple) consists of exactly three
points, x1 = Δ([1 : 0 : 1]), x2 = Δ([1 : −1 : 0]), and x3 = Δ([ i2 : −i : 1]).
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To verify this, first, it is left to the reader to check that these three points are
in the common zero locus of equations (9.1)–(9.5), and are indeed elements of the
singular locus of P ◦ s.

Second, suppose there is some [z0 : z1 : z2] ∈ CP 2 with z0 = 0 and z1 �= 0, z2 �= 0,
whose image under Δ satisfies equation (9.5). Then 2z2z1z̄1z̄2 = 0, contradicting
the non-zero hypothesis, so there are no such points in the singular locus.

The next case is where z1 = 0. Any point Δ([z0 : 0 : z2]) satisfies (9.1)–(9.3),
and (9.4) then implies

z̄2(4z
2
2 z̄2 − (4 + 2i)z0z2z̄2 + 2iz20 z̄2 + 4iz0z2z̄0 − 4iz20 z̄0)

= 2z̄2(z0 − z2)(−2z2z̄2 − 2iz0z̄0 + iz0z̄2) = 0.

One of the solutions is z0 = z2, which gives the point x1. Another could be
z1 = z2 = 0, but then (9.5) would imply z0 is also zero. A third possibility is
that the last factor is zero, but in fact that quantity is nonvanishing except at
z0 = z2 = 0. One way to see this is to write it as a sum of squares:

−2z2z̄2 − 2iz0z̄0 + iz0z̄2 =

√
7− (21 + 8

√
7)i

21
|z0 + −1 + (8− 3

√
7)i

4
z2|2

+
−21− 8

√
7 +

√
7i

21
|−8 + 3

√
7− i

4
z0 + z2|2.

The next case is z2 = 0, z1 �= 0, so that (9.5) becomes

2z0(z̄0 + z̄1)(−2z0z̄0 + z1z̄0 + (2 + 2i)z1z̄1) = 0.

One of the solutions is z1 = −z0, which gives x2, and another, z0 = z2 = 0, would
imply z1 = 0 when substituted into (9.3). Also, as in the previous case, the last
factor is a sum of squares with no nonzero solutions:

−2z0z̄0 + z1z̄0 + (2 + 2i)z1z̄1

=
−47 + 8

√
47 +

√
47i

47
|z0 + −1 + (−8−√

47)i

4
z1|2

+
47− 9

√
47 + (47− 7

√
47)i

47
|−7−√

47 + (9 +
√
47)i

8
z0 + z1|2.

Finally, the remaining case is that all three projective coordinates are nonzero,
so that z2 can be assumed to be 1, and equating the nonlinear factors of (9.1) and
(9.2) to zero gives:

0 = 2− 2z0 + (−2 + 2i)z̄1z1 + z1,

0 = (1 + i)− 2z̄1z1 − 2z1z̄0 + z1.

This seems to be a difficult system to solve by hand. One approach might be to
take the real and imaginary parts, z0 = u+iv, z1 = x+iy, to get four real quadratic
equations in u, v, x, y, and then find the real solutions from a (computer assisted)
calculation of a standard basis. Another might be to solve the first equation for
z0 and substitute into the second, to get two real cubic equations in x, y. Then
inspecting a graph of real cubic curves will show that their only common solution
is (x, y) = (0,−1). So, z1 = x+ iy = −i gives the point x3.

The images of the three points, x1, x2, x3, under P ◦ s are

X1 = [1 : 0 :
1− i

2
: 0 : 0 :

1− i

4
],
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X2 = [1 :
−6 + 3i

10
: 0 :

i− 2

5
: 0 : 0],

X3 = [1 :
−52 + 12i

89
:
16 + 10i

89
:
−10 + 16i

89
:
−32− 20i

89
:
6 + 26i

89
],

which are the candidates for complex jump points in the image of CP 2. (They are
also candidates for differential-topological singularities.)

The real tangent planes at these points are found by considering the restriction
of P ◦ s ◦Δ to the z0 = 1 affine neighborhood, so that P ◦ s ◦Δ : R4 → R10 is given
by

(z1, z2) �→ (Re(
P1

P0
), Im(

P1

P0
), . . . , Im(

P5

P0
)),

and at each point z in the domain, there is a real 10 × 4 Jacobian matrix Dz of
derivatives whose image is a four-dimensional subspace Tz of R10.

It turns out that at each point x1, x2, x3, the real Jacobian matrix has full rank.
This is enough to prove that P ◦ s ◦Δ is an immersion.

