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Abstract

A real analytic surface inside complex 3-space with an isolated, non-
degenerate complex tangent is shown to be biholomorphically equiv-
alent to a fixed real algebraic variety. The analyticity of the normal-
izing transformation is proved using a rapid convergence argument.
Real surfaces in higher dimensions are also shown to have an algebraic
normal form. 1 2

1 Introduction

This paper contributes to the program of studying the “local equivalence
problem for real submanifolds of C

n,” as described in the survey paper,
[BER]. The main result (Theorem 5.7) establishes a normal form for real
analytic 2-manifolds in C

3, near a suitably non-degenerate complex tangent,
under biholomorphic coordinate changes. The non-degeneracy condition is
an easily checked property of the quadratic terms of the equations that
define the submanifold. The normal form is a fixed real algebraic variety, so
there are no biholomorphic invariants for real surfaces near a non-degenerate
complex tangent in C

3. We will also point out some analogies between this
normal form and some of Whitney’s equations from the singularity theory
of smooth maps from surfaces to R

3.
1MSC 2000 32V40, 32S05
2Key words: normal form, CR singularity, complex tangent, rapid convergence
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To outline the plan for the proof of the main result, let M be a real
analytic surface in C

3, which has an “isolated CR singularity” at the point
�x ∈ M , that is, the tangent plane at �x is a complex line, but the tangent
plane at all other points in a neighborhood of �x is totally real. By a com-
plex affine coordinate change, it can be assumed that the singularity is at
the origin, and that the tangent plane is one of the three complex coordi-
nate axes. The local geometry of M , in some polydisc ∆ centered at the
singularity, will be considered first by specifying a quadratic non-degeneracy
condition (the inequality (1) in Section 2), and in the case where M satisfies
this condition, setting up a system of functional equations whose solution,
if it exists, is a “normalizing transformation,” meaning a coordinate change
so that in the new coordinate system, the defining equations for M are in
the real algebraic normal form (equation (4) in Section 2). Since an exact
solution to these non-linear equations (equations (8) and (9) in Section 3)
is hard to find in just one step, an approximation �p to this solution will be
found by solving a related system of linear equations ((10) and (11)). The
solution technique for the linear equations is a straightforward comparison
of coefficients, and �p and its derivatives will turn out to be bounded in a
neighborhood comparable in size to ∆. The size of the domain of �p is a
crucial ingredient of the analysis, so that when we get a sequence of such
approximate solutions, each of them will be analytic on a certain fixed poly-
disc. The rapid convergence technique employed in Section 5 closely follows
the construction of [M], where a convergent normalizing transformation was
proved to exist for a surface in C

2 with a special kind of CR singularity.
In the final Section, a cubic normal form is derived for surfaces in C

n,
n > 3. Again, being real analytic and suitably non-degenerate will be enough
to guarantee the existence of a coordinate system on an open set, in which
the surface is real algebraic.

This work benefited from the author’s conversations with Xianghong
Gong.

2 The non-degeneracy condition, and a quadratic
normal form

Let (z1, z2, z3) be a coordinate system for C
3, and assumeM is a real analytic

surface in C
3 with a complex tangent at �0 ∈ M . By a complex linear

transformation, the tangent plane T�0M can be assumed to be the z1-axis.
(z1 will hereafter be abbreviated as z.) Then there is some polydisc ∆
centered at �0 so that the defining equations of M in ∆ are in the form of a
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graph over a disc in the z-axis:

z2 = h2(z, z̄),
z3 = h3(z, z̄),

where h2 and h3 are complex-valued real analytic functions defined in a
neighborhood of z = 0, and vanishing to second order at z = 0. These
functions can be expressed as the restriction to {ζ = z̄} of the two-variable
series:

h2(z, ζ) = α2z
2 + β2zζ + γ2ζ

2 +
∑
a+b≥3

ha,b2 zaζb,

h3(z, ζ) = α3z
2 + β3zζ + γ3ζ

2 +
∑
a+b≥3

ha,b3 zaζb,

each of which converges on the set {(z, ζ) : |z| < R, |ζ| < R} to a complex
analytic function. The terms α2z

2 and α3z
2 can be eliminated by a holomor-

phic quadratic coordinate change (which may change the above radius R).
From this point, M will be assumed to satisfy the non-degeneracy condition:

det
(
β2 γ2

β3 γ3

)
�= 0, (1)

so that there is a complex linear transformation of z2 and z3 bringing M to
the following quadratic normal form:

z2 = z̄2 + e2(z, z̄), (2)
z3 = zz̄ + e3(z, z̄), (3)

with e2 and e3 complex-valued real analytic functions vanishing to third
order at 0.

Let M̃ denote the real algebraic surface where e2 and e3 are identically
zero:

M̃ = {(z, z2, z3) ∈ C
3 : z2 = z̄2, z3 = zz̄}. (4)

The main result (Theorem 5.7) is that if M satisfies the non-degeneracy
condition, and is described by equations of the form (2), (3), then there
exist holomorphic functions p1(z, z2, z3), p2(z, z2, z3), p3(z, z2, z3) defined on
some polydisc centered at �0 so that in the following new local coordinate
system for C

3:

z̃ = z + p1 (5)
z̃2 = z2 + p2 (6)
z̃3 = z3 + p3, (7)
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M is defined, in a neighborhood of �0, by z̃2 = ¯̃z2, z̃3 = z ¯̃z; that is, M and
M̃ are locally analytically equivalent.

It is worth mentioning that M̃ is totally real except at the origin, and
that it is contained in the singular complex hypersurface z2z2− z2

3 = 0. The
equations for M̃ apparently resemble Whitney’s parametric equations for a
surface with a cross-cap singularity in R

3 ([W]),

(u, v) �→ (x, y, z) = (u, v2, uv),

and the equation for the complex hypersurface resembles the implicit equa-
tion x2y − z2 = 0 for the Whitney umbrella variety in R

3.
Before starting the proof of the main result, we conclude this Section

by comparing the situation of surfaces in C
3 with the situation in higher

dimensions.
In [C1], the local equivalence problem was considered form-submanifolds

of C
n, with 2

3(n + 1) ≤ m < n (note that the case m = 2, n = 3 is
outside this range). The approach of [C1] was, as in this paper, to first
establish non-degeneracy conditions (analogous to (1)) for the quadratic part
of the defining equations, and then to show there is a polynomial normal
form, such that near a non-degenerate complex tangent of a real analytic
m-submanifold, there exists a formal coordinate change so that the new
defining equations are in the polynomial normal form. For example, in the
m = 4, n = 5 case, the normal form variety in the 5-space with coordinates
(z1, z2, z3, z4, z5), za = xa + iya, is a graph over the real subspace with
coordinates z1, x2, x3:

{y2 = 0, y3 = 0, z4 = (z̄1 + x2 + ix3)2, z5 = z1(z̄1 + x2 + ix3)}.

The obvious difference between these equations and those defining the sur-
face M̃ is that the normal form for the surface can be expressed using only
monomials. This is significant, because the analysis of 4-manifolds in [C1]
was complicated by the presence of multinomial coefficients appearing in
powers of the quantity (z̄1 + x2 + ix3).

In fact, the approximate normalizing transformations for the local equiv-
alence problem in [C1] were not suitable for the “rapid convergence” tech-
nique. While a formal power series for the normalizing transformation could
be constructed as a formal composition of a sequence of holomorphic ap-
proximations, each of these approximations was defined on a polydisc sig-
nificantly smaller than the previous one. So, the intersection of the domains
of the transformations was just the single point at the origin. The question

4



of convergence or divergence of the formal coordinate change for higher di-
mensions remains open. In the case of surfaces considered in this article, the
rate of decrease of the size of the domain of the approximations is so small
that we are able to apply the rapid convergence technique, to show that the
approximations do indeed converge to an analytic coordinate change on an
open set.

Some of the calculations of the next Section will be similar to those in
[C1], but simpler and with fewer variables. The goal is, given real analytic
functions e2 and e3 (as in equations (2), (3)), to construct complex analytic
functions p1, p2, p3 (as in (5), (6), (7)). This goal will not be met until
Section 5, but along the way we will state each major step as a “Theorem.”
The first Theorem decomposes e2 and e3 into even and odd parts, for the
purposes of a comparison of coefficients, to arrive at an approximate nor-
malizing transformation as the solution of a linearized functional equation.
The even/odd decomposition also has some similarities with the argument
of [W] proving the stability of the cross-cap singularity.

