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1 Linear Algebra: Complex Structure Oper-

ators

Definition 1.1. Given a real vector space V , a real linear map J : V → V
such that J ◦ J = −IdV is called a “complex structure operator,” or more
briefly a CSO.

Example 1.2. The “standard” CSO on the space R
2n is the 2n× 2n block

matrix

Jstd =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1
1 0

0 −1
1 0

. . .

0 −1
1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Lemma 1.3. Given V , if J is a CSO, then:

• −J is also a CSO on V ;

• For any involution N : V → V commuting with J (i.e., N ◦N = IdV ,
N ◦ J = J ◦N), the composite N ◦ J is also a CSO on V .
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• For any invertible real linear map A : U → V , the composite A−1◦J ◦A
is a CSO on U .

Lemma 1.4. Given a vector space V with a CSO JV , another vector space
U with a CSO JU , and a real linear map A : U → V , the following are
equivalent:

• JV ◦ A = A ◦ JU ;
• A+ JV ◦ A ◦ JU = 0;

• For any real scalars a, b, (a · IdV + b · JV ) ◦A = A ◦ (a · IdU + b · JU).

A map A satisfying any of the above equivalent properties is called c-
linear with respect to JU and JV (or more briefly when clear, just c-linear).
A map is a-linear with respect to JU and JV if it is c-linear with respect to
the CSOs −JU and JV .

Lemma 1.5. Given vector spaces U , V , with CSOs JU , JV as in the previous
Lemma, the space of linear maps Hom(U, V ) admits a direct sum decompo-
sition

Hom(U, V ) = Homc(U, V )⊕ Homa(U, V ).

Any A ∈ Hom(U, V ) can be written uniquely as a sum of a c-linear map and
an a-linear map. The projection operators are

Pc(A) =
1

2
(A− JV ◦ A ◦ JU), Pa(A) =

1

2
(A+ JV ◦ A ◦ JU),

so that A = Pc(A) + Pa(A), and Pc(A) is c-linear.

Consider V = R2n with the usual basis, and let Jn be the subset of
GL(2n,R) consisting of all CSOs on V . By the Theorem on Jordan Canonical
Form over R, the smooth map S : GL(2n,R) → J : G �→ G−1◦Jstd◦G is onto.
(Lemma 1.11 gives a proof of this special case of JCF.) Let GL(n,C) denote
the subgroup of elements A ∈ GL(2n,R) such that A is c-linear with respect
to Jstd: A ◦ Jstd = Jstd ◦ A. Then S(G) = S(A ◦ G) for any A ∈ GL(n,C),
so S induces a well-defined map from the coset space GL(2n,R)/GL(n,C)
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onto Jn. Since G−1 ◦Jstd ◦G = H−1 ◦Jstd ◦H =⇒ H ◦G−1 ∈ GL(n,C), the
induced map is also one-to-one. The conclusion is that Jn is diffeomorphic
to the homogeneous space GL(2n,R)/GL(n,C), which has real dimension
(2n)2 − 2n2 = 2n2.

Lemma 1.6. Given V and any two CSOs J1, J2, if J1 + J2 is invertible,
then (J1 + J2)

−1 ◦ (J1 − J2) is a-linear with respect to J1, J1 and also with
respect to J2, J2.

Hint. First, for any two CSOs J1, J2, the map J1+J2 is c-linear with respect
to J1 and J2: (J1 + J2) ◦ J1 = J2 ◦ (J1 + J2).

Consider

(J1 + J2)
−1 ◦ (J1 − J2) ◦ J1 + J1 ◦ (J1 + J2)

−1 ◦ (J1 − J2)

and multiply by J1 + J2 to get

(J1 − J2) ◦ J1 + (J1 + J2) ◦ J1 ◦ (J1 + J2)
−1 ◦ (J1 − J2)

= (J1 − J2) ◦ J1 + J2 ◦ (J1 + J2) ◦ (J1 + J2)
−1 ◦ (J1 − J2)

= −IdV − J2 ◦ J1 + J2 ◦ J1 + IdV = 0End(V ).

The calculation showing that (J1 + J2)
−1 ◦ (J1 − J2) anticommutes with J2

is similar.

For CSOs J , J0 on V = R2n such that J + J0 is invertible as in Lemma
1.6, the following identity is easily checked:

(J + J0)
−1 ◦ (J − J0) = −1

2
(Id− 1

2
J0 ◦ (J − J0))

−1 ◦ J0 ◦ (J − J0). (1)

In view of this identity (which shows the first-order approximation in J−J0),
and also Lemma 1.6, if J0 is fixed, then the mapping

J �→ (J + J0)
−1 ◦ (J − J0)

is a local diffeomorphism from a neighborhood of J0 in Jn (so that J − J0 is
small in some matrix norm) to a neighborhood of the origin of Homa(V, V )
(the real vector space of endomorphisms of V which are a-linear with respect
to J0). This is consistent with the earlier calculation that the real dimension
is 1

2
(2n)2 = 2n2, and the mapping gives an explicit local coordinate chart

around J0 in Jn.
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It will be more convenient later to switch the sign and consider the trans-
formation

J �→ A = (J + J0)
−1 ◦ (J0 − J). (2)

Then it is elementary ([C2] §5.1, [R]) to check that this transformation has
inverse (for J near J0 and A ∈ Homa(V, V ) with Id+ A invertible):

A �→ J = (Id+ A) ◦ J0 ◦ (Id+ A)−1. (3)

Lemma 1.7. Given a 2n × 2 real matrix A, if A is c-linear with respect to
the standard 2× 2 and 2n× 2n Jstd CSO matrices, and rank(A) < 2, then A
is the zero matrix.

Proof. First consider the 2× 2 case; a quick calculation shows(
a b
c d

)
·
(

0 −1
1 0

)
=

(
0 −1
1 0

)
·
(
a b
c d

)

implies b = −c and a = d, so det(A) = a2+ b2. If A is singular, then A is the
2× 2 zero matrix. In the 2n× 2 case, a similar calculation with Jstd shows A
is a column of n 2× 2 blocks of that form, so if the rank is less than 2, then
all the blocks must be zero.

Example 1.8. Given endomorphisms J1, J2 on R2m, R2n, respectively, the
block matrix

J =

(
J1 B
0 J2

)
(4)

is a CSO on R2m+2n if and only if J1 and J2 are both CSOs and B2m×2n is
a-linear, i.e., J1 · B = −B · J2. The matrix J is similar to the block matrix

J0 =

(
J1 0
0 J2

)
, (5)

via the relation J = G−1 · J0 ·G, where

G =

(
Id2m×2m

1
2
B · J2

0 Id2n×2n

)
,

G−1 =

(
Id2m×2m −1

2
B · J2

0 Id2n×2n

)
.
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Example 1.9. Suppose J is a CSO of the form (4), and that J3 is a CSO
such that J2+ J3 is invertible. There exists G1, from Example 1.8, such that
G−1

1 · J0 ·G1 = J , where J0 is in the block form (5). From (3) with J0 = J3,
there exists

G2 =

(
Id 0
0 (Id+ A)−1

)

so that G−1
2 ·

(
J1 0
0 J3

)
· G2 = J0. The composite transformation and its

inverse are:

G3 = G2G1 =

(
Id 1

2
B · J2

0 (Id+ A)−1

)
, (6)

G−1
3 =

(
Id −1

2
B · J2 · (Id+ A)

0 Id+ A

)
,

A = (J2 + J3)
−1 · (J3 − J2),(

J1 0
0 J3

)
�→ G−1

3 ·
(
J1 0
0 J3

)
·G3 =

(
J1 B
0 J2

)
= J,

J =

(
J1 B
0 J2

)
�→ G3 · J ·G−1

3 =

(
J1 0
0 J3

)
.

It can be checked that doing the steps in the other order — (3) then (5) —
gives the same matrix G3.

Lemma 1.10. Given V with CSO J and �v1, . . . , �v� ∈ V , if

(�v1, J(�v1), �v2, J(�v2), . . . , �v�−1, J(�v�−1), �v�)

is a linearly independent list, then so is

(�v1, J(�v1), �v2, J(�v2), . . . , �v�−1, J(�v�−1), �v�, J(�v�)) .

Proof. Except for a re-ordering of the lists, this Lemma is recalled from ([C2]
§5.1).
Lemma 1.11. Given n ≥ 1, R2n with CSO J2n×2n, there exists G ∈ GL(n,R)
such that G · J ·G−1 = Jstd.

Proof. If J + Jstd is invertible, then (3) can be used. The following method
is less canonical but works for any J , not requiring that J+Jstd is invertible.
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Pick any non-zero �v1 ∈ R2n; then the pair (�v1, J(�v1)) is an independent
list by Lemma 1.10. If this is a basis, stop; otherwise, it does not span R2n,
so there is some �v2 not in span{�v1, J(�v1)}, so (�v1, J(�v1), �v2) is an independent
list, and by Lemma 1.10, (�v1, J(�v1), �v2, J(�v2)) is an independent list. This
can be continued, repeating the arbitrary choice of �vk and adding J(�vk), until
the list spans R2n and is a basis (this gives a proof that the dimension must
be even). Let H be the 2n× 2n matrix formed by stacking the basis vectors
as columns:

H = [�v1, J(�v1), �v2, J(�v2), . . . , �vn−1, J(�vn−1), �vn, J(�vn)] ,

so by construction, H has linearly independent columns and is invertible.
Let (�e1, . . . , �e2n) be the standard basis of R2n, so that H · �e2k−1 = �vk and
H · �e2k = J(�vk). Let G = H−1; then the matrix G · J · G−1 = H−1 · J · H
satisfies:

H−1 · J ·H · �e2k−1 = H−1 · J · �vk = �e2k,

H−1 · J ·H · �e2k = H−1 · J · J · �vk = −H−1 · �vk = −�e2k−1.

The conclusion is that G · J ·G−1 = Jstd.