In C
5, the scalar multiplication map �v �→ i·�v is real-linear, and induces a complex

structure operator J on R10, which is a 10× 10 block matrix with five

(
0 −1
1 0

)

blocks on the diagonal. The concatenation of Dz with J ·Dz, a 10×8 matrix, maps
R8 to R10 so that the image subspace is the sum Tz + JTz; it is 8-dimensional at
totally real points where Tz and JTz meet only at the origin, but 6-dimensional at
the three complex jump points. So, x1, x2, x3 are not “exceptionally exceptional,”
that is, none of the tangent spaces is a complex 2-plane, but instead each contains
exactly one complex line. In the notation of Section 3, N1 = {x1, x2, x3}, and N2 =
Ø.

To illustrate the idea, the procedure for finding Tz will be recorded here only for
z = x1.

Dx1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 −1/2 −1/2
0 0 −1/2 −1/2
1/2 1/2 0 0
−1/2 1/2 0 0
1/2 1/2 0 0
−1/2 1/2 0 0
1/2 −1/2 −1/2 1/2
−1/2 −1/2 0 1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

has rank 4, but [Dx1 , J ·Dx1 ]10×8 has rank 6. A basis for its kernel is

{(1,−3, 4,−4, 3, 1, 0, 0)T , (3, 1, 0, 0,−1, 3,−4, 4)T},
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and the following equation shows that the image of Dx1 contains a J-invariant
subspace:

Dx1 ·

⎛
⎜⎜⎝

1
−3
4

−4

⎞
⎟⎟⎠ = J ·Dx1 ·

⎛
⎜⎜⎝

−3
−1
0
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
−1
−2
−1
−2
−2
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= J ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
−2
1
−2
1
−1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The span of (0, 0, 0, 0,−1,−2,−1,−2,−2,−1)T and its image under J is the com-
plex line {Z1 = Z2 = Z3 − Z4 = (45 − 3

5 i)Z3 − Z5 = 0}. Similar calculations for x2

and x3 yield different complex lines tangent to CP 2 in C5.
It remains to check that P ◦ s ◦ Δ is one-to-one except for two double points.

First, consider those points in the image such that all three coordinates, z0, z1, and
z2, in the domain are nonzero, and P ◦ s ◦Δ restricts to a map:

[z0 : z1 : 1] �→ [
P0

z1
:
P1

z1
:
z0
z1

: z̄0 : 1 :
P5

z1
].

This map is clearly one-to-one from {(z0, z1) ∈ C2 : z0 �= 0, z1 �= 0} to C5. Points
on the line {[0 : z : 1]} are mapped to

[(1 + i)zz̄ + i : (−z/2− 1)z̄ : 0 : 0 : z : z̄ − 1

2
],

and a calculation will show this restriction is one-to-one, with an image disjoint
from the previous image. The next subset of the domain is {[z : 0 : 1]}, whose
points are mapped to

[zz̄ + i : 0 : z : 0 : 0 : z̄ − 1

2
].

This restriction has an image disjoint from the first image, and from the second
image, except for their point of intersection [0 : 0 : 1] in the domain. However, it is

not one-to-one: both values z = 1
4 + (−2 ± 3

4

√
7)i are mapped to the same image

point. Another line in the domain is {[1 : z : 0]}, whose points are mapped to

[1 + (1 + i)zz̄ : (1− z/2)z̄ : 0 : z : 0 : 0];

the image is disjoint from the previous three images, but this restriction is also

not one-to-one, since z = 7+
√
47

8 + −9−√
47

8 i and z = 7−√
47

8 + −9+
√
47

8 i have the
same image. The only remaining point in the domain is [0 : 1 : 0], whose image,
[1 + i : − 1

2 : 0 : 0 : 0 : 0], is not in any of the above images. As in Example 5.1,
P ◦ s ◦ Δ maps the complex projective lines {[z0 : 0 : z2]} and {[z0 : z1 : 0]} in
the domain into two-dimensional complex subspaces in the range, falling into the
Example 4.9 case of the classification from Theorem 4.3.
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Example 9.2. Consider the coefficient matrix from Example 5.3:

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 + i 0 0 0 i
−1 1 0 0 − 1

2 0 0 −1 1
9

0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
− 3

2 0 0 0 0 0 1 1 − 1
2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The entries differ from the previous P matrix only by contributing some more ziz̄i
terms to the quadratic polynomials in the parametrization. The composite map
(P ◦ s ◦Δ)([z0 : z1 : z2]) is:

[z0z̄0 + (1 + i)z1z̄1 + iz2z̄2 : (z0 − 1

2
z1 − z2)z̄1 − z0z̄0 +

1

9
z2z̄2

: z0z̄2

: z1z̄0

: z1z̄2

: z2(z̄0 + z̄1 − 1

2
z̄2)− 3

2
z0z̄0].