It should also be remarked that in the dimension range 2
3 (n + 1) ≤

m < n, CR singularities of m-submanifolds of C
n are “topologically stable,”

roughly meaning that if a submanifold in sufficiently general position has a
point where the tangent space contains a complex line, then small smooth
perturbations of the manifold will also have this property. (The notion
of general position can be defined in terms of intersection properties of the
gauss map from the manifold to the grassmannian of real subspaces in C

n —
see [C1], [G].) Surfaces in C

3 do not enjoy this topological stability property:
a CR singular surface can always be perturbed to a nearby surface which is
totally real at every point.

3 A functional equation

The following notation will be convenient:

Notation 3.1. For r = (r1, . . . , rn) ∈ R
n, with all rk > 0, define a polydisc

(with center �0) in C
n by

Dr = {(z1, . . . , zn) : |zk| < rk}.
As special cases, let

Dr = D(r,r)

and
∆r = D(r,r2,r2).
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Often in this paper, we will discuss both multivariable power series with
center �0 and complex coefficients, which converge on a polydisc Dr, and
complex valued functions which are complex analytic on a polydisc Dr. It
is well-known that these two notions are equivalent, so we will not always
explicitly mention that. It is also well-known that a function which is real
analytic on a “real polydisc,” Dr ∩ R

n, may have a series expansion with
center �0 that does not converge on all of Dr ∩ R

n, so when working with
real analytic functions, we will be careful about the domain of convergence,
mostly by assuming that the real polydisc is small enough so that the func-
tion is the restriction of a complex analytic function on a complex polydisc.

Notation 3.2. For a complex-valued function e(z, ζ) of two complex vari-
ables, which is defined on some set containing the polydisc Dr, define the
norm

|e|r = sup
(z,ζ)∈Dr

|e(z, ζ)|.

For a pair �e = (e2, e3), define

|�e|r = max{|e2|r, |e3|r}.

For a complex-valued function p(z, z2, z3) of three complex variables, which
is defined on some set containing the polydisc ∆r, define the norm

‖p‖r = sup
(z,z2,z3)∈∆r

|p(z, z2, z3)|.

Notation 3.3. For a series in two variables e(z, ζ) =
∑
ea,bzaζb, define its

“degree” as the lowest integer a+ b so that ea,b �= 0. (Also, the “degree” of
a pair of series is the lower of the two degrees.) For a series p(z, z2, z3) =∑
pabczazb2z

c
3, define its “weight” as the lowest integer a + 2b + 2c so that

pabc �= 0.

With this notation, and a real analytic manifold M defined by equations
(2), (3), we can assume that there is some r > 0 so that |(e2(z, ζ), e3(z, ζ))|r
is finite. Given �e = (e2, e3) with degree ≥ 3, the goal is to find some r̃,
0 < r̃ ≤ r, and some holomorphic functions �p = (p1, p2, p3) on ∆r̃, so that
the transformation

Ψ(z, z2, z3) = (z̃, z̃2, z̃3)

defined by (5), (6), (7) is a biholomorphism with domain ∆r̃ taking M to
M̃ . That is, if (z, z2, z3) ∈ M ∩ ∆r̃, then z̃2 = ¯̃z2 and z̃3 = z̃ ¯̃z. The weight
of p1 will be ≥ 2 and the weight of p2 and p3 will be ≥ 3.
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For now, suppose Ψ is any (not necessarily invertible) map of the form
(5), (6), (7). The following equations must hold for any (z, z2, z3) ∈M close
enough to �0 so that both LHS and RHS are defined:

z̃2 − ¯̃z2 = z2 + p2(z, z2, z3) − (z + p1(z, z2, z3))
2

= e2(z, z̄) + p2(z, z̄2 + e2, zz̄ + e3) (8)

−(2z̄p1(z, z̄2 + e2, zz̄ + e3) + p1(z, z̄2 + e2, zz̄ + e3)
2
),

z̃3 − z̃ ¯̃z = z3 + p3(z, z2, z3) − (z + p1(z, z2, z3))(z + p1(z, z2, z3))
= e3(z, z̄) + p3(z, z̄2 + e2, zz̄ + e3) (9)

−(zp1(z, z̄2 + e2, zz̄ + e3) + z̄p1(z, z̄2 + e2, zz̄ + e3))
−|p1(z, z̄2 + e2, zz̄ + e3)|2.

If there are holomorphic functions �p on some ∆r̃ so that Ψ is a biholo-
morphism, and the quantities (8), (9) are identically 0 (as formal series in
z, z̄), then Ψ is a normalizing transformation. As a first step in solving for
�p in terms of �e, consider the following two simpler equations:

0 = e2(z, z̄) + p2(z, z̄2, zz̄) − 2z̄p1(z, z̄2, zz̄), (10)
0 = e3(z, z̄) + p3(z, z̄2, zz̄) − zp1(z, z̄2, zz̄) − z̄p1(z, z̄2, zz̄). (11)

To see how the new equations are related to the original system, suppose
�e has degree d ≥ 3, and that �p = (p1, p2, p3) is a solution of (10), (11) so that
p1 has weight ≥ d− 1, and p2 and p3 have weight ≥ d. Using this solution �p
to evaluate the RHS of (8) and (9) evidently results in expressions of degree
≥ 2d − 2. So, Ψ defined by �p may not bring M to normal form, but it will
approximately double the degree of the higher-order terms.

Theorem 3.4. Given r > 0 and a pair of complex analytic functions �e =
(e2(z, ζ), e3(z, ζ)) defined on Dr with |�e|r < ∞ and degree d ≥ 3, there
exists a triple of power series �p = (p1, p2, p3) which is complex analytic on
∆r, and which exactly solves equations (10), (11). This solution satisfies the
estimates

‖p1‖r ≤ 3
2r

|�e|r, ‖p2‖r ≤ 5|�e|r, ‖p3‖r ≤ 5|�e|r.

Proof. First, notice that if �p(z, z2, z3) is a formal series solution of (10), (11),
it certainly does not follow that �p is convergent. For example, p2(z, z2, z3)
and p2+(z2z2−z2

3)·Q are formally the same when restricted to {z2 = z̄2, z3 =
zz̄}, for any (possibly divergent) series Q(z, z2, z3). So, if one formal solution
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�p exists, there exist infinitely many divergent solutions. The following choice
of normalization will not only determine �p uniquely, it will also result in the
claimed convergence and bounds.

p1(z, z2, z3) = pH1 (z) + pA1 (z2)
p2(z, z2, z3) = pE2 (z, z2) + z3p

O
2 (z, z2)

p3(z, z2, z3) = pE3 (z, z2) + z3p
O
3 (z, z2)

Also, pH1 must be an even function of z: pH1 (z) = pH1 (−z), and the weights
of p1, p2, p3 must be ≥ d− 1, d, d, respectively.

This choice of normalization can be motivated by inspecting the set of
formal transformations which leave M̃ invariant; the normalizing transfor-
mations for M should in some sense be complementary to this set. This
topic will be deferred to Section 6; for now, notice only that any formal
series P (z, z2, z3) can, by the Weierstrass Division Theorem, be uniquely
expanded in the form

P = (z2z2 − z2
3) · Q + z3P

O(z, z2) + PE(z, z2).

The last two “remainder” terms are as in the normalization of p2 and p3.
Also, any monomial ea,bzaz̄b fits into one of the three cases:

• ea,2kza(z̄2)k = PE(z, z̄2), for b even, or

• (zz̄)ea,2k+1za−1(z̄2)k = zz̄PO(z, z̄2), for b odd and a > 0, or

• e0,2k+1z̄2k+1, with a = 0, b odd.

In the last case, the monomial is not equal to any expression of the form
P (z, z̄2, zz̄). So, the main idea of this proof will be to construct a function
p1 which simultaneously solves the e0,bz̄b, b odd, components of equations
(10), (11).