Example 1.12. Let C denote the usual complex conjugation on C2, so
C(z1, z2) = (z̄1, z̄2). C is a-linear with respect to the standard CSO Jstd.
With respect to real coordinates z1 = x1 + iy1, z2 = x2 + iy2, C has 4 × 4
matrix representation

C =

⎡
⎢⎢⎣

1
−1

1
−1

⎤
⎥⎥⎦ .

Any a-linear function A : R4 → R4 is of the form A = B1 ◦ C = C ◦ B2, for
some c-linear functions B1 and B2; specifically, one can choose B1 = A◦C and

B2 = C ◦ A. If the c-linear function B1 has matrix representation

[
α β
γ δ

]
with respect to complex coordinates z1, z2 on C2, and where α = a1+ia2, etc.,
then the following real linear transformations have matrix representations:

B1 =

⎡
⎢⎢⎣
a1 −a2 b1 −b2
a2 a1 b2 b1
c1 −c2 d1 −d2
c2 c1 d2 d1

⎤
⎥⎥⎦ , A = B1 ◦ C =

⎡
⎢⎢⎣
a1 a2 b1 b2
a2 −a1 b2 −b1
c1 c2 d1 d2
c2 −c1 d2 −d1

⎤
⎥⎥⎦ .
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2 Differential Topology: Coordinate charts

and the tangent bundle

2.1 Manifolds

We begin by following some notation of [H]. LetM be a Cr (r ≥ 0, or r = ∞,
or r = ω) manifold of dimension n, so that M is covered by open sets with
coordinate charts φj : Uj → Rn, and for two charts, φj ◦φ−1

k : φk(Uj ∩Uk) →
R
n is Cr.
If 0 ≤ r < s and M is a Cs manifold, then M is also a Cr manifold,

trivially. There is a non-trivial converse (see Proposition 2.2 below). Given a
Cs manifold M , some more coordinate charts can be added so that φj ◦φ−1

k :
φk(Uj ∩ Uk) → Rn is Cr but not Cs; this changes M to a Cr manifold which
is not a Cs manifold. The topological (C0) structure is the same but the
differential structure has changed.

For a Cr manifoldM and another Cr′ manifoldM ′ with charts ψk′ : Vk′ →
R
n′
, consider a map u :M ′ →M . Suppose that for every point x ofM ′, there

are some neighborhoods x ∈ V , u(V ) ⊆ U , so that φ ◦ u ◦ ψ−1 : ψ(V ) → Rn′

is a Cr′′ map. Then, for any coordinate charts, φk ◦ u ◦ ψ−1
k′ is Cr′′′ where

it is defined, where r′′′ = min{r, r′, r′′}. This follows from the equality of
composites:

φk◦u◦ψ−1
k′ = φk◦(φ−1◦φ)◦u◦(ψ−1◦ψ)◦ψ−1

k′ = (φk◦φ−1)◦(φ◦u◦ψ−1)◦(ψ◦ψ−1
k′ ).

So, the only coordinate-independent notion of a Cr′′ map u : M ′ → M is
where r′′ ≤ min{r, r′}.
Definition 2.1. Given a Cr manifoldM , a subset A ⊆M is a Cr k-submanifold
means: at each point x of A there exists a neighborhood U of x in M and
a coordinate chart φ : U → Rn such that U ∩ A = φ−1(φ(U) ∩ Rk), where
Rk = {(x1, . . . , xk, 0, . . . , 0)} ⊆ Rn.

A Cr k-submanifold is a k-dimensional Cr manifold with charts φ|U∩A.
For 0 ≤ r < s, it is possible that M is a Cs manifold, and A is not a Cs k-
submanifold, but by adding more coordinate charts to makeM a Cr manifold,
A is a Cr k-submanifold of the Cr manifold M .
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Proposition 2.2. Given 1 ≤ r < s ≤ ∞, let M be a Cr manifold with open
covering Uα and coordinate charts φα. LetΨ = {(Uβ, φβ)} be a maximal atlas,
adding all possible open subsets of M and all maps φβ which have Cr overlaps
with the given charts on M . Then, there exists a subset of Ψ which is a Cs
differential structure for M .

Sketch of Proof. The construction is non-trivial ([H] §2.2) and uses the prop-
erty that the coordinate charts in the Cr structure can be approximated by
Cs charts in a compatible way.

2.2 Bundles

Let B, E, and F be topological spaces. A function p : E → B is a
fiber bundle means that for neighborhoods Uk in B, the map p looks like
a projection Uk × F → Uk. More precisely, there exists a covering of B
by open subsets Uk, so that for each k, there is a homeomorphism Φk from
the open set p−1(Uk) ⊆ E to Uk × F , satisfying πk ◦ Φk = p|p−1(Uk)

, where
πk : Uk × F → Uk is the usual projection onto the first factor.

It follows from the above definition that p is onto and continuous. The
inverse image of a point, p−1({x}), is a “fiber,” and as a subspace of E,
it is homeomorphic to F , as follows. The restriction of Φk to p−1({x}) is
a continuous, one-to-one function, with image contained in Uk × F . Given
y ∈ p−1({x}), Φk(y) satisfies πk(Φk(y)) = p(y) = x, so Φk(y) ∈ {x} × F .
If w ∈ {x} × F , then w = Φk(y) for some y ∈ p−1(Uk), and x = πk(w) =
πk(Φk(y)) = p(y), so y ∈ p−1({x}). So, the image of Φk|p−1({x}) is exactly

{x} × F . The inverse of Φk|p−1({x}) is equal to the restriction of Φ−1
k to the

subspace {x} × F , so Φk|p−1({x}) has a continuous inverse. The composite
of Φk|p−1({x}) with the projection πF : {x} × F → F is a homeomorphism,
which can be denoted:

πF ◦
(
Φk|p−1({x})

)
= Φk,x : p

−1({x}) → F.

A section of p : E → B is a continuous function s : B → E such that
p◦ s is the identity map on B. Such a map could be called a “global” section
to distinguish from a “local” section s : V → E with (p ◦ s)(x) = x for
x ∈ V ⊆ B.
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2.3 Vector Bundles

Consider the special case of a fiber bundle where F = Rm, B is a C0 manifold,
and B is covered by coordinate charts φk : Uk → Rn as in Subsection 2.1.
Then the topological space E is a C0 manifold of dimension n+m. The open
sets p−1(Uk) are a covering of E by coordinate neighborhoods, with charts
(φk × IdRm) ◦ Φk : p−1(Uk) → Rn+m. The composites

(φj × IdRm) ◦ Φj ◦ ((φk × IdRm) ◦ Φk)−1 : (7)

((φk × IdRm) ◦ Φk)(p−1(Uk) ∩ p−1(Uj)) → R
n+m

are continuous.
A fiber bundle p : E → B as above is a vector bundle means that on each

intersection of charts in B, x ∈ Uj ∩ Uk,

Φj,x ◦ Φ−1
k,x : R

m → R
m

is linear (and invertible), and as a function of x,

gjk : Uj ∩ Uk → GL(m,R) : gjk(x) = Φj,x ◦ Φ−1
k,x

is a continuous function. By construction, these transition functions satisfy
the cocycle identities: gkk(x) = IdRm and gij(x)gjk(x) = gik(x). Here, F =
Rm is not just an abstract vector space, it is the actual Cartesian m-space
of column m-vectors, with the standard basis �e1, . . . , �em. gjk(x) is not just
an abstract linear map, but a size m ×m matrix where the entries are real
valued functions depending on x.

Conversely, given B, a coordinate chart covering Uk, and transition func-
tions gjk on Uj ∩ Uk satisfying the cocycle identities, a vector bundle p :
E → B can be constructed, using a quotient space. Before describing the
construction, we will need two point-set topological Lemmas.
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Lemma 2.3. Given topological spaces Π and Z, an onto function Q : Π → E,
and the quotient topology induced by Q on E, suppose V is an open subset of
E and f : V → Z is any function. The following are equivalent:

(i) f is continuous;

(ii) f ◦ (Q|Q−1(V )) : Q
−1(V ) → Z is continuous.

Further, if f̃ : Q−1(V ) → Z is any continuous function which is constant on
subsets of the form Q−1({v}) for v ∈ V , then there exists a unique continuous
function f : V → Z such that f ◦ (Q|Q−1(V )) = f̃ .

Proof. By definition of quotient topology, a set U is open in E iff Q−1(U) is
open in Π. It follows that Q is continuous and Q−1(V ) is open in Π. For
(i) =⇒ (ii), the map in (ii) is the composite of the continuous function f
with the restriction of the continuous function Q to the subspace Q−1(V ).

For (ii) =⇒ (i), let U be any open set in Z; we want to show f−1(U)
is open in V . By hypothesis, (f ◦ (Q|Q−1(V )))

−1(U) is open in Q−1(V ). It
follows that (Q|Q−1(V ))

−1(f−1(U)) =W ∩Q−1(V ) for someW open in Π, and
this set equals {x ∈ Q−1(V ) : (Q|Q−1(V ))(x) ∈ f−1(U)}. If y is any element of
Π with Q(y) ∈ f−1(U) ⊆ V , then y ∈ Q−1(V ) and Q(y) = (Q|Q−1(V ))(y), so
the above expression simplifies to {x ∈ Π : Q(x) ∈ f−1(U)} = Q−1(f−1(U)).
This is an open set in Π, so by definition of quotient topology, f−1(U) is
open in E, and contained in V , so it is open in V .

Now suppose f̃ is given, and for v ∈ V , let f(v) = f̃(x) for any x ∈
Q−1({v}); f is well-defined by hypothesis. For x ∈ Q−1(V ), with Q(x) = v,
(f ◦ (Q|Q−1(V )))(x) = f(Q(x)) = f(v) = f̃(x), so if f̃ is continuous, then f
is continuous by the previous paragraph. For uniqueness, if h ◦ (Q|Q−1(V )) =

f ◦ (Q|Q−1(V )) = f̃ , let v ∈ V with Q(x) = v, so h(v) = (h ◦ (Q|Q−1(V )))(x) =

f̃(x) = (f ◦ (Q|Q−1(V )))(x) = f(v).