It is defined for all of CP 2, and its image does not meet the Z0 = 0 hyperplane.
k(ker(P )) is the following subspace of M(3,C):

{
⎛
⎝ 18c2 0 −c3 + (45 + 7i)c2 + (2 + 7i)c1

c3 18c1 c3 + (−18 + 2i)c2 + (−11 + 2i)c1
0 0 18ic2 + (−18 + 18i)c1

⎞
⎠ : c1, c2, c3 ∈ C},

and it contains no matrices of rank 1, so P ◦s is defined for all (z, w) ∈ CP 2×CP 2.
The singular locus of P ◦ s is defined by bihomogeneous polynomial equations as

in the previous examples. Using Maple software to assist with the computations,
these polynomials are:

z1w2((−18 + 18i)w1z1 + (11− 2i)w2z1 + 18w2z2 − 18w2z0),(9.6)

z1w2((−1− i)w2z2 + 2w1z1 − w2z1 + 2z1w0),(9.7)

z1((−36− 36i)w2
1z1 + (18 + 18i)w2w1z1 + (36 + 54i)w1z1w0

+(−15− 51i)w2z1w0 + (18 + 36i)z1w
2
0 + (14− 90i)w2z2w0

+36iw1w2z2 − 36z2w
2
0 + 36w1w0z0 + (54i− 18)w2w0z0 + 36w2

0z0),(9.8)

w2((−36− 36i)z2w1z1 + (4 + 22i)w2z1z2 + (72 + 90i)w1z1z0

+(−15− 51i)w2z1z0 + (18 + 36i)z1z0w0 + (14− 126i)w2z2z0

+36iw2z
2
2 − 36z2z0w0 + 36w1z

2
0 + (−18 + 54i)w2z

2
0 + 36w0z

2
0),(9.9)

(−14 + 4i)w2z2w1z1 + (4 + 22i)w2z1z2w0 + (−36− 36i)w2
1z1z0

+(18 + 18i)w2w1z1z0 + (36 + 54i)w1z1w0z0 + (−15− 51i)w2z1w0z0

+(18 + 36i)z1z0w
2
0 + 36iw2z

2
2w0 + (14− 126i)w2z2z0w0

−36z2z0w
2
0 + 36w1w0z

2
0 + (−18 + 54i)w2w0z

2
0 + 36w2

0z
2
0 .(9.10)

The real diagonal image of Δ, [w0 : w1 : w2] = [z̄0 : z̄1 : z̄2], meets this locus in
exactly three points, x1 = Δ([1 : 0 : 3]), x2 = Δ([1 : 2 : 0]), and x3 = Δ([9 + 28i :
−18− 63i : 54− 30i]).

It is easy to check that these three points are in the common zero locus of
equations (9.6)–(9.10), and are indeed elements of the singular locus of P ◦ s.
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Suppose there is some [z0 : z1 : z2] ∈ CP 2 with z0 = 0 and z1 �= 0, z2 �= 0,
whose image under Δ satisfies equation (9.10). Then z1z̄1z2z̄2 = 0, contradicting
the non-zero hypothesis, so there are no such points in the singular locus.

The next case is where z1 = 0. Any point Δ([z0 : 0 : z2]) satisfies (9.6)–(9.8),
and (9.9) then implies

z̄2(36 + 36iz̄2z
2
2 + (14− 126i)z̄2z2 − 36z2 + (−18 + 54i)z̄2) = 0.

z1 and z2 cannot both be 0, by (9.10). A solution is z2 = 3, giving the point x1.
It is not obvious on inspection, and the sum of squares trick from the previous
Example doesn’t immediately apply, but it can be checked that z2 = 3 is the only
solution in this case.

The next case is z2 = 0, z1 �= 0, so that (9.10) becomes

18z0(2z̄1z̄0z0 + (2 + 3i)z̄0z1z̄1 + 2z̄20z0 + (−2− 2i)z1z̄
2
1 + (1 + 2i)z̄20z1).

A solution is z0 = 1, z1 = 2, which gives x2, and another, z0 = z2 = 0, would
imply z1 = 0 when substituted into (9.8). As in the previous case, the x2 solution
is unique.

Finally, the remaining case is that all three projective coordinates are nonzero,
so that z2 can be assumed to be 1, and equating the nonlinear factors of (9.6) and
(9.7) to zero gives:

0 = (−18 + 18i)z̄1z1 + (11− 2i)z1 + 18− 18z0,

0 = −1− i+ 2z̄1z1 − z1 + 2z1z̄0.

This seems to be a difficult system to solve by hand. One approach might be to
take the real and imaginary parts, z0 = u+iv, z1 = x+iy, to get four real quadratic
equations in u, v, x, y, and then find the real solutions from a (computer assisted)
calculation of a standard basis. Another might be to solve the first equation for
z0 and substitute into the second, to get two real cubic equations in x, y. Then
inspecting a graph of real cubic curves will show that they meet only once, giving
the point x3.