Combining equation (10) with the normalization conditions gives:∑
ea,b2 zaz̄b = 2z̄(pH1 (z) + pA1 (z̄2)) − p2(z, z̄2, zz̄).

Since 2z̄pH1 is the only term on the RHS that could have monomials of the
form z0z̄b, with b odd, pH1 is determined uniquely and is even in z:

2z̄pH1 (z) =
∑

b=2k+1

e0,b2 z̄b

2zpH1 (z) =
∑

b=2k+1

e0,b2 z̄b

pH1 (z) =
1
4z

(e2(0, z̄) − e2(0,−z̄)).
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Of course, for |z| < r, the expression e2(0, z̄) refers to the complex analytic
function e2(z, ζ), evaluated at (0, z̄) ∈ Dr; it doesn’t mean z = z̄ = 0.
Also, the division by z in the above expression for pH1 should be taken
formally, by subtraction of exponents in the formal power series, so that after
the division, the series still has only positive exponents and converges to a
complex analytic function on a domain containing z = 0. These conventions
will be observed in some constructions that follow.

It follows from the Schwarz Lemma ([A]) that for |z| < r,

|e2(0, z̄)| ≤ |z|
r

sup
|z|<r

|e2(0, z̄)| ≤ |z|
r
|e2|r,

and,

‖pH1 (z)‖r = sup
|z|<r

∣∣∣∣∣(e2(0, z̄) − e2(0,−z̄))
4z

∣∣∣∣∣ ≤ 1
2r

|e2|r.

A similar substitution into equation (11):∑
ea,b3 zaz̄b = z̄(pH1 (z) + pA1 (z̄2)) + zp1(z, z̄2) − p3(z, z̄2, zz̄),

determines pA1 (z2) uniquely:

z̄pA1 (z̄2) =
∑

b=2k+1

e0,b3 z̄b

ζpA1 (ζ2) =
1
2
(e3(0, ζ) − e3(0,−ζ))

pA1 (z2) =
∑
k

e0,2k+1
3 zk2 .

Again, the Schwarz Lemma gives a bound for the values:

‖pA1 (z2)‖r = sup
|ζ|<r

|pA1 (ζ2)| = sup
|ζ|<r

∣∣∣∣e3(0, ζ) − e3(0,−ζ)
2ζ

∣∣∣∣
≤ sup

|ζ|<r

2 |ζ|
r |e3|r
|2ζ| =

1
r
|e3|r.

It is now possible to solve equation (10) for p2:

pE2 (z, z̄2) + zz̄pO2 (z, z̄2) = −e2(z, z̄) + 2z̄(pH1 (z) + pA1 (z̄2))

= −e2(z, z̄) +
∑

b=2k+1

e0,b2 z̄b + 2
z̄

z

∑
b=2k+1

e0,b3 z̄b.
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Replacing z̄ with ζ and separating both RHS and LHS into the even and
odd parts with respect to ζ determines pE2 and pO2 :

pE2 (z, ζ2) = −1
2
(e2(z, ζ) + e2(z,−ζ)),

pE2 (z, z2) = −
∑
b=2k

ea,b2 zazk2 ,

‖pE2 ‖r ≤ |e2|r.
zζpO2 (z, ζ2) = −1

2
(e2(z, ζ) − e2(z,−ζ)) +

1
2
(e2(0, ζ) − e2(0,−ζ))

+2
ζ

z

1
2
(e3(0, z̄) − e3(0,−z̄)),

pO2 (z, ζ2) =
e2(z,−ζ) − e2(z, ζ) + e2(0, ζ) − e2(0,−ζ)

2zζ

+
e3(0, z̄) − e3(0,−z̄)

z2
,

pO2 (z, z2) =
∑

a≥1,b=2k+1

ea,b2 za−1zk2 +
∑

b=2k+1

e0,b3 z2k−1,

‖pO2 ‖r ≤ sup
|z|<r

sup
|ζ|<r

∣∣∣∣e2(z,−ζ) − e2(z, ζ) + e2(0, ζ) − e2(0,−ζ)
2zζ

∣∣∣∣
+ sup

|z|<r

∣∣∣∣∣e3(0, z̄) − e3(0,−z̄)
z2

∣∣∣∣∣
≤ 2

r2
|e2|r +

2
r2

|e3|r,

the last inequality following from several applications of the Schwarz Lemma.
The calculation and bounds for p3 follow from a similar treatment of equa-
tion (11).

pE3 (z, z̄2) + zz̄pO3 (z, z̄2) = −e3(z, z̄) + z̄p1(z, z̄2) + zp1(z, z̄2)

= −e3(z, z̄) +
z̄

2z

∑
b=2k+1

e0,b2 z̄b +
∑

b=2k+1

e0,b3 z̄b

+
z

2z̄

∑
b=2k+1

e0,b2 z̄b +
∑

b=2k+1

e0,b3 z̄b.
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pE3 (z, ζ2) = −1
2
(e3(z, ζ) + e3(z,−ζ)) +

z

4ζ
(e2(0, ζ) − e2(0,−ζ))

+
1
2
(e3(0, z̄) − e3(0,−z̄)),

‖pE3 ‖r ≤ 2|e3|r +
1
2
|e2|r.

zζpO3 (z, ζ2) = −1
2
(e3(z, ζ) − e3(z,−ζ)) +

1
2
(e3(0, ζ) − e3(0,−ζ))

+
ζ

4z
(e2(0, z̄) − e2(0,−z̄)),

pO3 (z, ζ2) =
e3(z,−ζ) − e3(z, ζ) + e3(0, ζ) − e3(0,−ζ)

2zζ

+
e2(0, z̄) − e2(0,−z̄)

4z2
,

‖pO3 ‖r ≤ 2
r2

|e3|r +
1

2r2
|e2|r.

It is not yet claimed that �p defines a biholomorphism Ψ; this will be
shown later (Theorem 4.4), under certain conditions on �e and r. In Section
7, the above procedure for finding �p will be demonstrated for a specific choice
of �e.

Corollary 3.5. There is a constant c1 > 0 such that for any �p and �e as in
Theorem 3.4, and any radii ρ, r with 1

2 < ρ < r ≤ 1, the following estimates
hold:

max
j=1,2,3

{‖pj‖r} ≤ c1|�e|r,

max
j=1,2,3

{
3∑
i=1

∥∥∥∥dpidzj

∥∥∥∥
ρ

}
≤ c1|�e|r
r − ρ

.

Proof. The bound ‖p1‖r < 3|�e|r follows from the estimate from the previous
Theorem and r > 1

2 . The bounds for the derivatives of pi follow from an
estimate which is a consequence of Cauchy’s estimate ([A]):

If 0 < R2 < R1 and f(z) is holomorphic and bounded by M for |z| < R1,
then df

dz is bounded by M
R1−R2

for |z| < R2.
This fact can be applied immediately to the bound ‖pj‖r ≤ 5|�e|r, with

R1 −R2 = r− ρ for the z derivatives, and R1 −R2 = r2 − ρ2 > r− ρ for the
z2, z3 derivatives. By inspecting the derivatives of the normalized functions,
one could find the constant c1, or improve upon the bounds claimed by
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the Theorem. Some estimates are recorded below, for use in the proof of
Theorem 4.2. Note that not all the terms have r − ρ in the denominator,
but 1

r−ρ > 2, and it will be simpler in some of the later Theorems to treat
all the quantities in the same way instead of using the sharpest estimates
available.∥∥∥∥dp1

dz

∥∥∥∥
ρ

≤
1
2r |e2|r
r − ρ∥∥∥∥dp1

dz2

∥∥∥∥
ρ

≤
1
r |e3|r
r2 − ρ2

dp1

dz3
= 0,∥∥∥∥dp2

dz

∥∥∥∥
ρ

≤
∥∥∥∥dpE2dz

∥∥∥∥
ρ

+
∥∥∥∥z3dpO2dz

∥∥∥∥
ρ

≤ |e2|r
r − ρ

+
ρ2

r2
2(|e2|r + |e3|r)

r − ρ∥∥∥∥dp2

dz2

∥∥∥∥
ρ

≤
∥∥∥∥dpE2dz2

∥∥∥∥
ρ

+
∥∥∥∥z3dpO2dz2

∥∥∥∥
ρ

≤ |e2|r
r2 − ρ2

+
ρ2

r2
2(|e2|r + |e3|r)

r2 − ρ2∥∥∥∥dp2

dz3

∥∥∥∥
r

= ‖pO2 ‖r ≤
2
r2

(|e2|r + |e3|r)∥∥∥∥dp3

dz

∥∥∥∥
ρ

≤
∥∥∥∥dpE3dz

∥∥∥∥
ρ

+
∥∥∥∥z3dpO3dz

∥∥∥∥
ρ

≤
(

1 +
ρ2

r2

)
2|e3|r + 1

2 |e2|r
r − ρ∥∥∥∥dp3

dz2

∥∥∥∥
ρ

≤
∥∥∥∥dpE3dz2

∥∥∥∥
ρ

+
∥∥∥∥z3dpO3dz2

∥∥∥∥
ρ

≤
(

1 +
ρ2

r2

)
2|e3|r + 1

2 |e2|r
r2 − ρ2∥∥∥∥dp3

dz3

∥∥∥∥
r

= ‖pO3 ‖r ≤
2
r2

|e3|r +
1

2r2
|e2|r.