Lemma 2.4. Given topological spaces Z, Π, E, and a continuous map Q :
Π → E, suppose there is an open covering Uα of Z, and a collection of
functions fα : Uα → Π such that each Q ◦ fα : Uα → E is continuous. If
Q(fα(z)) = Q(fβ(z)) for all z ∈ Uα ∩ Uβ, then there is a continuous map
f : Z → E with Q(fα(z)) = f(z) for all α and z ∈ Uα.

Proof. The functions fα need not be continuous. Define f(z) = Q(fα(z))
for any α with z ∈ Uα; f is well-defined by hypothesis. Let V be any open
set in E; then f−1(V ) = ∪f−1(V ) ∩ Uα. Each set f−1(V ) ∩ Uα is equal
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to {z ∈ Z : f(z) ∈ V and z ∈ Uα} = {z ∈ Uα : f(z) ∈ V } = {z ∈ Uα :
Q(fα(z)) ∈ V } = (Q◦fα)−1(V ), which is open in Z by hypothesis, so f−1(V )
is a union of open sets.

Let Λ be the index set {k} for the given covering of B by coordinate
charts Uk, with the discrete topology, and consider this disjoint union as a
topological space:

Π =
⋃
k∈Λ

Uk × {k} × R
m.

Define a relation on the set of triples: (x, k,�a) ∼ (y, j,�b) means: x = y ∈
Uj ∩ Uk and gjk(x) : �a �→ �b. This is an equivalence relation by the cocycle
identities. The equivalence class of any point (x, k,�a) ∈ Uk × {k} × Rm is
denoted [x, k,�a], and satisfies:

[x, k,�a] =
⋃
j∈Λ

{ {(x, j, gjk(x)(�a))} if x ∈ Uj ∩ Uk
Ø if x /∈ Uj ∩ Uk

Let E be the set of all equivalence classes. Define the onto function Q : Π →
E : (x, k,�a) �→ [x, k,�a], and let E have the quotient topology as in Lemma
2.3. By definition, a set V is open in E if and only if Q−1(V ) is open in Π.

Fix k and a coordinate chart φk : Uk → Rn for B. Then the set Uk ×
{k}×Rm is open in Π. Q is one-to-one on this open set: if (y, k,�b) ∼ (x, k,�a)
then y = x and gkk(x) : �a �→ �a. Q−1(Q(Uk × {k} × Rm)) is the set of points
in Π that are equivalent to points in Uk × {k} × R

m:

Q−1(Q(Uk × {k} × R
m)) =

⋃
j∈Λ

(Uj ∩ Uk)× {j} × R
m,

so it is a union of open sets and is open in Π. By definition of quotient
topology, Q(Uk × {k} × Rm) is open in E; E is covered by open sets of this
form.

The main consequence of the quotient topology is that Lemma 2.3 gives
the following criterion for a function to be continuous on E. Let Z be any
topological space; a function f : E → Z is continuous if and only if there
is a continuous function f̃ : Π → Z such that f̃ = f ◦ Q. This f̃ must
be constant on equivalence classes: if (x, k,�a) ∼ (y, j,�b) then f̃((x, k,�a)) =

f([x, k,�a]) = f([y, j,�b]) = f̃((y, j,�b)), and for any such f̃ , there is a unique
induced map f . So, to define a continuous function f : E → Z, it is enough
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to define a continuous f̃ on all the open sets Uk × {k} × Rm and then check
that for all j, if x ∈ Uj∩Uk, then f̃((x, k,�a)) = f̃((x, j, gjk(x)(�a))). Then, for
any equivalence class [x, k,�a] = Q((x, k,�a)), f([x, k,�a]) = f(Q((x, k,�a))) =
f̃((x, k,�a)), independent of the choice of representative (x, k,�a).

In the other direction, to define a continuous function f : Z → E, it is
enough to cover Z by open sets Vα and apply Lemma 2.4 to Q : Π → E. If
there is a collection of continuous functions fα : Vα → Π, then each Q ◦ fα is
continuous, and f(z) = Q(fα(z)) is a well-defined continuous function Z → E
(not depending on α) if fα(z) ∼ fβ(z) for all z ∈ Vα ∩ Vβ. Equivalently, if

fα(z) = (f 1
α(z), j,

�f 2
α(z)) and fβ(z) = (f 1

β(z), k,
�f 2
β(z)), then f

1
α(z) = f 1

β(z) ∈
Uj ∩ Uk and gjk(f

1
α(z)) :

�f 2
β(z) �→ �f 2

α(z).
Define p̃ : Π → B : (x, k,�a) �→ x. Then p̃ is constant on equivalence

classes: if (x, k,�a) ∼ (y, j,�b), then x = y so p̃((x, k,�a)) = p̃((y, j,�b)) = x =
y. Also, p̃ is continuous on each subset Uk × {k} × Rm, so it induces the
continuous function p : E → B : p([x, k,�a]) = x by Lemma 2.3.

To show that p : E → B defines a vector bundle, we need to define the
functions Φk : p−1(Uk) → Uk × Rm. Lemma 2.3 applies to the open set
p−1(Uk) in E. The set Q−1(p−1(Uk)) is equal to

(p ◦Q)−1(Uk) = p̃−1(Uk) =
⋃
j∈Λ

(Uk ∩ Uj)× {j} × R
m. (8)

For (y, j,�b) in this set, define

Φ̃k : (y, j,�b) �→ (y, (gjk(y))
−1(�b)) ∈ Uk × R

m,

then Φ̃k is continuous and if (y′, j′,�b′) ∼ (y, j,�b) for y ∈ Uk ∩ Uj ∩ Uj′ , then
y′ = y, gj′j(y) : �b→ �b′, and

Φ̃k((y
′, j′,�b′)) = (y′, (gj′k(y′))−1(�b′)) = (y, (gj′k(y

′))−1((gj′j(y))(�b)))

= (y, (gjk(y))
−1(�b)) = Φ̃k((y, j,�b)).

So, there is an induced continuous map Φk : p−1(U) → Uk × R
m, with

Φk ◦Q|Q−1(p−1(Uk)) = Φ̃k, and for any x ∈ Uk ∩ Uj, and �b ∈ Rm,

Φk([x, j,�b]) = (x, (gjk(x))
−1(�b)). (9)

In particular, for any x ∈ Uk and �a ∈ Rm, [x, k,�a] ∈ p−1(Uk), and Φk([x, k,�a]) =
(x,�a). By construction, (πk ◦ Φk)([x, k,�a]) = x = (p|p−1(Uk))([x, k,�a]).
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To show that Φk is a homeomorphism, we need a continuous inverse.
Define a collection of continuous functions indexed by j ∈ Λ,

Ψjk : (Uk ∩ Uj)× R
m → (Uk ∩ Uj)× {j} × R

m ⊆ Π

(y,�b) �→ (y, j, (gjk(y))(�b)).

For y ∈ Uk ∩ Uj ∩ Uj′,
Ψj′k((y,�b)) = (y, j′, (gj′k(y))(�b))

∼ (y, j, gjj′(y)((gj′k(y))(�b)))

= (y, j, (gjk(y))(�b)) = Ψjk((y,�b)),

so these functions satisfyQ◦Ψj′k = Q◦Ψjk on (Uk∩Uj∩Uj′)×Rm, and the sets
(Uk∩Uj)×R

m are an open cover of Uk×R
m, so the function Ψk : Uk×R

m → E
defined by Ψk(x,�a) = Q(Ψkk((x,�a))) = [x, k,�a] is continuous by Lemma 2.4,
and a two-sided inverse of Φk. (We could have defined Ψkk only and then
Ψk = Q ◦ Ψkk, but the above application of Lemma 2.4 shows that Ψk can
be defined in a coordinate-independent way.) This is enough to show that
p : E → B is a fiber bundle with fiber Rm.

To show that this construction (being given gjk and constructing p and
Φk) gives a vector bundle with transition functions agreeing with the given

data, consider x ∈ Uj ∩ Uk. Then p−1({x}) = {[x, j,�b] : �b ∈ Rm}, and
Φk|p−1({x}) : p−1({x}) → {x} × Rm, with

(Φk|p−1({x}))([x, j,�b]) = (x, (gjk(x))
−1(�b))

as in (9). So (πRm ◦ (Φk|p−1({x})))−1 : Rm → p−1({x}) is defined by

�a �→ [x, j, (gjk(x))(�a)]. (10)

Again using (9), Φj |p−1({x})([x, j,�b]) = (x,�b), so

(πRm ◦ (Φj |p−1({x}))) ◦ (πRm ◦ (Φk|p−1({x})))
−1 = gjk(x) : R

m → R
m,

which shows p : E → B is a vector bundle with transition functions gjk.
Returning to (7), the coordinate change functions on the manifold E can

be expressed in terms of gjk. Consider an element x ∈ Ui ∩ Uj ∩ Uk, and an

element [x, i,�b] ∈ p−1(Uj) ∩ p−1(Uk). Then, from (9),

(φk × IdRm) ◦ Φk : [x, i,�b] �→ (φk(x), (gik(x))
−1(�b)) ∈ R

n+m (11)
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has inverse

((φk × IdRm) ◦ Φk)−1 : Rn+m → p−1(Uj) ∩ p−1(Uk)

(�v,�a) �→ [φ−1
k (�v), i, (gik(φ

−1
k (�v)))(�a)]. (12)

So, the composite in (7) maps (�v,�a) to:

(φj × IdRm) ◦ Φj : [φ−1
k (�v), i, (gik(φ

−1
k (�v)))(�a)]

�→ (
φj(φ

−1
k (�v)), (gij(φ

−1
k (�v)))−1(gik(φ

−1
k (�v))(�a))

)
=

(
(φj ◦ φ−1

k )(�v), (gjk(φ
−1
k (�v)))(�a)

)
. (13)

For an open set V ⊆ B, a local section s : V → E can be defined using
Lemma 2.4. Using the coordinate charts Uk ⊆ B, V has an open cover
V ∩Uk. On V ∩Uk, denote sk : V ∩Uk → Π by sk(x) = (s1k(x), s

2
k(x), �s

3
k (x)),

which can be any function where Q◦sk : V ∩Uk → E is continuous. Suppose
further that for x ∈ V ∩Uk∩Uk′, Q(sk(x)) = Q(sk′(x)), which by construction
means s1k(x) = s1k′(x) and (gs2

k′(x)s
2
k(x)

(s1k(x)))(�s
3
k (x)) = �s 3

k′ (x). Then Lemma

2.4 defines a continuous function s : V → E at any point x ∈ V ∩ Uk by
s(x) = Q(sk(x)). The definition of section requires p(s(x)) = x for x ∈ V ,
and by construction of p, p(s(x)) = p([s1k(x), s

2
k(x), �s

3
k (x)]) = s1k(x) = x.