The images of the three points, x1, x2, x3, under P ◦ s are

X1 = [1 + 9i : 0 : 3 : 0 : 0 : −3],

X2 = [5 + 4i : −1 : 0 : 2 : 0 : −3

2
],

X3 = [10316 + 16218i : −10863− 7758i : −708 + 3564i

: −3852− 126i : 1836− 7884i : −5283 + 4320i],

which are the candidates for complex jump points in the image of CP 2.
The real tangent planes at these points are found by considering the restriction

of P ◦ s ◦Δ to the z0 = 1 affine neighborhood, so that P ◦ s ◦Δ : R4 → R10 is given
by

(z1, z2) �→ (Re(
P1

P0
), Im(

P1

P0
), . . . , Im(

P5

P0
)),

and at each point z in the domain, there is a real 10 × 4 Jacobian matrix Dz of
derivatives whose image is a four-dimensional subspace Tz of R10.

It turns out that at each point x1, x2, x3, the real Jacobian matrix has full rank.
This is enough to prove that P ◦ s ◦Δ is an immersion.

The concatenation of Dz with J ·Dz gives a 10×8 matrix, which maps R8 to R10

so that the image subspace is the sum Tz + JTz; it is 8-dimensional at totally real
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points where Tz and JTz meet only at the origin, but 6-dimensional at the three
complex jump points. So, x1, x2, x3 are not “exceptionally exceptional,” that is,
none of the tangent spaces is a complex 2-plane, but instead each contains exactly
one complex line. In the notation of Section 3, N1 = {x1, x2, x3}, and N2 = Ø.

The procedure for finding Tz will be recorded here only for z = x1.

Dx1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1/41 9/41 1/123 0
9/41 1/41 −3/41 0
0 0 −121/3362 −9/82
0 0 351/3362 −1/82

1/82 9/82 0 0
−9/82 1/82 0 0
3/82 27/82 0 0

−27/82 3/82 0 0
3/82 −27/82 40/1681 9/82

−27/82 −3/82 9/1681 1/82

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

has rank 4, but [Dx1 , J ·Dx1 ]10×8 has rank 6. A basis for its kernel is

{(1, 0, 6,−54/41, 0, 1, 0, 240/41)T, (0,−1, 0,−240/41, 1, 0, 6,−54/41)T},
and the following equation shows that the image of Dx1 contains a J-invariant
subspace:

Dx1 ·

⎛
⎜⎜⎝

0
1
0

240
41

⎞
⎟⎟⎠ = J ·Dx1 ·

⎛
⎜⎜⎝

1
0
6

− 54
41

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9
41
1
41− 1080
1681− 120
1681
9
82
1
82
27
82
3
82

1053
3362
117
3362

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= J ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
41− 9
41− 120

1681
1080
1681
1
82− 9
82
3
82− 27
82

117
3362− 1053
3362

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

At x2, the complex line in the tangent space is spanned by �v2 = Dx2 · (1, 7, 0,−2)T

and J · �v2, and at x3, the complex line in the tangent space is spanned by �v3 =
Dx2 · (−865/756, 0, 703/504, 1)T and J · �v3.

It remains to check that P ◦ s ◦Δ is one-to-one. First, consider those points in
the image such that all three coordinates, z0, z1, and z2, in the domain are nonzero,
and P ◦ s ◦Δ restricts to a map:

[z0 : z1 : 1] �→ [
P0

z1
:
P1

z1
:
z0
z1

: z̄0 : 1 :
P5

z1
].

This map is clearly one-to-one from {(z0, z1) ∈ C2 : z0 �= 0, z1 �= 0} to C5. Points
on the line {[0 : z : 1]} are mapped to

[(1 + i)zz̄ + i : (−1

2
z − 1)z̄ +

1

9
: 0 : 0 : z : z̄ − 1

2
],

and points on the line {[z : 0 : 1]} are mapped to

[zz̄ + i :
1

9
− zz̄ : z : 0 : 0 : z̄ − 1

2
− 3

2
zz̄].
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The images of these restrictions are disjoint from the previous image, and from
each other, excepting their point of intersection [0 : 0 : 1] in the domain. Some
calculations will show they are one-to-one. Another line in the domain is {[1 : z :
0]}, whose points are mapped to

[1 + (1 + i)zz̄ : z̄ − 1

2
zz̄ − 1 : 0 : z : 0 : −3

2
],

and this image is also disjoint from the previous images, and obviously one-to-one.
The only remaining point in the domain is [0 : 1 : 0], whose image, [1 + i : − 1

2 : 0 :
0 : 0 : 0], is not in any of the above images.

Example 9.3. This will give a few more details on the matrix from Example 5.4.

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The first five rows are the coefficients of Whitney’s embedding of CP 2 in C4, from
Example 2.5. Adding the last row makes a rank 6 matrix, and defines a map
P ◦ s : CP 2 × CP 2 → CP 5 taking ([z0 : z1 : z2], [w0 : w1 : w2]) to:

[w0z0 + w1z1 + w2z2 : w2z1 : w0z2 : w1z0 : w0z0 − w1z1 : w1z2].