The lower bound r > 1
2 was important for the previous Corollary, but it

is not a significant a priori restriction on the manifold M . By a real rescaling
(z, z2, z3) �→ (sz, s2z2, s2z3), s > 0, the equations (2), (3) can be assumed
to define M for |z| < 1, and for any η > 0, there is a rescaling making
|�e|1 < η. Such scalings form a subgroup of the stabilizer of the normal form,
considered in Section 6.

4 The new defining equations and some estimates

The following Lemma on the �1 norm in C
n will be used several times:

12



Lemma 4.1. Let f(�z) = (f1(z1, . . . , zn), . . . , fn(z1, . . . , zn)) be a holomor-
phic map f : Dr → C

n, with

max
j=1,...,n

{
n∑
i=1

sup
�z∈Dr

∣∣∣∣ dfidzj
(�z)
∣∣∣∣
}

≤ K.

Then, for �z, �z ′ ∈ Dr,

n∑
i=1

|fi(�z ′) − fi(�z)| ≤ K
n∑
i=1

|z′i − zi|.

Proof. The single variable case, with n = 1 and f : D(r1) → C, follows from
integrating df

dz1
along a path γ which is contained in the disc and connects

z to z′:
|f(z′) − f(z)| =

∣∣∣∣∫
γ

df

dz1
dz1

∣∣∣∣ ≤ K · (length γ).

Since this holds in particular when γ is the shortest path, with length |z′−z|,
the claimed inequality holds in this case.

The n > 1 case follows from the n = 1 case:
n∑
i=1

|fi(�z ′) − fi(�z)| =
n∑
i=1

|fi(z′1, . . . , z′n) − fi(z′1, . . . , z
′
n−1, zn)

+fi(z′1, . . . , z
′
n−1, zn) − fi(z′1, . . . , z

′
n−2, zn−1, zn)

+ . . .+ fi(z′1, z2, . . . , zn) − fi(z1, . . . , zn)|

≤
n∑
i=1

n∑
j=1

(
sup
�z∈Dr

∣∣∣∣ dfidzj
(�z)
∣∣∣∣) |z′j − zj|

=
n∑
j=1

(
n∑
i=1

sup
�z∈Dr

∣∣∣∣ dfidzj
(�z)
∣∣∣∣
)
|z′j − zj|

≤
n∑
j=1

(
max
l=1,...,n

{
n∑
i=1

sup
�z∈Dr

∣∣∣∣ dfidzl (�z)
∣∣∣∣
})

|z′j − zj|

≤ K

n∑
j=1

|z′j − zj |.

Theorem 3.4 showed that an approximate solution of (8), (9) exists; the
estimates from Corollary 3.5 will measure how close the approximation is to

13



an actual solution. Substituting the normalized solution �p from the Theorem
into e2, e3 in the RHS of (8), (9) gives two quantities depending on z, z̄:

q2(z, z̄) = e2(z, z̄) + p2(z, z̄2 + e2, zz̄ + e3)

−(2z̄p1(z, z̄2 + e2) + p1(z, z̄2 + e2)
2
)

= pE2 (z, z̄2 + e2) − pE2 (z, z̄2) (12)
+(zz̄ + e3)pO2 (z, z̄2 + e2) − zz̄pO2 (z, z̄2)

−2z̄(p1(z, z̄2 + e2) − p1(z, z̄2)) − p1(z, z̄2 + e2)
2
,

q3(z, z̄) = e3(z, z̄) + p3(z, z̄2 + e2, zz̄ + e3)
−zp1(z, z̄2 + e2) − z̄p1(z, z̄2 + e2) − |p1(z, z̄2 + e2)|2

= pE3 (z, z̄2 + e2) − pE3 (z, z̄2) (13)
+(zz̄ + e3)pO3 (z, z̄2 + e2) − zz̄pO3 (z, z̄2)
−z(p1(z, z̄2 + e2) − p1(z, z̄2)) − z̄(p1(z, z̄2 + e2) − p1(z, z̄2))
−|p1(z, z̄2 + e2)|2.

If �p(z, z2, z3) is complex analytic on ∆r, and σ2 + |�e|σ < r2, then �q =
(q2(z, z̄), q3(z, z̄)) is a real analytic function for |z| < σ. If �q(z, z̄) happens
to be identically zero, the manifold M has been brought to normal form
by the functions �p; if not, the degree of �q is at least 2d − 2 as mentioned
previously, and its values can be bounded in terms of �e. Define �q(z, ζ) =
(q2(z, ζ), q3(z, ζ)) by (12), (13), with ζ formally substituted for z̄.

Theorem 4.2. There are some constants c2 > 0 and δ1 > 0 such that if
1
2 < σ < r ≤ 1, and �e is as in Theorem 3.4, with |�e|r ≤ δ1(r − σ), then

|�q|σ ≤ c2|�e|2r
r − σ

.

Proof. Note that if δ1 ≤ 1, the formal series for �q is in fact convergent on
Dσ, since then |ζ2 + e2(z, ζ)| < σ2 + δ1(r − σ) < σ2 + (r − σ)(r + σ) = r2,
and �p is convergent on ∆r by Theorem 3.4. To find a bound on the norm of
�q, the following corollary of the n = 1 case of Lemma 4.1 will apply:

If 0 < R2 < R1 and f(z) is holomorphic for |z| < R1, and g : X → C is
any function bounded by M ≤ R1 −R2, then for (z, x) ∈ {|z| < R2} ×X,

|f(z + g(x)) − f(z)| ≤M sup
|z|<R1

∣∣∣∣dfdz
∣∣∣∣ .

Using this estimate and the bounds for derivatives from Corollary 3.5,
with R1 = ρ = 1

2(σ+ r), R2 = σ, g = e2, and M = |e2|σ ≤ δ1(r−σ) ≤ ρ−σ

14



for δ1 ≤ 1
2 gives the following inequalities:

|q2|σ ≤ |e2|σ
∥∥∥∥dpE2dz2

∥∥∥∥
ρ

+ σ2|e2|σ
∥∥∥∥dpO2dz2

∥∥∥∥
ρ

+|e3|σ‖pO2 ‖ρ + 2σ|e2|σ
∥∥∥∥dp1

dz2

∥∥∥∥
ρ

+ ‖p1‖2
ρ

≤ |e2|σ |e2|r
r2 − ρ2

+
σ2

r2
|e2|σ 2(|e2|r + |e3|r)

r2 − ρ2

+
2
r2

|e3|σ(|e2|r + |e3|r) + 2
σ

r
|e2|σ |e3|r

r2 − ρ2
+
(

1
2r

|e2|r +
1
r
|e3|r

)2

,

|q3|σ ≤ |e2|σ
∥∥∥∥dpE3dz2

∥∥∥∥
ρ

+ σ2|e2|σ
∥∥∥∥dpO3dz2

∥∥∥∥
ρ

+|e3|σ‖pO3 ‖ρ + 2σ|e2|σ
∥∥∥∥dp1

dz2

∥∥∥∥
ρ

+ ‖p1‖2
ρ

≤ |e2|σ
2|e3|r + 1

2 |e2|r
r2 − ρ2

+
σ2

r2
|e2|σ

2|e3|r + 1
2 |e2|r

r2 − ρ2

+|e3|σ 4|e3|r + |e2|r
2r2

+ 2
σ

r
|e2|σ |e3|r

r2 − ρ2
+
(

1
2r

|e2|r +
1
r
|e3|r

)2

.