So, on V ∩ Uk, sk(x) = (x, s2k(x), �s
3
k (x)), which can be replaced by s′k(x) =

(x, k, (gks2k(x)(x))(�s
3
k (x))) ∼ sk(x) without changing s. It follows that if �sk :

V ∩ Uk → Rm is any collection of continuous functions such that for x ∈
V ∩ Uk ∩ Uj, (gjk(x))(�sk(x)) = �sj(x), then the formula s(x) = [x, k, �sk(x)]
defines a continuous local section s : V → E.

2.4 Hom bundles

Let Hom(Rm,Rq) denote the real vector space of q ×m real matrices. For
invertible matrices Am×m and Bq×q, the matrix product function Cq×m �→
B · C · A−1 is an invertible linear transformation of Hom(Rm,Rq).

Now let B be a C0 manifold, and suppose there are two vector bundles
on B using the same coordinate charts Uk (this can always be achieved by a
“refinement” of two open covers). First, p1 : E1 → B has transition functions
g1jk(x) : Rm → Rm, and second, p2 : E2 → B has transition functions
g2jk(x) : Rq → Rq. Let GL(q × m,R) denote the set of invertible linear

transformations of Hom(Rm,Rq), embedded as an open subset of R(qm)2 via
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matrix representation. Define a new function g3jk : Uj ∩Uk → GL(q ×m,R),
by the formula

g3jk(x) : Cq×m �→ g2jk(x) · C · (g1jk(x))−1. (14)

The collection of g3jk(x) functions satisfies the cocycle identities (this is easily
checked) so they are transition functions for a new bundle with base B.
Let Hom(E1, E2) be the bundle with base B, fiber F = Hom(Rm,Rq), and
transition functions g3jk on the charts Uk, so Hom(E1, E2) can be constructed
as in Section 2.3, as a quotient of

Π =
⋃
k∈Λ

Uk × {k} ×Hom(Rm,Rq).

For V ⊆ B, a local section S : V → Hom(E1, E2) is defined as a collection of
matrix valued functions on coordinate charts. If Sk : V ∩Uk → Hom(Rm,Rq)
is any collection of continuous functions such that for x ∈ V ∩ Uk ∩ Uj ,

g2jk(x) · Sk(x) · (g1jk(x))−1 = Sj(x), (15)

then a continuous local section S : V → Hom(E1, E2) is defined on V ∩ Uk
by S(x) = [x, k, Sk(x)].

Suppose s1 is a local section V → E1, defined by s1(x) = [x, k, �s1k(x)]
as in Section 2.3. Then S acts on s1 as follows: define �s 2

k : V ∩ Uk → Rq

by multiplying matrix times column vector: �s 2
k (x) = Sk(x) · �s1k(x). If x ∈

V ∩ Uk ∩ Uj, then, using (14):

(g2jk(x))(�s
2
k (x)) = (g2jk(x))(Sk(x) · �s1k(x))

= g2jk(x) · Sk(x) · (g1jk(x))−1 · g1jk(x) · �s1k(x)
= Sj(x) · �s1j(x) = �s 2

j (x).

This shows �s 2
k (x) defines a local section V → E2, which can be denoted

s2(x) = S(x) · s1(x) = [x, k, �s 2
k (x)] = [x, k, Sk(x) · �s1k(x)]. (16)
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2.5 Maps of bundles

Given two fiber bundles p1 : E1 → B1, p2 : E2 → B2 as in Section 2.2, a
continuous map Γ : E1 → E2 is a fiber map means: there exists a continuous
f : B1 → B2 such that p2 ◦ Γ = f ◦ p1. A fiber map satisfies p1(y) = x =⇒
p2(Γ(y)) = f(p1(y)) = f(x), so Γ maps the fiber p−1

1 ({x}) ⊆ E1 to the fiber
p−1
2 ({f(x)}) ⊆ E2.
In the special case where E1 is a vector bundle with fiber Rm1 and local

trivializations Φ1
k, and E2 is a vector bundle with fiber Rm2 and local trivial-

izations Φ2
α, Γ : E1 → E2 is a morphism of vector bundles means: Γ is a fiber

map, and for each x ∈ Uk ⊆ B1, Φ
2
α,f(x) ◦ Γ|p−1

1 ({x}) ◦ (Φ1
k,x)

−1 : Rm1 → Rm2

is linear. Γ is a bimorphism means: the above linear map is invertible for
every x, and Γ is an isomorphism means: Γ is a bimorphism, B1 = B2, and
f : B1 → B2 is the identity map.

To see how this is related to the construction with transition functions,
we need another point-set topology lemma.

Lemma 2.5. Let Π1, Π2, E2 be topological spaces, let Q1 : Π1 → E1 be an
onto function so that E1 has the quotient topology, and let Q2 : Π2 → E2 be
continuous. Suppose there is a covering of E1 by open sets Vα, and there is
a collection of functions fα : Q−1

1 (Vα) → Π2 such that:

• Q2 ◦ fα : Q−1
1 (Vα) → E2 is continuous;

• for x1 ∈ Q−1
1 (Vα), x2 ∈ Q−1

1 (Vβ), if Q1(x1) = Q1(x2) then Q2(fα(x1)) =
Q2(fβ(x2)).

Then, there exists a continuous function f : E1 → E2 such that for any
y ∈ Vα ∩ Vβ, if x1 ∈ Q−1

1 (Vα), x2 ∈ Q−1
1 (Vβ) satisfy Q1(x1) = Q1(x2) = y,

then f(y) = Q2(fα(x1)) = Q2(fβ(x2)).

Proof. By definition of quotient topology, Q−1
1 (Vα) is open, so the collec-

tion Q−1
1 (Vα) is an open covering of Π1. For z ∈ (Q−1

1 (Vα)) ∩ (Q−1
1 (Vβ)),

Q2(fα(z)) = Q2(fβ(z)) by hypothesis, so Lemma 2.4 applies with Z = Π1.
There is a continuous map f̃ : Π1 → E2 with Q2(fα(z)) = f̃(z).

Now, for any v ∈ Vα ∩ Vβ, if x1 ∈ Q−1
1 ({v}) ⊆ Q−1

1 (Vα) and x2 ∈
Q−1

1 ({v}) ⊆ Q−1
1 (Vβ), Q1(x1) = Q1(x2) = v, so by hypothesis,

f̃(x1) = Q2(fα(x1)) = Q2(fβ(x2)) = f̃(x2),
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showing f̃ is constant on each set Q−1
1 ({v}). By Lemma 2.3 applied to

Z = E2, there is a continuous function f : E1 → E2 such that f◦Q1 = f̃ . The
conclusion is that for any y ∈ Vα ∩ Vβ, if x1 ∈ Q−1

1 (Vα), x2 ∈ Q−1
1 (Vβ) satisfy

Q1(x1) = Q1(x2) = y, then f(y) = f(Q1(x1)) = f̃(x1) = Q2(fα(x1)) =
Q2(fβ(x2)).

Suppose B1 and B2 are manifolds, with transition functions g1jk on an
open cover Uk for B1, and transition functions g2βα on an open cover Vα for
B2, defining vector bundles p1 : E1 → B1 and p2 : E2 → B2 as in Section 2.3.
We want to apply Lemma 2.5 to see what sort of local expressions define a
vector bundle morphism E1 → E2.

E1 is covered by open sets p−1
1 (Uk), and as in (8),

Q−1
1 (p−1

1 (Uk)) = (p1 ◦Q1)
−1(Uk) =

⋃
j∈Λ1

(Uk ∩ Uj)× {j} × R
m.

A function fk : Q−1
1 (p−1

1 (Uk)) → Π2 can be defined piecewise, fk((x, j,�b)) =

fkj((x, j,�b)), on the pieces of the domain:

fkj : (Uk ∩ Uj)× {j} × R
m1 → Π2 =

⋃
α∈Λ2

Vα × {α} × R
m2 (17)

(x, j,�b) �→ (f 1
kj((x, j,

�b)), f 2
kj((x, j,

�b)), �f 3
kj ((x, j,

�b))).

Q2 ◦ fk is continuous if and only if every Q2 ◦ fkj is continuous. To sat-

isfy the other hypothesis of Lemma 2.5, consider (x1, j1,�b1) ∈ Q−1
1 (p−1

1 (Uk))

and (x2, j2,�b2) ∈ Q−1
1 (p−1

1 (Ui)). Q1((x1, j1,�b1)) = Q1((x2, j2,�b2)) means

(x1, j1,�b1) ∼1 (x2, j2,�b2), so x1 = x2 ∈ Uk ∩ Ui ∩ Uj1 ∩ Uj2 and g1j2j1(x1) :
�b1 → �b2. Functions fk satisfying fk((x1, j1,�b1)) ∼2 fi((x2, j2,�b2)) when

(x1, j1,�b1) ∼1 (x2, j2,�b2) will satisfy:

f 1
kj1

((x1, j1,�b1)) = f 1
ij2
((x1, j2, g

1
j2j1

(x1)(�b1)))

�f 3
kj1((x1, j1,

�b1)) = G · �f 3
ij2((x1, j2, g

1
j2j1(x1)(

�b1)))

G = g2
f2kj1

((x1,j1,�b1))f2ij2
((x1,j2,g1j2j1

(x1)(�b1)))
(f 1
kj1((x1, j1,

�b1))).