The kernel of P is a three-dimensional subspace of C9, and the kernel’s image under
k is the set

{
⎛
⎝ c1 c3 0

0 c1 0
c2 0 −2c1

⎞
⎠ : c1, c2, c3 ∈ C}.

The matrices in this subspace with rank ≤ 1 form exactly two lines, where c1 =
c2 = 0, or c1 = c3 = 0. The first line is spanned by⎛

⎝ 0 1 0
0 0 0
0 0 0

⎞
⎠ =

⎛
⎝ 1

0
0

⎞
⎠ · (0, 1, 0),

so P ◦ s is not defined at the point x0 = ([0 : 1 : 0], [1 : 0 : 0]). The only other point
at which P ◦ s is not defined is x1 = ([1 : 0 : 0], [0 : 0 : 1]).

The composition P ◦s◦Δ : CP 2 → CP 5 is defined for all of CP 2, since x0 and x1

are not in the image of Δ. By inspection of the parametric map taking [z0 : z1 : z2]
to:

[z0z̄0 + z1z̄1 + z2z̄2 : z1z̄2 : z2z̄0 : z0z̄1 : z0z̄0 − z1z̄1 : z2z̄1],

the image of P ◦ s ◦ Δ does not meet the Z0 = 0 hyperplane, and in the affine
neighborhood with the coordinate system [1 : Z1 : Z2 : Z3 : Z4 : Z5], the image is
contained in the 7-dimensional real subspace {Z4 = Z̄4, Z5 = Z̄1}. P ◦ s ◦Δ is a
one-to-one immersion, since it is a smooth graph over Whitney’s example.

The singular locus of P ◦s is a complex analytic subvariety of the domain (CP 2×
CP 2) \ {x0, x1}. In order to find its intersection with the image of Δ, it will be
enough to check the Jacobian matrix of P ◦ s, restricted to three of the nine affine
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charts in the domain, and the Z0 �= 0 chart in the target. The bihomogeneous
polynomial defining equations are

−z0w0w2z2 − w1z1w2z2 + 2z0w0w1z1,

w1z2(w2z2 − w1z1),

w0z2(w2z2 − 2w1z1),

−z0w1(w2z2 − 2w1z1),

−w2
1z

2
2 .

The real diagonal image of Δ meets this locus at exactly three points, x2 = Δ([1 :
0 : 0]), x3 = Δ([0 : 1 : 0]), and x4 = Δ([0 : 0 : 1]). The images of these three points
under P ◦ s are

X2 = [1 : 0 : 0 : 0 : 1 : 0],

X3 = [1 : 0 : 0 : 0 : −1 : 0],

X4 = [1 : 0 : 0 : 0 : 0 : 0],

which are the candidates for complex jump points in the embedded CP 2.
The real tangent planes at these points are found by considering the image of

the real jacobian map of restrictions to affine neighborhoods, P ◦ s ◦Δ : R4 → R10.
At X3, the tangent 4-plane is {Z2 = Z4 = 0, Z5 = Z̄1}, which contains the Z3-
axis. At X4, the tangent 4-plane is {Z3 = Z4 = 0, Z5 = Z̄1}, which contains the
Z2-axis. The unusual point is X2, where the tangent space is the complex 2-plane
{Z1 = Z4 = Z5 = 0}, which, by the codimension formula for complex tangents, is
a topologically unstable phenomenon; this submanifold is not in general position.

10. Embedding S4
in Cn

There is a more direct, algebraic approach to finding complex tangents of real
algebraic varieties, without looking at the complexification. The idea is to work
with the implicit equations (which could be derived from a parametric map), and
compute the equations for the tangent bundle and its image under J . The intersec-
tion will be the union of the variety and the complex tangent lines. This method
will be demonstrated for some standard embeddings of spheres in affine space. Let
Rn have coordinates {e1, . . . , en}, and consider it as the e0 = 1 neighborhood of
RPn.

Example 10.1. S4, as a smooth hypersurface in R5, is given by the equation
5∑

i=1

e2i = 1. As a real projective algebraic variety, it is the zero set of the quadric

−e20 + e21 + e22 + e23 + e24 + e25.

R5, considered as the subspace e6 = 0 of the space

F 3 = (R6,

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
),

contains, like any other hyperplane, a J-invariant subspace of real dimension 4, in
this case spanned by {e1, e2, e3, e4}.
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Let {r1, . . . , r6} denote the fiber coordinates in the real tangent bundle TF of
F ; TF has the obvious almost complex structure, also denoted J . S4 is the affine

variety defined by the ideal (

5∑
i=1

e2i − 1, e6).

The tangent bundle TS4 is a subbundle of the restriction of TF to S4. Generic
fibers of TS4 will have 1 complex direction. The expected codimension of the set
of CR singular points is 4; at such singular points p, TpS

4 is a complex 2-subspace
of (TpF, Jp).