The purpose of constructing the functions �p was to define a new coordi-
nate system. To see how close the defining equations in the new coordinates
are to the normal form equations, some more estimates will be needed. In
particular, the new coordinate system will only be defined on some polydisc
∆, and the new equations z̃2 = ¯̃z2 + ẽ2(z̃, ¯̃z), z̃3 = z̃ ¯̃z + ẽ3(z̃, ¯̃z) will only be
defined for z̃ in some disc of radius r̃.

The following Lemma, the “standard iteration procedure” for inverse
functions, ([M], [SM] §§26, 33), will be used twice, in the construction of
both the new coordinate system and the new defining equations. It is stated
in general, with a sketch of a proof.

Lemma 4.3. Suppose 0 < Ri2 < Ri1 for i = 1, . . . , n, so that

D
2 = D(R1

2,...,R
n
2 ) ⊆ D

1 = D(R1
1,...,R

n
1 ).

Let f(�z) = (f1(z1, . . . , zn), . . . , fn(z1, . . . , zn)) be holomorphic on D
1, with

max
j=1,...,n

{
n∑
i=1

sup
�z∈D1

∣∣∣∣ dfidzj
(�z)
∣∣∣∣
}

≤ K < 1,
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and
n∑
i=1

sup
�z∈D2

|fi(�z)| ≤ (1 −K) min
i=1,...,n

{Ri1 −Ri2}.

Then, given �w ∈ D
2, there exists a unique solution �z ∈ D

1 of the equation

�w = �z + f(�z),

and this solution satisfies
n∑
i=1

|zi − wi| ≤ 1
1 −K

n∑
i=1

|fi(�w)|.

Proof. The idea is to construct a sequence �z (k) = (z(k)
1 , . . . , z

(k)
n ), k =

0, 1, 2, . . ., converging to �z so that each �z (k) ∈ D
1. Start with an initial ap-

proximate solution �z (0) = �w. Inductively, assume �z (m) ∈ D
1 for 0 ≤ m ≤ k,

and define
�z (k+1) = �w − f(�z (k)) (14)

Then, �z (k+1) ∈ D
1, and for k ≥ 1, Lemma 4.1 applies:

n∑
i=1

|z(k+1)
i − z

(k)
i | =

n∑
i=1

|fi(�z (k)) − fi(�z (k−1))|

≤ K

n∑
j=1

|z(k)
j − z

(k−1)
j |

≤ Kk
n∑
j=1

|z(1)
j − z

(0)
j | = Kk

n∑
j=1

|fj(�w)|.

Since K < 1, it follows that �z (k) forms a Cauchy sequence, and that
n∑
i=1

|z(k)
i −wi| ≤

n∑
i=1

(|z(k)
i − z

(k−1)
i | + |z(k−1)

i − z
(k−2)
i | + · · · + |z(1)

i − wi|)

≤ (Kk−1 + · · · +K + 1)
n∑
i=1

|fi(�w)|

=
1 −Kk

1 −K

n∑
i=1

|fi(�w)| ≤ min
i=1,...,n

{Ri1 −Ri2},

so �z = lim
k→∞

�z (k) exists, with |zi − wi| ≤ Ri1 − Ri2, and so �z ∈ D
1, and �z

satisfies the claimed estimate. To see that �z is a solution of the original
equation, take the k → ∞ limit of equation (14).
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Finally, to show that if �z is unique, suppose �z ′ is another solution; then
by Lemma 4.1 again,

n∑
i=1

|zi − z′i| =
n∑
i=1

|fi(�z) − fi(�z ′)| ≤ K
n∑
j=1

|zj − z′j|,

contradicting K < 1. In fact, �z is a holomorphic function of �w on the
polydisc D

2.

Theorem 4.4. There is some constant δ2 > 0 so that for any radii 1
2 < σ <

r ≤ 1, and �e, �p as in Theorem 3.4, with |�e|r ≤ δ2(r − σ) and ρ = 1
2(r + σ),

the transformation

Ψ : (z, z2, z3) �→ (z̃, z̃2, z̃3) = (z + p1, z2 + p2, z3 + p3)

has a holomorphic inverse ψ(z̃, z̃2, z̃3) = (z, z2, z3) such that if (z̃, z̃2, z̃3) ∈
∆σ, then ψ(z̃, z̃2, z̃3) ∈ ∆ρ.

Proof. By Corollary 3.5,

max
j=1,2,3

{
3∑
i=1

∥∥∥∥dpidzj

∥∥∥∥
ρ

}
≤ c1|�e|r
r − ρ

≤ c1δ2(r − σ)
r − ρ

= 2δ2c1 ≤ 1
2

= K,

if δ2 ≤ 1
4c1

. Also by Corollary 3.5,

‖p1‖σ + ‖p2‖σ + ‖p3‖σ ≤ 3c1|�e|r ≤ 3c1δ2(r − σ) ≤ (1 −K)(ρ− σ),

if δ2 ≤ ρ−σ
6c1(r−σ) = 1

12c1
. The hypotheses of Lemma 4.3 are satisfied, so given

(z̃, z̃2, z̃3) ∈ ∆σ, there exists a unique (z, z2, z3) ∈ ∆ρ such that (z̃, z̃2, z̃3) =
(z+ p1, z2 + p2, z3 + p3). This defines ψ so that Ψ ◦ψ is the identity map on
∆σ.

Theorem 4.5. There is some constant δ3 > 0 so that for any radii 1
2 < r′ <

r ≤ 1, and �e, �p as in Theorem 3.4, with |�e|r ≤ δ3(r−r′), and σ = r′+1
3(r−r′),

the transformation

(z, ζ) �→ (z̃, ζ̃) = (z + p1(z, ζ2 + e2(z, ζ)), ζ + p1(ζ̄ , z̄2 + e2(ζ̄ , z̄))) (15)

has a holomorphic inverse φ(z̃, ζ̃) = (z, ζ) such that if (z̃, ζ̃) ∈ Dr′, then
φ(z̃, ζ̃) ∈ Dσ.
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Proof. Let ρ = r′ + 2
3(r − r′), so σ − r′ = ρ − σ = r − ρ = 1

3(r − r′). If
(z, ζ) ∈ Dσ, and δ3 ≤ 2

3 , then |�e|σ ≤ r2 − σ2, and the map (15) is well-
defined and holomorphic on Dσ. Omitting the details, Cauchy’s estimate
can be used in calculations similar to those in Corollary 3.5, so that there is
some constant c3 > 0 (not depending on �e), with

max
{∣∣∣∣ ddz p1(z, ζ2 + e2(z, ζ))

∣∣∣∣
σ

+
∣∣∣∣ ddz p1(ζ̄, z̄2 + e2(ζ̄ , z̄))

∣∣∣∣
σ

,∣∣∣∣ ddζ p1(z, ζ2 + e2(z, ζ))
∣∣∣∣
σ

+
∣∣∣∣ ddζ p1(ζ̄ , z̄2 + e2(ζ̄ , z̄))

∣∣∣∣
σ

}
≤ c3|�e|r

r − ρ
≤ c3δ3(r − r′)

r − ρ
≤ 1

2
,

if δ3 ≤ r−ρ
2c3(r−r′) = 1

6c3
. It follows from Corollary 3.5 that

|p1(z, ζ2 + e2(z, ζ))|r′ + |p1(ζ̄ , z̄2 + e2(ζ̄, z̄))|r′
≤ 2‖p1(z, z2)‖r ≤ 2c1|�e|r ≤ 2c1δ3(r − r′) ≤ 1

2
(σ − r′),

if δ3 ≤ σ−r′
4c1(r−r′) = 1

12c1
. So, by Lemma 4.3, given (z̃, ζ̃) ∈ Dr′ , there exists a

unique (z, ζ) ∈ Dσ such that

(z̃, ζ̃) = (z + p1(z, ζ2 + e2(z, ζ)), ζ + p1(ζ̄ , z̄2 + e2(ζ̄ , z̄))).