By Lemma 2.5, a collection fk satisfying the above identities defines a contin-
uous map Γ : E1 → E2 : [x, j,�b] �→ [f 1

kj((x, j,
�b)), f 2

kj((x, j,
�b)), �f 3

kj ((x, j,
�b))].

For this to be a fiber map, there must be some continuous function f :
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B1 → B2 so that for x ∈ Uk ∩ Uj , p2(Γ([x, j,�b])) = f 1
kj((x, j,

�b)) matches

f(p1([x, j,�b])) = f(x), so f 1
kj depends only on x. By refining, if necessary,

the covering of B1 (using more and smaller open coordinate neighborhoods),
we can assume that for each k there is some α = f 2(k) so that f(Uk) ⊆ Vα.

Then f 2
kj((x, j,

�b)) can be replaced by f 2(k), and �f 3
kj ((x, j,

�b)) can be re-

placed by g2
f2(k)f2kj((x,j,

�b))
(f(x))�f 3

kj ((x, j,
�b)) without changing Γ. It follows

that if f : B1 → B2 is a continuous map with f(Uk) ⊆ Vf2(k), and there

are continuous functions �f 3
kj : (Uk ∩ Uj) × {j} × Rm1 → Rm2 such that for

x ∈ Uk ∩ Ui ∩ Uj1 ∩ Uj2,
�f 3
kj1((x, j1,

�b1)) = g2f2(k)f2(i)(f(x))
�f 3
ij2((x, j2, g

1
j2j1(x)(

�b1))), (18)

then the collection

fkj((x, j,�b)) =
(
f(x), f 2(k), �f 3

kj ((x, j,
�b))
)

(19)

=
(
f(x), f 2(k), �f 3

kk((x, k, g
1
kj(x)(

�b)))
)

(20)

defines a fiber map E1 → E2, for x ∈ Uk∩Uj , so by (18), all these expressions
are equal:

Γ([x, k,�a]) = Γ([x, j, g1jk(x)(�a)])

=
[
f(x), f 2(k), �f 3

kk((x, k,�a))
]

=
[
f(x), f 2(k), �f 3

kj ((x, j, g
1
jk(x)(�a)))

]
=

[
f(x), f 2(j), g2f2(j)f2(k)(f(x))

�f 3
kj ((x, j, g

1
jk(x)(�a)))

]
=

[
f(x), f 2(j), �f 3

jk ((x, k,�a))
]

=
[
f(x), f 2(j), �f 3

jj ((x, j, g
1
jk(x)(�a)))

]
.

To check whether Γ is a morphism of vector bundles, using Equations (9)
and (10), for x ∈ Uk ∩ Uj ,

(Φ1
k,x)

−1 : Rm1 → p−1
1 ({x}) : �a �→ [x, j, (g1jk(x))(�a)] = [x, k,�a].

This is mapped by Γ to [
f(x), f 2(k), �f 3

kk((x, k,�a))
]
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and then by Φ2
α,f(x) : p

−1
2 ({f(x)}) → Rm2 to

g2α,f2(k)(f(x))(
�f 3
kk((x, k,�a))) = g2α,f2(k)(f(x))(

�f 3
kj ((x, j, g

1
jk(x)(�a)))).

Since g1jk(x) and g
2
α,f2(k)(f(x)) are linear, Γ will be a morphism of vector bun-

dles if for each fixed x, j, the transformation Rm1 → Rm2 : �b �→ �f 3
kj ((x, j,

�b))

is linear. So, �f 3
kj can be represented as a m2 ×m1 matrix with entries de-

pending on x, subject to the transformation rule (18). Considering (20), the
j index only appears at one point in the RHS, so the following notation can
be introduced: �f 3

kj ((x, j,
�b)) = F 3

k (x) · g1kj(x) ·�b, for a m2 ×m1 matrix F 3
k (x)

with entries depending continuously on x, indexed by k only. It follows that
�f 3
kk((x, k,�a)) = F 3

k (x) · �a. The transformation rule (18) applied to F 3
k , after

a brief computation, becomes:

F 3
k (x) = g2f2(k)f2(i)(f(x)) · F 3

i (x) · g1ik(x). (21)

The conclusion here is that a vector bundle morphism can be expressed
in the following simple form — a matrix representation. Given f : B1 → B2,
and any collection of functions F 3

k (x) : Uk → Hom(Rm1 ,Rm2) satisfying (21)
for x ∈ Uk ∩ Ui, the following formula defines a vector bundle morphism:

Γ([x, k,�a]) = [f(x), f 2(k), F 3
k (x) · �a]. (22)

To see the local coordinate expression for a morphism of vector bundles,
use coordinate charts φk : Uk → Rm1 for B1 and ψα : Vα → Rm2 for B2, with
f(Uk) ⊆ Vf2(k) as above. Let p

−1
1 (Uk)∩ p−1

1 (Uj) be an open set in E1, so that
as in (7),

((φk × IdRm1 ) ◦ Φ1
k)(p

−1
1 (Uk) ∩ p−1

1 (Uj)) ⊆ R
n1+m1

is a coordinate neighborhood, where as in (12),

((φk × IdRm1 ) ◦ Φ1
k)

−1 : Rn1+m1 → p−1
1 (Uj) ∩ p−1

1 (Uk)

(�v,�a) �→ [φ−1
k (�v), j, (g1jk(φ

−1
k (�v)))(�a)]

= [φ−1
k (�v), k,�a].

This is mapped by Γ to:[
f(φ−1

k (�v)), f 2(k), �f 3
kk((φ

−1
k (�v), k,�a))

]
=

[
f(φ−1

k (�v)), f 2(k), �f 3
kj ((φ

−1
k (�v), j, (g1jk(φ

−1
k (�v)))(�a)))

]
=

[
f(φ−1

k (�v)), f 2(k), F 3
k (φ

−1
k (�v)) · �a] ,
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and then, as in (11), by (ψα × IdRm2 ) ◦ Φ2
α to:(

ψα(f(φ
−1
k (�v))), (g2f2(k)α(f(φ

−1
k (�v))))−1(�f 3

kk((φ
−1
k (�v), k,�a)))

)
(23)

=
(
ψα(f(φ

−1
k (�v))), (g2αf2(k)(f(φ

−1
k (�v))))(�f 3

kj ((φ
−1
k (�v), j, (g1jk(φ

−1
k (�v)))(�a))))

)
=

(
ψα(f(φ

−1
k (�v))), g2αf2(k)(f(φ

−1
k (�v))) · F 3

k (φ
−1
k (�v)) · �a

)
.

A special case of a vector bundle morphism is that a section S : B →
Hom(E1, E2) can define a morphism ΓS : E1 → E2 by the formula, for x ∈ Uk,

[x, k,�a] �→ [x, k, Sk(x) · �a]. (24)

More precisely, recall S is defined on Uk by matrix valued functions Sk(x),
so for (x, j,�a) ∈ Q−1

1 (p−1
1 (Uk)) ⊆ Π1, let fk((x, j,�a)) = fkj((x, j,�a)) =

(x, j, Sj(x) · �a) ∈ Π2 as in Lemma 2.5 and (17). Converting from j to k
coordinates using (15),

(x, j, Sj(x) · �a) ∼ (x, k, g2kj(x) · Sj(x) · �a) = (x, k, Sk(x) · g1kj(x) · �a),
so f(x) = x, f 2(k) = k, and the expression

�f 3
kj ((x, j,�a)) = Sk(x) · g1kj(x) · �a

satisfy the transformation rule (18). This is a special case of the previous F 3
k

construction, with F 3
k (x) = Sk(x), and where the transformation rules (15)

and (21) are equivalent. In the (�v,�a) local coordinates as in (23), the formula
for ΓS is

(�v,�a) �→ (
(φα ◦ φ−1

k )(�v), g2αk(φ
−1
k (�v)) · Sk(φ−1

k (�v)) · �a) (25)

=
(
(φα ◦ φ−1

k )(�v), Sα(φ
−1
k (�v)) · g1αk(φ−1

k (�v)) · �a) .
The action of S on a section s1 : V → E1 as in (16) from Section 2.4 is

the same as composing ΓS : E1 → E2 with s1:

S(x) · s1(x) = [x, k, Sk(x) · �s1k(x)] = (ΓS ◦ s1)(x).
Definition 2.6. Given a continuous function f : B1 → B2 and a vector
bundle E → B2 with fiber Rn, open cover Vk ⊆ B2, and transition functions
gjk, the open sets f−1(B2) are an open cover of B1, and the functions gjk ◦ f
satisfy the cocycle identities on f−1(Vj) ∩ f−1(Vk), so they define a bundle
with base B1 and fiber Rn: the pullback bundle f ∗E → B1.
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There is a canonical bimorphism ε : f ∗E → E. Since f maps f−1(Vk) to
Vk, define f

2 from (19) by f 2(k) = k. Let F 3
k (x), as in (22), be the constant

matrix IdRn. Then, the transformation rule (21) is satisfied, so

[x, k,�a] �→ [f(x), k,�a]

is a well-defined morphism of vector bundles f ∗E → E.
Conversely, if Γ : E1 → E2 is a morphism of the form [f(x), f 2(k), F 3

k (x) ·
�a], then there is a morphism γ : E1 → f ∗E2 such that ε ◦ γ = Γ. As
previously assumed, f(Uk) ⊆ Vf2(k). For x ∈ Uk ⊆ f−1(Vf2(k)), define γ :

[x, k,�a] �→ [x, f 2(k), F 3
k (x) · �a]; for x ∈ f−1(Vf2(j)), define ε : [x, f 2(j),�b] �→

[f(x), f 2(j),�b]. γ is a well-defined morphism, satsifying the transformation
rule (21), using the transition functions g2jk ◦ f from Definition 2.6. If Γ is a
bimorphism, then γ is an isomorphism.