TS4 is also an affine variety in TF , given by the ideal (f1, f2, g1, g2):

f1 =

5∑
i=1

e2i − 1

f2 = e6

g1 = 2e1r1 + 2e2r2 + 2e3r3 + 2e4r4 + 2e5r5

g2 = r6.

In general, the {fi} are the equations (in e1, . . . , e2n) defining the variety, and

gi is the polynomial

(
∂fi
∂eb

)⎛
⎜⎝

r1
...

r2n

⎞
⎟⎠.

The operator J acts on each fiber of TS4 and the image JTS4 is another affine
variety in TF , given by the ideal (f1, f2, g

′
1, g

′
2):

g′1 = −2e2r1 + 2e1r2 − 2e4r3 + 2e3r4 + 2e5r6

g′2 = −r5.

In general, g′i is the polynomial

(
∂fi
∂eb

)
J

⎛
⎜⎝

r1
...

r2n

⎞
⎟⎠.

The intersection TS4 ∩ JTS4 is the variety given by the ideal generated by the
concatenation of the generating sets. Some simplification occurs when Macaulay

computes a standard (Gröbner) basis of the ideal. In particular, redundant poly-
nomials are removed, and terms involving r5 and r6 drop out since these variables
are already in the ideal. The ideal defining TS4 ∩ JTS4 is given by the basis

f1 =
5∑

i=1

e2i − 1

f2 = e6

g′′1 = e1r1 + e2r2 + e3r3 + e4r4

g′′2 = e2r1 − e1r2 + e4r3 − e3r4

g′′3 = r5

g′′4 = r6.
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Obviously, the intersection contains S4 × {�0}. In a given fiber TpF , the g′′

equations define four planes meeting transversely, and so in a 2-dimensional inter-
section, except when e1 = e2 = e3 = e4 = 0, in which case the intersection is
4-dimensional. These exceptional planes are tangent to S4 at (0, 0, 0, 0,±1, 0), and
are the J-invariant planes parallel to the complex subspace e5 = e6 = 0 in F . The
orientations of these two planes, inherited from any given orientation on S4, are
opposite. One is complex, the other “anticomplex.”

Example 10.2. For a generic embedding of S4 in C4, the previous embedding
in C

3 could be composed with a real-linear map into C
4 so that the image of the

original ambient R5 has one complex direction in C4. One could also consider R5

with some operator giving it the structure C ⊕ R3. The following approach will
instead include R5 in R5 ⊕R3 ∼= C4, and then use a complex structure operator so
that the space spanned by {e1, . . . , e5} is generic with respect to the new operator.
For example, let

F 4 = (R8,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
).

The defining ideal for TS4 is essentially the same as before:

f1 =

5∑
i=1

e2i − 1

f2 = e6

f3 = e7

f4 = e8

g1 = 2e1r1 + 2e2r2 + 2e3r3 + 2e4r4 + 2e5r5

g2 = r6

g3 = r7

g4 = r8.

The ideal for JTS4 is generated by (fi, g
′
i), with:

g′1 = −2e2r1 + 2e1r2 + 2e5r6 + 2e3r7 + 2e4r8

g′2 = −r5

g′3 = −r3

g′4 = −r4.

The standard basis of the ideal defining their intersection is

(f1, e6, e7, e8, r3, r4, r5, r6, r7, r8, e1r1 + e2r2, e2r1 − e1r2).

Most tangent planes are totally real; at each p ∈ S4, the equations in the fiber
coordinates are eight intersecting planes. At CR singular points, the intersection is
not transverse; the planes intersect in a J-invariant 2-plane exactly when e1 = e2 =
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0. Along this set N1, the complex tangents are the planes spanned by {r1, r2},
parallel to the complex subspace spanned by {(1, 0, . . . , 0), (0, 1, 0, . . . , 0)} in F 4.
This is a trivial bundle, consistent with the formula of [Webster] for the chern
class:

∫
N1

c1H
1 = p1S

4 = 0.

Using the analogous embedding in higher dimensions and a similar complex
structure operator, a sphere Sn in C

n has complex tangent locus N1 equal to the
(n − 2)-sphere, e1 = e2 = 0, and N2 = Ø. H1 is still trivial, and normal to the
tangent bundle TN1, again consistent with characteristic class formulas, as is the
nonexistence of higher-order complex tangents.

Example 10.3. Any submanifold immersed in a totally real R5 is totally real.
The computations in the previous examples could be carried out again for S4 and
a suitable complex structure on C5, and then the varieties TS4 and JTS4 would
intersect exactly in S4 × {�0}. Similarly, Sn embeds as a totally real, real algebraic
submanifold of Cn+1 for n ≥ 0.

11. Immersed Spheres

For purposes of comparison to Example 4.9, these examples will review some
totally real immersions of spheres. The alternative method for detecting complex
tangents will work on these examples also.