By inspection of the form of (15), if (z, ζ) ∈ Dσ, and (z, ζ) �→ (z̃, ζ̃),
then (ζ̄ , z̄) �→ (ζ̃, ¯̃z). If, further, (z̃, ζ̃) = (ζ̃, ¯̃z) ∈ Dr′ , then (z, ζ) = (ζ̄ , z̄)
by uniqueness of the inverse. In particular, if |z̃| < r′, then φ(z̃, ¯̃z) is of the
form (z, z̄) for some z with |z| < σ. Also, if there exists some other z′ such
that |z′| < σ and z̃ = z′ + p1(z′, (z̄′)2 + e2(z′, z̄′)), then

¯̃z = z′ + p1(z′, (z̄′)2 + e2(z′, z̄′))

= z̄′ + p1(z̄′, (z̄′)2 + e2(z̄′, z̄′)),

so φ(z̃, ¯̃z) = (z′, z̄′) = (z, z̄) by uniqueness.

Theorem 4.6. There exist constants c4 > 0 and δ4 > 0 such that for
any 1

2 < r′ < r ≤ 1 (with σ, ρ as in the previous Theorem), and any �e
as in Theorem 3.4 with |�e|r ≤ δ4(r − r′), there exist a biholomorphic map
Ψ : (z, z2, z3) �→ (z̃, z̃2, z̃3), with the domain of ψ = Ψ−1 containing ∆σ,
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and holomorphic functions ẽ2, ẽ3, with domain containing Dr′ , such that
the defining equations for M are

z̃2 = ¯̃z2 + ẽ2(z̃, ¯̃z),
z̃3 = z̃ ¯̃z + ẽ3(z̃, ¯̃z),

for |z̃| < r′. Further, the degree of ẽ = (ẽ2, ẽ3) is at least 2d− 2, and

|ẽ|r′ ≤ c4|�e|2r
r − r′

.

Proof. Initially, choose δ4 ≤ min{2
3δ1,

2
3δ2, δ3}, so that Theorems 4.2, 4.4,

4.5 apply, and define Ψ, ψ, �q, and φ in terms of the given �e and the functions
�p constructed in Theorem 3.4. Define ẽ(z̃, ζ̃) = (�q ◦ φ)(z̃, ζ̃), so that ẽ is a
pair of compositions of holomorphic functions, with domain containing Dr′ ,
and

|ẽ|r′ ≤ |�q|σ ≤ c2|�e|2r
r − σ

=
c2|�e|2r

2
3(r − r′)

.

Since φ(z̃, ¯̃z) has no constant terms, and �q has degree ≥ 2d− 2 by construc-
tion, ẽ also has degree at least 2d− 2.

Suppose |z̃| < r′, and define z̃2 = ¯̃z2 + ẽ2(z̃, ¯̃z), and z̃3 = z̃ ¯̃z + ẽ3(z̃, ¯̃z).
The claim of the Theorem is that ψ(z̃, z̃2, z̃3) ∈M .

If δ24 ≤ 2
9c2

, then |ẽ|r′ ≤ c2(δ4(r−r′))2
r−σ ≤ 1

3(r − r′) ≤ σ2 − (r′)2, so
(z̃, z̃2, z̃3) ∈ ∆σ.

By Theorem 4.5, there exists a unique z such that |z| < σ and z̃ = z +
p1(z, z̄2 + e2(z, z̄)). (This z is the first component of (z, z̄) = φ(z̃, ¯̃z).) Then,
define z2 = z̄2+e2(z, z̄), z3 = zz̄+e3(z, z̄); since |z| < σ < r, (z, z2, z3) ∈M ,
and if δ4 ≤ 1

3 <
ρ2−σ2

3(ρ−σ) = ρ2−σ2

r−r′ , then |z2| < σ2+δ4(r−r′) < ρ2, and similarly
|z3| < ρ2, so (z, z2, z3) ∈ ∆ρ.

Ψ(z, z2, z3) = (z + p1(z, z̄2 + e2(z, z̄)),
z̄2 + e2(z, z̄) + p2(z, z̄2 + e2(z, z̄), zz̄ + e3(z, z̄)),
zz̄ + e3(z, z̄) + p3(z, z̄2 + e2(z, z̄), zz̄ + e3(z, z̄)))

= (z̃, (z̃ − p1)
2
+ e2 + p2, (z̃ − p1)(z̃ − p1) + e3 + p3)

= (z̃, ¯̃z2 + q2(z, z̄), z̃ ¯̃z + q3(z, z̄))
= (z̃, ¯̃z2 + q2(φ(z̃, ¯̃z)), z̃ ¯̃z + q3(φ(z̃, ¯̃z)))
= (z̃, z̃2, z̃3),

by construction of �p, �q, and z̃2, z̃3. By the uniqueness of Theorem 4.4,
ψ(z̃, z̃2, z̃3) = (z, z2, z3) ∈M .
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5 Composition of approximate solutions

The previous Theorem’s quadratic estimate on the size of ẽ in terms of �e
allows for the rapid convergence of a sequence of approximations. A few
technical lemmas will be needed to control the behavior of composite map-
pings. The main result, Theorem 5.7, uses these lemmas and the estimates of
the previous Section to prove convergence of a sequence of transformations,
following the ideas of [M] and [SM] §§26, 32.

Notation 5.1. For a 3×3 matrix of complex-valued functions F = (Fij(�z))
on ∆r, define

|||F |||r = max
j=1,2,3

{
3∑
i=1

sup
�z∈∆r

|Fij(�z)|
}
.

This “maximum column sum” norm appeared already, in Corollary 3.5
and Lemmas 4.1, 4.3, in the case where F = Df = D�zf , the Jacobian matrix
of some map f : ∆r → C

3 at �z ∈ ∆r.

Lemma 5.2. If |||A|||r < 1, then I + A is invertible (where I is the 3 × 3
identity matrix), and

|||(I +A)−1|||r ≤ 1
1 − |||A|||r .

Proof. It is enough (cf [HJ]) to check that |||I|||r = 1 and that this norm is
“submultiplicative,” |||F ·G|||r ≤ |||F |||r · |||G|||r . The following calculation
is similar to the steps of Lemma 4.1, and generalizes to Dr ⊆ C

n.

|||F ·G|||r = max
j=1,2,3

{
3∑
i=1

sup
�z∈∆r

∣∣∣∣∣
3∑

k=1

Fik(�z) ·Gkj(�z)
∣∣∣∣∣
}

≤ max
j=1,2,3

{
3∑
i=1

sup
�z∈∆r

3∑
k=1

|Fik(�z)| · |Gkj(�z)|
}

≤ max
j=1,2,3

{
3∑
i=1

3∑
k=1

(
sup
�z∈∆r

|Fik(�z)|
)
·
(

sup
�z∈∆r

|Gkj(�z)|
)}

= max
j=1,2,3

{
3∑

k=1

(
3∑
i=1

sup
�z∈∆r

|Fik(�z)|
)

·
(

sup
�z∈∆r

|Gkj(�z)|
)}

≤ max
j=1,2,3

{
3∑

k=1

(
max
l=1,2,3

{
3∑
i=1

sup
�z∈∆r

|Fil(�z)|
})

·
(

sup
�z∈∆r

|Gkj(�z)|
)}

= |||F |||r · |||G|||r
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Also, the following elementary fact from the calculus of one real variable
will be used.

Lemma 5.3. If ai is a sequence such that 0 ≤ ai < 1 and
∞∑
i=0

ai is a

convergent series, then the sequence of partial products

N∏
i=0

1
1 − ai

is bounded above by some positive limit.

The following notation will be convenient.

Notation 5.4. For ν = 0, 1, 2, . . ., define a sequence {1, 3
4 ,

4
6 ,

5
8 , . . .} by the

formula

rν =
1
2

(
1 +

1
ν + 1

)
.

Note that 1
2 < rν ≤ 1, and the sequence is decreasing, with

rν − rν+1 =
1

2(ν + 1)(ν + 2)
,

rν+1 − rν+2

rν − rν+1
=

ν + 1
ν + 3

≥ 1
3
.