2.6 Regularity for bundles

Let B be a Cr manifold as in Section 2.1, and let E be a vector bundle with
open cover Uk ⊆ B as in Section 2.3. Expression (7) shows E is a manifold
with at least C0 regularity. If E is a Cs manifold, then by (13), φj ◦φ−1

k is Cs′
with s′ ≥ s, so B is a Cs′ manifold; if the given regularity of B is r < s′, then
r can be replaced by s′ and then r ≥ s. The remaining case is r ≥ s′ ≥ s, so
in either case, given E and B, we can assume 0 ≤ s ≤ r.

If E is a Cs manifold, then by (13), every function gjk◦φ−1
k : φk(Uj∩Uk) →

GL(m,R) is Cs′ with s′ ≥ s. Conversely, if every gjk ◦ φ−1
k is Cs′ then E is a

Cs manifold with s = min{r, s′}.
If E1 and E2 are two bundles with base B as in Section 2.4, and E1 is a

Cs1 manifold and E2 is a Cs2 manifold, then s1 ≤ r, s2 ≤ r, every g1jk ◦ φ−1
k

is Cs′1 with s′1 ≥ s1, and every g2jk ◦ φ−1
k is Cs′2 with s′2 ≥ s2. By (14), every

g3jk ◦ φ−1
k is Cs′3 with s′3 ≥ min{s′1, s′2} ≥ min{s1, s2}, so Hom(E1, E2) is a

Cmin{s1,s2} manifold.
Because a section is a continuous map s : B → E, the a priori regularity

is at most Cs, as in Section 2.1. In general, a section s(x) = [x, k, �sk(x)] is
Ct, 0 ≤ t ≤ s ≤ r, if on open sets Uk,

(φk × IdRm) ◦ Φk ◦ s ◦ φ−1
k : φk(Uk) → R

n+m

�v �→ (�v, �sk(φ
−1
k (�v))),
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or equivalently �sk ◦ φ−1
k : Rn → Rm, is Ct′ , t′ ≥ t.

If S is a Ct0 section of Hom(E1, E2) and s
1 is a Ct1 section of E1, then by

(16), s2(x) = S(x) · s1(x) is a Cmin{t0,t1} section of E2.
For two vector bundles E1, E2, so that E1 is a Cs1 manifold, B1 is a Cr1

manifold, E2 is a Cs2 manifold, and B2 is a Cr2 manifold, consider a morphism
Γ : E1 → E2 with p2 ◦Γ = f ◦ p1. Γ can be a Cs3 map with s3 ≤ min{s1, s2},
and f can be a Cr3 map with r3 ≤ min{r1, r2}; there is nothing in the first
component of the local coordinate formula (23) that raises or lowers the
regularity of f , since ψα ◦ f ◦ φ−1

k is exactly the local coordinate formula for
f as a map B1 → B2. The expressions in the second component of (23)
are g2αf2(k) ◦ f ◦ φ−1

k = (g2αf2(k) ◦ ψ−1
α ) ◦ (ψα ◦ f ◦ φ−1

k ) and g1jk ◦ φ−1
k , which

already appear in the local coordinate expressions for E2, f , and E1, and
(�v,�a) �→ �f 3

kk((φ
−1
k (�v), k,�a)) = (F 3

k ◦ φ−1
k )(�v) · �a, which is linear in �a, but Cs3

in the �v coordinates.
If S is a Ct0 section of Hom(E1, E2), so that Sk ◦ φ−1

k is Ct0 on φk(Uk),
and S defines a morphism ΓS : E1 → E2 as in (24), then by (25), ΓS is a Ct0
map from the Cs1 manifold E1 to the Cs2 manifold E2.

For a Cr1 manifold B1, vector bundle E → B2, so that E is a Cs manifold
and B2 is a Cr2 manifold, with 0 ≤ s ≤ r2, consider a Cr3 map f : B1 → B2,
with r3 ≤ min{r1, r2}. Then the pullback bundle f ∗E, as in Definition 2.6,
with transition functions gjk ◦ f , is a Cmin{r3,s} manifold, and the canonical
bimorphism ε : f ∗E → E is a Cmin{r3,s} map.

2.7 The tangent bundle

Let M be a Cr manifold with r ≥ 1 and coordinate charts φk : Uk → R
n.

For x ∈ Uk ∩ Uj , denote by Dφk(x)(φj ◦ φ−1
k ) the n × n Jacobian matrix of

first derivatives of φj ◦ φ−1
k , evaluated at φk(x) ∈ φk(Uk). The functions

gjk(x) = Dφk(x)(φj ◦ φ−1
k ) satisfy the cocycle identities: gkk(x) = IdRn and

gij(x)gjk(x) = gik(x), by the Chain Rule, so they define a vector bundle
TM → M with fiber Rn. The composites gjk ◦ φ−1

k are Cr−1 functions, so
TM is a Cr−1 manifold.

Elements of TM are, as in Section 2.3, equivalence classes of ordered
triples, where x ∈ Uk ⊆ M , �a ∈ R

n, and [x, k,�a] is the equivalence class of
(x, k,�a) under the relation

(x, k,�a) ∼ (y, j,�b) ⇐⇒ x = y and Dφk(x)(φj ◦ φ−1
k ) · �a = �b. (26)
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We could call x a “base point” and �a a “tangent vector.” A vector field onM
(or an open subset) is a section of TM , so it can be defined as in Section 2.3
by the formula v(x) = [x, k, �vk(x)], where �vk : Uk → Rn is any collection of
functions subject to the coordinate change rule �vj(x) = Dφk(x)(φj◦φ−1

k )·�vk(x)
on Uk ∩ Uj . A vector field is Ct, 0 ≤ t ≤ r − 1, if on open sets Uk, �vk ◦ φ−1

k :
Rn → Rn, is Ct′ , t′ ≥ t.

Let M ′ be another Cr′ manifold with r′ ≥ 1 and coordinate charts ψk′ :
Vk′ → R

n′
, as in Section 2.1. Suppose u : M ′ → M is a Cr′′ map, and there

is an expression f 2(k′) so that u(Vk′) ⊆ Uf2(k′), as in (19).
A map from one tangent bundle to another, of the form Γ : TM ′ → TM ,

defined as in Section 2.5 by a formula of the form

Γ([x′, k′,�a]) = [u(x′), f 2(k′), F 3
k′(x

′) · �a],
is well-defined on the whole space if and only if it respects the equivalence
relation (26); if (x′, k′,�a) ∼ (x′, j′,�b), then

(u(x′), f 2(k′), F 3
k′(x

′) · �a) ∼ (u(x′), f 2(j′), F 3
j′(x

′) ·�b),
that is:

�b = Dψk′(x′)(ψj′ ◦ ψ−1
k′ ) · �a,

F 3
j′(x

′) ·�b = F 3
j′(x

′) · Dψk′(x′)(ψj′ ◦ ψ−1
k′ ) · �a

= Dφf2(k′)(u(x′))(φf2(j′) ◦ φ−1
f2(k′)) · F 3

k′(x
′) · �a,

F 3
k′(x

′) = (Dφf2(k′)(u(x′))(φf2(j′) ◦ φ−1
f2(k′)))

−1 · F 3
j′(x

′) · Dψk′(x′)(ψj′ ◦ ψ−1
k′ )

= Dφf2(j′)(u(x′))(φf2(k′) ◦ φ−1
f2(j′)) · F 3

j′(x
′) · Dψk′(x′)(ψj′ ◦ ψ−1

k′ ). (27)

The transformation rule (27) exactly matches rule (21).

Example 2.7. Given an open set U ⊆ R
n, the product U × R

m can be
considered a trivial vector bundle as follows. U admits an open covering by
one open set, itself, so Λ = {1}, with one coordinate chart Id : U → Rn,
giving U a Cω differential structure. Let there be one transition function
g11(x) = Id ∈ Hom(Rm,Rm). The equivalence classes in Π = U × {1} × Rm

are singletons, {(x, 1,�a)} = [x, 1,�a], so Q : Π → E is a homeomorphism,
E is a vector bundle with projection p : E → U and a homeomorphism
Φ1 : E → U × Rm : [x, 1,�a] �→ (x,�a). When m = n, this construction
matches the definition of tangent bundle, and there is no information lost by
identifying [x, 1,�a] ∈ TU with (x,�a) ∈ U × Rn. This TU is a Cω manifold.
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For u : M ′ → M as in Section 2.1, denote by D�x(φ ◦ u ◦ ψ−1) the n × n′

Jacobian matrix of first derivatives, evaluated at �x ∈ Rn′
. For a fixed map u,

and fixed point x′ ∈ M ′, but different charts ψj′, ψk′, φj, φk, the Jacobians
Dψj′(x′)(φj ◦ u ◦ ψ−1

j′ ) and Dψk′(x′)(φk ◦ u ◦ ψ−1
k′ ) are related by the chain rule:

Dψk′(x′)(φk ◦ u ◦ ψ−1
k′ )

= Dψk′(x′)(φk ◦ φ−1
j ◦ φj ◦ u ◦ ψ−1

j′ ◦ ψj′ ◦ ψ−1
k′ )

= Dφj(u(x′))(φk ◦ φ−1
j ) · Dψj′ (x′)(φj ◦ u ◦ ψ−1

j′ ) · Dψk′(x′)(ψj′ ◦ ψ−1
k′ ) (28)

Notation 2.8. Corresponding to the previously considered map u : M ′ →
M , with charts u(Vj′) ⊆ Uf2(j′), abbreviate j = f 2(j′) and k = f 2(k′).
Then, in view of the above transformation rule (28) for Jacobians, the matrix
expression

F 3
j′(x

′) = Dψj′(x′)(φj ◦ u ◦ ψ−1
j′ ) = Dψj′(x′)(φf2(j′) ◦ u ◦ ψ−1

j′ )

satisfies (27), so the map on trivializations defined by the formula:

(x′, j′,�b) �→ (u(x′), j,Dψj′ (x′)(φj ◦ u ◦ ψ−1
j′ ) ·�b) (29)

respects the equivalence relation (26), and the following differential map
du : TM ′ → TM is a well-defined morphism of vector bundles:

du : [x′, j′,�b] �→ [u(x′), j,Dψj′(x′)(φj ◦ u ◦ ψ−1
j′ ) ·�b].