Given the n-sphere x2
1+ . . .+x2

n+a2 = 1 in Rn+1, [Weinstein] gave the following
totally real immersion of this sphere into Cn:

j(x1, . . . , xn, a) = (x1(1 + 2ia), . . . , xn(1 + 2ia)).

The image has a single self-intersection at the origin. By eliminating the a
variable from the immersion map, the image can be described as a real algebraic
variety. The cases n = 1 and n = 2 are reviewed here, the remaining being similar.
Cn will have coordinates zr = xr + iyr.

Example 11.1. Eliminating a from the equations x2
1+a2 = 1 and y1 = 2ax1 gives

the single equation y21 = 4x2
1(1 − x2

1), an “eight curve” in C1 ([L]). This is the
prototypical transverse self-intersection for the higher dimensional spheres.

Example 11.2. The equations are homogenized by introducing x0. Eliminating
a from the equations x2

1 + x2
2 + a2 = x2

0, x0y1 = 2ax1, and x0y2 = 2ax2 gives the
following ideal:

x0(x2y1 − x1y2)

x2
0y

2
1 − 4x2

1(x
2
0 − x2

1 − x2
2)

x2
0y

2
2 − 4x2

2(x
2
0 − x2

1 − x2
2)

x2
0y1y2 − 4x1x2(x

2
0 − x2

1 − x2
2)

(x2y1 − x1y2)(x
2
1 + x2

2).

Considering only the affine subset x0 = 1, the following three polynomials define
the same zero set:

f1 = x2y1 − x1y2

f2 = y21 − 4x2
1(1− x2

1 − x2
2)

f3 = y22 − 4x2
2(1− x2

1 − x2
2).
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Banchoff and Farris (reference [2] of [C1]) use a similar immersion in the n = 2
case, but give it in terms of an analytic parametrization with domain 0 ≤ u ≤ 2π,
−π

2 ≤ v ≤ π
2 :

x1 = cos(u) cos(v)

y1 = − cos(u) sin(v) cos(v)

x2 = sin(u) cos(v)

y2 = − sin(u) cos(v) sin(v).

Let {r1, . . . , r4} denote the fiber coordinates in the real tangent bundle TF of
F = C2 The tangent planes and their images under J are given by the equations

g1 = −y2r1 + y1r2 + x2r3 − x1r4

g2 = 16x3
1r1 + 8x1x

2
2r1 + 8x2

1x2r2 − 8x1r1 + 2y1r3

g3 = 8x1x
2
2r1 + 8x2

1x2r2 + 16x3
2r2 − 8x2r2 + 2y2r4

g′1 = −x2r1 + x1r2 − y2r3 + y1r4

g′2 = 16x3
1r3 + 8x1x

2
2r3 + 8x2

1x2r4 − 2y1r1 − 8x1r3

g′3 = 8x1x
2
2r3 + 8x2

1x2r4 + 16x3
2r4 − 2y2r2 − 8x2r4.

At the self-intersection at the origin, these six equations are all zero. However, by
homogenizing and computing the quotient ideal (f1, . . . , g

′
3) : (x1, y1, x2, y2), it can

be seen that the tangent bundle is totally real outside this point. In particular, the
polynomials x4

0(r
2
1 +r23)

2 and x4
0(r

2
2 +r24)

2 are in the quotient ideal, so in the x0 = 1
neighborhood, all the r coordinates must be zero. At the origin, the tangent cone
is the union of the two totally real planes (y1 − 2x1, y2 − 2x2), (y1 +2x1, y2 +2x2).

This method of finding complex tangents, or demonstrating the “totally real”
property, by computing the implicit equations for the image of a parametric map,
and then the equations for the tangent bundle and its image under J , seems com-
putationally intractable for more complicated varieties. Finding singularities in the
complexification is an easier computation.

12. Some implicit equations

The method of “eliminating parameters” takes a parametric map and finds
implicit equations for the smallest algebraic variety containing the image of the
parametrization.

Example 12.1. Recall Whitney’s embedding of CP 2 into C3 ⊕ R:

[z1 : z2 : z3] �→ 1

|z1|2 + |z2|2 + |z3|2 (z2z3, z3z1, z1z2, |z1|
2 − |z2|2).

Expanding the real and imaginary parts of these rational functions in terms of
zk = xk + iyk defines a quadratically parameterized map RP 5 → RP 7 with image



ADDENDUM: CR SINGULAR IMMERSIONS OF COMPLEX PROJECTIVE SPACES 15

diffeomorphic to CP 2, contained in the affine neighborhood e0 = 1:

e0 = x2
1 + x2

2 + x2
3 + y21 + y22 + y23

e1 = x2x3 + y2y3

e2 = y2x3 − x2y3

e3 = x1x3 + y1y3

e4 = x1y3 − y1x3

e5 = x1x2 + y1y2

e6 = y1x2 − x1y2

e7 = x2
1 + y21 − x2

2 − y22 .