Notation 5.5. Define σν = rν+1 + 1
3 (rν − rν+1), ρν = rν+1 + 2

3(rν − rν+1),
as in Theorem 4.5.

Recall that given η > 0, there is some scaling transformation so that
M ∩ ∆1 is defined by equations (2), (3), with �e holomorphic on D1, degree
d ≥ 3, and |�e|1 ≤ η.

Notation 5.6. Denote �e0 = �e (so |�e0|r0 = |�e|1 ≤ η), and inductively define
the formal series �eν+1(z, ζ) in terms of �eν(z, ζ), by the �e �→ ẽ procedure of
Theorem 4.6, with r = rν , r′ = rν+1. Each �eν defines, as in the previous
Theorems, functions �pν , �qν , Ψν , ψν , φν , and the degree of �eν is denoted dν .

Also recall that the degree dν+1 of �eν+1 is at least 2dν − 2; it can be
checked that this, together with d0 = d ≥ 3, implies dν ≥ 2ν + 2.

The plan is to show that the estimate in the hypothesis of Theorem 4.6
holds for all ν, to get a sequence of transformations ψν : ∆σν → ∆ρν , so
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that the composition ψ0 ◦ . . . ◦ ψν−1 ◦ ψν : ∆σν → ∆ρ0 is well-defined, �eν is
holomorphic on Drν , and

lim
ν→∞ |�eν |rν = 0.

Theorem 5.7. There exists η > 0 so that if �e0 and M are as described
above, then there exists a transformation Ψ : ∆1 → C

3, which has a holo-
morphic inverse ψ : ∆ 1

2
→ ∆1, and such that if (z̃, z̃2, z̃3) ∈ M̃ ∩ ∆ 1

2
, then

ψ(z̃, z̃2, z̃3) ∈M .

Proof. Let δ5 = min{δ4, 1
3c4

}. It will be shown that

|�eν |rν ≤ δ5(rν − rν+1) =⇒ |�eν+1|rν+1 ≤ δ5(rν+1 − rν+2).

By Theorem 4.6, |�eν |rν ≤ δ4(rν − rν+1) and |�eν |rν ≤ 1
3c4

(rν − rν+1) imply

|�eν+1|rν+1 ≤ c4|�eν |2rν
rν − rν+1

≤ 1
3
|�eν |rν ;

this already suggests a geometric decrease in the sequence of norms. Then,
using the properties of the sequence rν ,

1
3
|�eν |rν ≤ 1

3
δ5(rν − rν+1) ≤ δ5(rν+1 − rν+2),

which proves the claimed implication. Using this as an inductive step, and
starting the induction with |�e0|r0 ≤ δ5(r0 − r1) = 1

4δ5 = η, the hypothesis of
Theorem 4.6 is satisfied for all ν. One conclusion from Theorem 4.6 is that
�eν is holomorphic on Dν , with degree dν ≥ 2ν + 2, and |�eν |rν ≤ 3−νη. The
other conclusion is that Ψν ◦ . . . ◦ Ψ0 is holomorphic, with inverse ψ0 ◦ . . . ◦
ψν : ∆σν → ∆ρ0 such that if |z̃| < rν+1, and z̃2 = ¯̃z2 + (�eν+1)2(z̃, ¯̃z), and
z̃3 = z̃ ¯̃z+(�eν+1)3(z̃, ¯̃z), then (ψ0◦. . .◦ψν)(z̃, z̃2, z̃3) ∈M . For (z, z2, z3) ∈ ∆ 1

2
,

the sequence (depending on ν) (ψ0 ◦ . . . ◦ψν−1 ◦ψν)(z, z2, z3) is contained in
∆1. The following argument, beginning with several applications of Lemma
4.1, shows this sequence is a Cauchy sequence, and converges to some value
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ψ(z, z2, z3).

3∑
i=1

|(ψ0 ◦ . . . ◦ ψν+1)i(z, z2, z3) − (ψ0 ◦ . . . ◦ ψν)i(z, z2, z3)|

=
3∑
i=1

|(ψ0)i((ψ1◦ . . . ◦ ψν+1)(z, z2, z3)) − (ψ0)i((ψ1◦ . . . ◦ ψν)(z, z2, z3))|

≤ |||Dψ0|||ρ1 ·
3∑
j=1

|(ψ1 ◦ . . . ◦ ψν+1)j(z, z2, z3) − (ψ1 ◦ . . . ◦ ψν)j(z, z2, z3)|

≤
(

ν∏
m=0

|||Dψm|||ρm+1

)
·

3∑
j=1

|(ψν+1)j(z, z2, z3) − zj |. (16)

By the estimate from Lemma 4.3, with f = �pν+1 and K = 1
2 from the proof

of Theorem 4.4, and then using the bound for �p from Corollary 3.5,

3∑
j=1

|(ψν+1)j(z, z2, z3) − zj| ≤ 1
1 − 1

2

3∑
j=1

|(�pν+1)j(z, z2, z3)|

≤ 2
3∑
j=1

‖(�pν+1)j‖ 1
2

≤ 6c1|�eν+1|rν+1 ≤ 6c1η
3ν+1

.

It follows from D�zψm = (I + Dψm(�z)�pm)−1 and Lemma 5.2 that:

|||Dψm|||ρm+1 = |||(I + Dψm(�z)�pm)−1|||ρm+1

≤ |||(I + D�pm)−1|||ρm

≤ 1
1 − |||D�pm|||ρm

.

Then, by Lemma 5.3, the product from (16) is bounded above by some
constant c5, since by Corollary 3.5,

∞∑
m=0

|||D�pm|||ρm ≤
∞∑
m=0

c1|�em|rm
rm − ρm

≤
∞∑
m=0

2(m+ 1)(m+ 2)c1η
3m−1

,

a convergent infinite series.
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The inequality

3∑
i=1

|(ψ0 ◦ . . . ◦ ψν+1)i(z, z2, z3) − (ψ0 ◦ . . . ◦ ψν)i(z, z2, z3)| ≤ 2c1c5η
3ν

is enough to show that the sequence of composite functions converges point-
wise and uniformly to a function ψ on ∆ 1

2
.

6 Stabilizer of the normal form

As an appendix to the main result, the set of formal transformations of C
3

which fix the origin and preserve the defining equations of M̃ is constructed.
This is intended to motivate the choice of normalization in Section 3.

For �z = (z, z2, z3), define (z̃, z̃2, z̃3) = Ψ(�z) = A�z + (p1, p2, p3), as in
equations (5), (6), (7), but with a 3 × 3 constant matrix A of complex
coefficients on the linear terms. Since the linear part of Ψ should fix the
z-axis, the tangent plane of M̃ , the matrix A is of the form

A =

 a11 a12 a13

0 a22 a23

0 a32 a33

 .

The a12, a13 entries are coefficients on terms of the form z̃ = z+a12z2+a13z3,
and such a “weight 2” transformation does not contribute quadratic terms
to the new defining equations, and might be more conveniently considered
as part of the p1(z, z2, z3) function. The only matrix entries which affect the
quadratic terms of the defining equations are a11 and the a22, a23, a32, a33

block, and since Ψ should be (formally) invertible, detA �= 0, so a11 can be
any nonzero s ∈ C, and a22a33 − a23a32 �= 0. If Ψ stabilizes the defining
equations, z2 = z̄2, z3 = zz̄, then z̃2 = ¯̃z2 and z̃3 = z̃ ¯̃z, so

a22z2 + a23z3 + p2 = (sz + p1)
2

= a22z̄
2 + a23zz̄ + p2,

a32z2 + a33z3 + p3 = (sz + p1)(sz + p1)
= a32z̄

2 + a33zz̄ + p3.