For a Cr′′ map u : M ′ → M , by (29), the morphism du is a Cr′′−1 map
from the Cr′−1 manifold TM ′ to the Cr−1 manifold TM . The composite of
vector bundle morphisms is another morphism, and the differential map of a
composite satisfies d(u ◦ v) = (du) ◦ (dv), by the chain rule.

Remark 2.9. The linear map Dψj′(x′)(φj◦u◦ψ−1
j′ ), and therefore the differential

du, can be defined even if u is merely differentiable, not necessarily C1.

Example 2.10. As a special case, consider the Cr manifold M , and choose
just one of its coordinate charts, φk : Uk → Rn. Also, consider the open set
φk(Uk) ⊆ Rn as a Cω manifold with one coordinate chart Id : φk(Uk) → Rn,
as in Example 2.7, so that the tangent bundle of φk(Uk) is trivial, with a
homeomorphism Φ1 : T (φk(Uk)) → φk(Uk) × Rn : [�v, 1,�a] �→ (�v,�a). The
differential of the map φk : Uk → φk(Uk) is:

dφk : [p, k,�b] �→ [φk(p), 1,Dφk(p)(Id ◦ φk ◦ φ−1
k ) ·�b] = [φk(p), 1,�b].

So, the differential map of the coordinate chart, in the k coordinates on the
open set Uk, is represented by the identity matrix on tangent vectors.
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Example 2.11. The composite φj ◦ u ◦ ψ−1
j′ from Notation 2.8, but now

considered as a map from the manifold ψj′(Vj) ⊆ R
n′

(with trivial tangent
bundle as in Example 2.7) to the manifold φj(Uj) (as in Example 2.10), has
differential map d(φj ◦ u ◦ ψ−1

j′ ) : T (ψj′(Vj)) → T (φj(Uj)) :

[ψj(x
′), 1,�b] �→ [φj(u(x

′)), 1,DId′(ψj′ (x′))(Id ◦ (φj ◦ u ◦ ψ−1
j′ ) ◦ (Id′)−1) ·�b]

= [φj(u(x
′)), 1,Dψj′(x′)(φj ◦ u ◦ ψ−1

j′ ) ·�b],

which is the same matrix and vector expression as (29), but with base points
ψj(x

′), φj(u(x′)). For �v ∈ ψj′(Vj′) and x
′ = ψ−1

j′ (�v) ∈ Vj′, the above expres-
sion becomes:

[�v, 1,�b] �→ [(φj ◦ u ◦ ψ−1
j′ )(�v), 1,D�v(φj ◦ u ◦ ψ−1

j′ ) ·�b],

Definition 2.12. A C1 map u : M ′ → M is an immersion means: du is
one-to-one on fibers; that is, Dψj′(x′)(φj ◦ u ◦ ψ−1

j′ ) has rank n
′ ≤ n at every

point x′ (the rank does not depend on coordinate charts).

Definition 2.13. A map u : M ′ → M is an embedding means: u is an
immersion and u is a homeomorphism onto its image u(M ′).

Proposition 2.14. Given r′′ ≥ 1 and a Cr′′ embedding u : M ′ → M , the
image u(M) is a Cr′′ submanifold of M . Conversely, a Cr′′ submanifold of
M is the image of a Cr′′ embedding.

Sketch of Proof. Assuming there is an embedding u :M ′ → M , the existence
of submanifold charts in a Cr′′ structure on M as in Definition 2.1 uses the
Implicit Function Theorem. The converse is that the inclusion map of a
submanifold is a Cr′′ embedding. See ([H] Theorem 1.3.1.).

Proposition 2.15. If u :M ′ →M is a Cr embedding and a homeomorphism,
then the inverse u−1 is also a Cr embedding and a homeomorphism, by the
Inverse Function Theorem ([H]).

Definition 2.16. Let A be a Cr submanifold ofM . A Cs′ tubular neighborhood
of A is an open set f(E) with M ⊆ f(E) ⊆ V , where E is a Cs vector bundle
with base A and f : E → M is a Cs′ embedding (so 0 ≤ s′ ≤ s ≤ r) such
that for x ∈ A, f([x, k,�0]) = x.
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Proposition 2.17. If 1 ≤ r ≤ ∞ and A is a Cr submanifold of M , then
there exists a Cr tubular neighborhood of A.

Sketch of Proof. The definition of k-submanifold (Definition 2.1) is that there
is a local version of a tubular neighborhood: at a point in A, there is a Cr map
φ−1 from a neighborhood of the trivial bundle Rk ×Rn−k to a neighborhood
of the point in M .

The claimed global existence, with s′ = s = r, is stated but not proved
as Exercise 4.6.1. of [H]. One construction sets the bundle E from Definition
2.16 equal to the normal bundle of A ([H] §§4.2, 4.5.), a subbundle of TA —
however, TA is a Cr−1 bundle, so s ≤ r − 1 in this case. Some Cr approxi-
mation to the embedding of the normal bundle must be used instead, as in
[P].

3 Almost complex structures

3.1 Representation in local coordinates

Continuing with a Cr manifold M , let dimM = 2n and r ∈ [1,∞], so TM is
a Cr−1 manifold; denote the tangent space at the point x by p−1(x) = TxM .
The bundle Hom(TM, TM) (from Section 2.4) is also a Cr−1 manifold, and
a section J :M → Hom(TM, TM) is defined by matrix valued functions on
open sets in M , Jk : Uk → Hom(R2n,R2n), satisfying (15):

Jk(x) = Dφj(x)(φk ◦ φ−1
j ) · Jj(x) ·Dφk(x)(φj ◦ φ−1

k )

= (Dφk(x)(φj ◦ φ−1
k ))−1 · Jj(x) · Dφk(x)(φj ◦ φ−1

k ). (30)

so J(x) = [x, k, Jk(x)] is well-defined. If Jk(x) is a CSO on R2n (Jk(x)·Jk(x) =
−IdR2n), then, because (30) is a similarity transformation, so is Jj(x) for any
j (Lemma 1.3). For 0 ≤ s ≤ r − 1, a Cs section J : M → Hom(TM, TM)
such that each matrix Jk(x) is a CSO is an “almost complex structure”
of regularity Cs on M . As in (24), J also defines a Cs homeomorphism
TM → TM :

[x, k,�a] �→ [x, k, Jk(x) · �a],
which satisfies the transformation rule (27), as shown by (30). This vector
bundle morphism can also be denoted J ; the regularity condition is that each
Jk ◦ φ−1

k : R2n → Hom(R2n,R2n) is Cs′ with s′ ≥ s.
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Example 3.1. For u :M ′ →M as in Notation 2.8, suppose u is an invertible
Cr′′ embedding with 0 ≤ r′′ ≤ min{r, r′}, and there are open covers so that
u(Vj′) = Uj. Let J be a Cs almost complex structure on M , 0 ≤ s ≤ r − 1.
Using (29), the vector bundle morphism

(du)−1 ◦ J ◦ du = d(u−1) ◦ J ◦ du : TM ′ → TM ′

is defined in local coordinates by

(x′, j′,�b)

�→ (x′, j′, Dφj(u(x′))(ψj′ ◦ u−1 ◦ φ−1
j ) · Jj(u(x′)) ·Dψj′ (x′)(φj ◦ u ◦ ψ−1

j ) ·�b),
so the matrix expression

J ′
j′(x

′) = (Dψj′ (x′)(φj ◦ u ◦ ψ−1
j ))−1 · Jj(u(x′)) ·Dψj′ (x′)(φj ◦ u ◦ ψ−1

j )

is a CSO similar to Jj(u(x
′)), and defines a Cmin{s,r′′−1} almost complex struc-

ture J ′(x′) on M ′.

Example 3.2. As a special case of Example 3.1, let u = φ−1
k : φk(Uk) → Uk,

as in Example 2.10. An almost complex structure J on M restricts to an
almost complex structure on the open set Uk. Then

(d(φ−1
k ))−1 ◦ J ◦ d(φ−1

k ) : [�v, 1,�b] �→ [�v, 1, Jk(φ
−1
k (�v)) ·�b] (31)

is an almost complex structure on φk(Uk) ⊆ R2n, where the matrix-valued
function �v �→ Jk(φ

−1
k (�v)) is the same as the local formula for J in the k

coordinate chart Uk and has the same Cs regularity.
Example 3.3. Let M be a Cr manifold with Cs almost complex structure J ,
0 ≤ s ≤ r − 1, defined on charts φk : Vk → R

2n by Jk(x). Consider an open
subset V of M , and a map φ : V → R2n so that φ is a homeomorphism onto
its image U = φ(V ), and φ ◦ φ−1

k is Cρ for all k (with 1 ≤ ρ, so, φ could be a
chart, added to the Cr atlas ofM , but we are not assuming any local formula
for J on this chart). U has an open cover U0 = U , and Uk = φ(V ∩ Vk). The
coordinate chart on U0 is the inclusion φ0 : U0 → R

2n. The tangent bundle
of U has a (global) trivialization [x, 0,�a] = (x,�a) ∈ U × R2n, and local
trivializations with transition functions gjk(x) depending on the coordinate
charts for Uk. U has an almost complex structure J ′ = dφ ◦ J ◦ d(φ−1) as
in Example 3.1 with u = φ−1. J ′ has some matrix representation in the
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neighborhood U0 with the globally trivial tangent bundle: to calculate it, we
will first find the matrix representation in the Uk neighborhoods, and then
use formula (30) to convert from Uk coordinates to U0 coordinates.

Because U is an open subset of R2n, there are two different ways to
assign coordinate charts to the open sets Uk. It will turn out that the matrix
representation of J ′ in U0 does not depend on the method.