Let I be the ideal in R[e0, . . . , e7, x1, . . . , y3] generated by the polynomials

e0 − (x2
1 + x2

2 + x2
3 + y21 + y22 + y23)

e1 − (x2x3 + y2y3)

...

e7 − (x2
1 + y21 − x2

2 − y22).

A standard basis of this ideal has 97 elements. Twenty of them (listed below)
are polynomials in only the ek’s.

The ideal I20 generated by these twenty elements, considered as elements of
R[e0, . . . , e7], defines a projective variety V20 of real codimension three. The affine
part V20 ∩ {e0 = 1} is the smallest affine algebraic variety containing the image of
the parameterization. It is not clear whether this is exactly the image of Whitney’s
embedding; there may be points in RP 7 that satisfy all twenty equations, but that
are not of the form 1

|z1|2+|z2|2+|z3|2 (z2z3, z3z1, z1z2, |z1|2 − |z2|2). Such points all lie

in a subvariety of strictly larger codimension.
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f1 = e23e4 + e34 + e0e2e5 + 2e4e
2
5 + e0e1e6 + 2e4e

2
6 − e0e4e7 − e2e5e7 − e1e6e7 + e4e

2
7

f2 = e33 + e3e
2
4 − e0e1e5 + 2e3e

2
5 + e0e2e6 + 2e3e

2
6 − e0e3e7 + e1e5e7 − e2e6e7 + e3e

2
7

f3 = e2e3e5 + e1e4e5 + e1e3e6 − e2e4e6

f4 = e2e3e4 + e1e
2
4 + e0e4e6 + 2e2e5e6 + 2e1e

2
6 − e4e6e7

f5 = e2e
2
3 + e2e

2
4 + e0e4e5 + 2e2e

2
5 + e0e3e6 + 2e2e

2
6 − e4e5e7 − e3e6e7

f6 = e22e5 − e24e5 + e1e2e6 − e3e4e6 − e2e4e7

f7 = e22e3 + e1e2e4 + e0e2e6 + 2e4e5e6 + 2e3e
2
6 + e2e6e7

f8 = e1e3e4 − e2e
2
4 − e0e4e5 − 2e2e

2
5 − 2e1e5e6 + e4e5e7

f9 = e1e
2
3 + e1e

2
4 − e0e3e5 + 2e1e

2
5 + e0e4e6 + 2e1e

2
6 + e3e5e7 − e4e6e7

f10 = e1e2e5 + e3e4e5 − e22e6 + e23e6 + e2e3e7

f11 = e1e2e3 − e22e4 − e0e2e5 − 2e4e
2
5 − 2e3e5e6 − e2e5e7

f12 = e21e6 + e22e6 − e23e6 − e24e6 − e2e3e7 − e1e4e7

f13 = e21e5 − e23e5 − e1e2e6 + e3e4e6 + e1e3e7

f14 = e21e4 + e22e4 + e0e2e5 + 2e4e
2
5 + e0e1e6 + 2e4e

2
6 + e2e5e7 + e1e6e7

f15 = e21e3 − e1e2e4 − e0e1e5 + 2e3e
2
5 − 2e4e5e6 − e1e5e7

f16 = e21e2 + e32 + e0e4e5 + 2e2e
2
5 + e0e3e6 + 2e2e

2
6 + e0e2e7 + e4e5e7 + e3e6e7 + e2e

2
7

f17 = e31 + e1e
2
2 − e0e3e5 + 2e1e

2
5 + e0e4e6 + 2e1e

2
6 + e0e1e7 − e3e5e7 + e4e6e7 + e1e

2
7

f18 = e0e2e3 + e0e1e4 + e20e6 − 2e23e6 − 2e24e6 − 4e25e6 − 4e36 − e2e3e7 − e1e4e7 − e6e
2
7

f19 = e0e1e3 − e0e2e4 − e20e5 + 2e23e5 + 2e24e5 + 4e35 + 4e5e
2
6 − e1e3e7 + e2e4e7 + e5e

2
7

f20 = e0e
2
1 + e0e

2
2 − e0e

2
3 − e0e

2
4 + (e20 − e21 − e22 − e23 − e24 − 4e25 − 4e26 − e27)e7.

It is also not clear whether the ideal can be generated by fewer polynomials.
Define a smaller ideal I4 generated by the second, fourth, fifth, and sixth polyno-
mials in the list of twenty; it also forms a codimension three variety, V4. In fact,
V20 is a dense subvariety of V4; a computation shows that the Zariski closure of
the difference V4 \ V20 is a codimension four variety. For example, the 3-planes
{e3 = e4 = e5 = e6 = 0}, {e1 = e2 = e3 = e4 = 0} are contained in V4 but not in
V20.

Attempting this procedure on a parametrization where the denominator is not
real-valued (say, Example 5.3) will be more complicated, since the real and imagi-
nary parts will (in general) define a quartic parametrization RP 5 → RP 10.
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