Comparing the quadratic coefficients gives a22 = s̄2, a23 = a32 = 0, and
a33 = ss̄, so Ψ is of the form

(z, z2, z3) �→ (sz, s̄2z2, |s|2z3) + (p1, p2, p3),
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with p1 weight ≥ 2, and p2, p3 weight ≥ 3. Constructing �q as in Section 4
gives:

z̃2 − ¯̃z2 = p2(z, z̄2, zz̄) − 2s̄z̄p1(z, z̄2, zz̄) − (p1(z, z̄2, zz̄))2,
z̃3 − z̃ ¯̃z = p3(z, z̄2, zz̄) − szp1(z, z̄2, zz̄) − s̄z̄p1(z, z̄2, zz̄) − |p1(z, z̄2, zz̄)|2.
Setting RHS equal to 0 determines p2(z, z̄2, zz̄) and p3(z, z̄2, zz̄) in terms
of p1, however, p1 cannot be arbitrary, and p2(z, z2, z3), p3(z, z2, z3) are not
uniquely defined by their restriction to M̃ .

Let Q be the subalgebra of C[[z, z̄]] of formal series of monomials of the
form za(z̄2)k(zz̄)c; any monomial can be written in this form except z̄b with
b odd.

Let J denote the ideal generated by (z2z2 − z2
3) in C[[z, z2, z3]]. As

mentioned in the proof of Theorem 3.4, any formal series p can be written
as (z2z2 − z2

3) · Q + z3p
O(z, z2) + pE(z, z2). A series in C[[z, z̄]] is in Q if

and only if it is the restriction of some z3pO(z, z2) + pE(z, z2) to z2 = z̄2,
z̄3 = zz̄.

In order for p1, p2, p3 to satisfy:

p2(z, z̄2, zz̄) = 2s̄z̄p1(z, z̄2, zz̄) + (p1(z, z̄2, zz̄))2,
p3(z, z̄2, zz̄) = szp1(z, z̄2, zz̄) + s̄z̄p1(z, z̄2, zz̄) + |p1(z, z̄2, zz̄)|2,

the RHS must be in Q (since the LHS is in Q). In particular, p̄1 · (2s̄z̄+ p̄1)
and p1 · (s̄z̄ + p̄1) must both be in Q when p1 is restricted to M̃ . Any p1

satisfying this condition defines a formal stabilizing transformation Ψ, since
then p2, p3 will be determined mod J .

The normalization chosen for a transformation �p in Theorem 3.4, which
was intended to alter the defining functions, not preserve them, was that
z̄p̄1 and z̄p1 were not in Q when restricted to M̃ , and that p2, p3 could be
arbitrary, but with Q = 0 in the decomposition mod J .

7 An example of an approximate solution

As an example of the approximate normalizing transformation �p, consider
the following real algebraic surface with a non-degenerate complex tangent
in C

3, with d = 2k + 1 ≥ 3, and R > 0:

z2 = z̄2 +
z̄d

R− z̄
, (17)

z3 = zz̄ +
z̄d

R− z
. (18)
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It is left as an exercise to show that the construction of Theorem 3.4
results in the following normalized �p, and as another exercise to verify �p is
an exact solution of equations (10) and (11). Note that the functions are
holomorphic on ∆R, with weights equal to d− 1, d, d.

p1 =
Rz2k

2(R2 − z2)
+
zk2
R
,

p2 =
2z3z2k−1

R
− zk+1

2

R2 − z2
,

p3 =
2z2k+3z2 −R2z3zk2 − 2R2z2k+3 +R4zzk2 + 2R4z2k+1 − 2R2z2k+1z2

2R(R2 − z2)(R2 − z2)

+z3
2zzk+1

2 − 2R2zzk2 + 2Rzk+1
2 − 2R3zk2 +R4z2k−1 −R2z2k−1z2

2R(R2 − z2)(R2 − z2)
.

8 Surfaces in higher dimensions

Since the expected real codimension of the complex tangent locus of a real
m-manifold in C

n is 2(n −m + 1) when m ≤ n, a real 2-manifold M with
an isolated complex tangent in C

n, n > 3, is quite exceptional. However,
for a sufficiently large family of surfaces, one might expect that while most
are totally real, some of its members may have an isolated complex tangent.
A naturally occuring example of such a family of surfaces in a complex 4-
manifold is described by [C2], where quadratic rational functions are used
to map the real projective plane into CP 4, and in some special cases, the
rational functions define an embedding with exactly one complex tangent.

With coordinate system (z, z2, . . . , zn) for C
n, the complex tangent plane

of the surface M can be arranged to be the z-axis as in Section 2, and
then the local real analytic defining equations are of the form (z2, . . . , zn) =
(h2(z, z̄), . . . , hn(z, z̄)), with

hi(z, ζ) = βizζ + γiζ
2 + θiζ

3

+αiz2 + κiz
3 + λiz

2ζ + µizζ
2 +

∑
a+b≥4

ha,bi zaζb,

for i = 2, . . . , n. The non-degeneracy condition is that the (n − 1) × 3
matrix of the βi, γi, θi complex coefficients has full rank. In this case, a
complex linear transformation of (z2, . . . , zn) can diagonalize the first three
rows of the matrix, and it is clear that αiz2 and the remaining cubic terms
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can be eliminated by weight 2 and 3 transformations of the form zi �→
zi + pi(z, z2, z3), leaving the following cubic normal form:

z2 = z̄2 + e2(z, z̄)
z3 = zz̄ + e3(z, z̄)
z4 = z̄3 + e4(z, z̄)
zs = es(z, z̄),

with degree ≥ 4 functions e2, e3, e4, and es, 5 ≤ s ≤ n.

Theorem 8.1. Given n ≥ 4, and assuming M is a non-degenerate surface
in C

n, (in the sense that it has the above defining equations), there exists a
local biholomorphism Ψ taking M to the real variety M̃ defined by:

z2 = z̄2, z3 = zz̄, z4 = z̄3, zs = 0.

Proof. As in Theorem 3.4, the main idea is that any series e(z, z̄) can be
decomposed as a sum of three series, but the z̄2k+1 terms now can be nor-
malized using z4 = z̄3. Ψ need not involve a z �→ z+p1 component, and this
is such a significant simplification that the rapid convergence argument will
not be needed. Rather than constructing an approximate Ψ as in Theorem
3.4, the exact inverse map ψ, defined by

ψ(z, z2, . . . , zn) = (z, z2 + P2(z, z2, z3, z4), . . . , zn + Pn(z, z2, z3, z4)),

can be directly computed in terms of e2, . . . , en. The condition that defines
a normalizing ψ is that if �z ∈ M̃ , then ψ(�z) ∈M , so that the following equa-
tions must hold when �z=(z, z2, . . . , zn) is restricted to (z, z̄2, zz̄, z̄3, 0, . . . , 0):

z2 + P2(�z) = z̄2 + e2(z, z̄)
z3 + P3(�z) = zz̄ + e3(z, z̄)
z4 + P4(�z) = z̄3 + e4(z, z̄)
zs + Ps(�z) = es(z, z̄).

Evidently these equations can be solved exactly, by showing that any real
analytic e(z, z̄) is agrees in some neighborhood with the restriction to M̃ of
some function P (z, z2, z3, z4) that is complex analytic on a polydisc in C

n.
To solve for Pi in terms of ei, i = 2, . . . , n, normalize Pi so that

Pi(z, z2, z3, z4) = PEi (z, z2) + z3P
O
i (z, z2) + z4P

C
i (z2).
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(As in Theorem 3.4, the superscripts E and O abbreviate even and odd, and
C denotes the use of a “cubic” term.) The function

1
2
(ei(0, ζ) − ei(0,−ζ)) =

∑
e0,2k+1
i ζ2k+1

begins with at least a fifth degree term; let PCi (z2) =
∑
e0,2k+1
i zk−1

2 , so that
z̄3PCi (z̄2) =

∑
e0,2k+1
i z̄2k+1. If ei(z, ζ) is complex analytic onDr, and |ei|r <

∞, then the series PCi is convergent for z2 < r2, and it and its derivatives
are bounded (on a smaller disc) by some multiple of |ei|r, as in Corollary
3.5. The rest of the details are omitted, but straightforward modifications
of the calculations in Section 3 will find PEi and POi in terms of ei and PCi ,
and Lemma 4.3 will show that ψ is invertible on some neighborhood of the
origin.

The complexification of M̃ in C
4 is the complex surface defined by the

ideal 〈z2z3 − z1z4, z
3
2 − z2

4 , z1z
2
2 − z3z4, z

2
1z2 − z2

3〉.
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