Method 1. Assign to Uk the chart equal to the composite φk ◦ φ−1|Uk
:

Uk → R
2n. The coordinate change functions on U from Uj to Uk are (φk ◦

φ−1)◦(φj◦φ−1)−1 = φk◦φ−1
j , which are Cr functions, and from U0 to Uk are φk◦

φ−1 ◦ (φ0|Uk
)−1, which are Cρ functions (by hypothesis and Proposition 2.15),

so with these charts, U is a Cmin{r,ρ} manifold. The coordinate representation
for φ in the Vk, Uk neighborhoods is (φk ◦φ−1) ◦φ ◦φ−1

k , which is the identity
on φk(V ∩ Vk). By construction (similar to Example 2.10), in the Vk and Uk
neighborhoods,

dφ : [x, k,�a] �→ [φ(x), k,�a],

and similarly for d(φ−1), so the matrix representation of dφ ◦ J ◦ d(φ−1) in
the Uk neighborhood is [x, k,�a] �→ [x, k, Jk(φ

−1(x)) ·�a]. Using (30) to convert
from Uk coordinates to U0 coordinates, Jk(φ

−1(x)) transforms to

J ′
0(x) = (Dx(φk ◦ φ−1))−1 · Jk(φ−1(x)) · Dx(φk ◦ φ−1). (32)

This matrix expression is a Cmin{s,ρ−1} function of x, and by (30), does not
depend on k (replacing k with j gives the same matrix).

Method 2. Assign to Uk the chart equal to the inclusion φ0|Uk
: Uk → R2n.

The coordinate change functions on U from Uj to Uk are identity maps on Uk∩
Uj , so with these charts, U is a Cω manifold. The coordinate representation
for φ in the Vk, Uk neighborhoods is φ0|Uk

◦φ◦φ−1
k = φ◦φ−1

k . By construction,
in the Vk and Uk neighborhoods,

dφ : [x, k,�a] �→ [φ(x), k,Dφ(x)(φ ◦ φ−1
k ) · �a],

d(φ−1) : [φ(x), k,�b] �→ [x, k,Dx(φk ◦ φ−1) ·�b].

So, the matrix representation of dφ ◦ J ◦ d(φ−1) in the Uk neighborhood is

(Dx(φk ◦ φ−1))−1 · Jk(φ−1(x)) · Dx(φk ◦ φ−1).

Using (30) to convert from Uk coordinates to U0 coordinates, the matrix
representation does not change, so J ′

0(x) is exactly the same as (32).
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3.2 Pointwise normalization

Given any chart on M , φj : Uj → R2n, the matrix Jj(φ
−1
j (�0)) is a CSO on

Tφ−1
j (�0)M , which can be temporarily denoted J0. There exists some G ∈

GL(2n,R) such that J0 = G−1 · Jstd · G. We may consider a new chart on
M , φk : Uk → R2n, where Uk = Uj and φk = G ◦ φj. Then, φ−1

k (�0) = φ−1
j (�0),

and by the transformation rule (30),

Jk(φ
−1
k (�0)) = (Dφk(φ

−1
k (�0))(φj ◦ φ−1

k ))−1 · Jj(φ−1
j (�0)) · Dφk(φ

−1
k (�0))(φj ◦ φ−1

k )

= (D�0(G
−1))−1 · J0 · D�0(G−1)

= G · J0 ·G−1 = Jstd. (33)

The conclusion is that at any point x ∈ M , there is some chart φk on M
so that Jk(x), the matrix representation of J at the one point x in the k
coordinate system, is equal to Jstd.

By the continuity of J , and considering the inverse formula appearing in
Equation (1), there is some possibly smaller neighborhood U� ⊆ Uk of x on
which Jk + Jstd is invertible at every point of U�. The neighborhood U� has
coordinate chart φ� equal to just the restriction of φk to U�, so J�(x) = Jstd
still works. Later, it will be convenient to assume that coordinate charts
in M are always chosen with these two properties (the normalization at the
point x, and the invertibility of the sum on the neighborhood).

There is an even stronger normalization possible in the n = 1 case.

Proposition 3.4 (Korn, Lichtenstein). If M is a C1+α real surface with
Cα almost complex structure J , 0 < α, then around each point x0 there is
some chart φk : Uk → R2 so that the matrix representation is constant:
Jk(x) = Jstd for all x ∈ Uk.

Sketch of Proof. See [Chern], [NN], Theorems III.3.16–III.3.20 of [MP], pp.
77, 78. The proof in [MS2] assumes J is C1+α.
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4 Pseudoholomorphic maps

Given a Cr manifold M with a Cs (0 ≤ s ≤ r − 1) almost complex structure
J , and similarly (M ′, J ′), a Cr′′ map u :M ′ →M is pseudoholomorphic with
respect to J ′, J , if the map du : TM ′ → TM satisfies:

J ◦ du = du ◦ J ′.

Example 4.1. As a trivial example, if u is a diffeomorphism andM ′ has the
induced almost complex structure (du)−1 ◦ J ◦ du from Example 3.1, then u
is pseudoholomorphic.

Example 4.2. As even more trivial examples, the identity map u on (M,J)
is pseudoholomorphic, and any constant mapM ′ → M , so that du has matrix
representation ≡ 0, is also pseudoholomorphic.

In terms of local charts as in Notation 2.8, the morphism du◦J ′ is defined
by:

(x′, j′,�b) �→ (u(x′), j,Dψj′(x′)(φj ◦ u ◦ ψ−1
j′ ) · J ′

j′(x
′) ·�b)

and the map J ◦ du by:

(x′, j′,�b) �→ (u(x′), j, Jj(u(x′)) · Dψj′(x′)(φj ◦ u ◦ ψ−1
j′ ) ·�b), (34)

so u is pseudoholomorphic if and only if there are pairs of charts covering M ′

andM such that u(Vj′) ⊆ Uj , on which the following matrix-valued functions
of x′ are equal:

Dψj′ (x′)(φj ◦ u ◦ ψ−1
j′ ) · J ′

j′(x
′) = Jj(u(x

′)) · Dψj′(x′)(φj ◦ u ◦ ψ−1
j′ ). (35)

For �v ∈ ψj′(Vj′) and x
′ = ψ−1

j′ (�v) ∈ Vj′, LHS of (35) is:

D�v(φj ◦ u ◦ ψ−1
j′ ) · (J ′

j′ ◦ ψ−1
j′ )(�v) (36)

and RHS is:

(Jj ◦ φ−1
j )((φj ◦ u ◦ ψ−1

j′ )(�v)) · D�v(φj ◦ u ◦ ψ−1
j′ ). (37)

The regularity of the LHS expression (36) is Cλ, λ ≥ min{r′′ − 1, s′}, and
of the RHS (37) is Cρ, ρ ≥ min{r′′ − 1, s}; the equality LHS=RHS does not
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immediately give any information about or restrictions on s, s′ or r′′. The
composite Jj ◦ u ◦ φ−1

j′ from (37) is a local coordinate representation of the
composite J ◦ u, which will appear in Section 6.2.

Considering Examples 2.11 and 3.2, the equality (35) is equivalent to each
composite map φj ◦u◦ψ−1

j′ : ψj′(Vj′) → φj(Uj) being pseudoholomorphic with

respect to the induced almost complex structures J ′
j′ ◦ψ−1

j′ on ψj′(Vj′) ⊆ R2n′

and Jj ◦ φ−1
j on φj(Uj) ⊆ R

2n. So, for maps u, the pseudoholomorphic
property can be checked locally by comparing the above matrix functions
depending on �v. The local analysis or geometry of pseudoholomorphic maps
can be considered, without loss of generality, by only looking at a Cr′′ function
from an open set in R2n′

to R2n, its Jacobian matrix of first derivatives, and
Cs (respectively Cs′) matrices J(�w) and J ′(�v).

Of course, Equation (35) is exactly the statement that the differential is
c-linear at each point with respect to the CSOs at that point. The equality
of matrices can be called the generalized Cauchy-Riemann equations. In
analogy with Lemmas 1.4, 1.5, we could define an operator

∂J(u) =
1

2
(du+ J ◦ du ◦ J ′), (38)

(so, it projects du to its a-linear part) and then u is pseudoholomorphic if
and only if ∂J(u) = 0.

5 J-holomorphic curves

Notation 5.1. For r > 0 and z0 ∈ C (or R2), let D(z0, r) denote the Eu-
clidean open disk in the plane with center z0 and radius r, and as the special
case with z0 = 0, abbreviate D(0, r) = Dr.

The Dr notation need not be confused with the already used Jacobian
determinant notation D.

The notation for a ball in higher dimensions is similar.

Notation 5.2. For r > 0 and z0 in some normed vector space, let B(z0, r)
denote the open ball with center z0 and radius r. As special cases with z0 = �0,
abbreviate B(�0, r) = Br and B(�0, 1) = B.
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5.1 Local formulation

For the local analysis of pseudoholomorphic maps u : M ′ → M near the
points x′ �→ p = u(x′), in the case where M ′ is a real surface, the following
set up is convenient.

M is a Cr 2n-manifold, n ≥ 1, r ≥ 1, with a Cs almost complex structure,
J , 0 ≤ s ≤ r− 1. There is a coordinate chart Uj (not depending on the map
u) so that φj(p) = �0, the matrix representation of J in the local trivialization
satisfies Jj(p) = Jstd (by Equation (33)), and Jj + Jstd is invertible at every
point of Uj . The coordinate chart image in R2n can be chosen to be the unit
ball, B = φj(Uj), centered at �0 with radius 1.

M ′ is a Cr′ real surface, r′ > 1, with Cs′ almost complex structure J ′,
0 < s′ ≤ r′−1, and u :M ′ →M is Cρ, 1 ≤ ρ ≤ min{r′, r}. By the continuity
of u, there is some neighborhood V of x′ so that

u(V ) ⊆ Uj , (39)

and by Proposition 3.4, there is a Cs′+1 differential structure on M ′ (s′+1 ≤
r′), and some chart Vj′ ⊆ V so that ψj′ : Vj′ → D1 ⊆ C = R2, ψj′(x

′) = 0,
and the induced almost complex structure on the unit disk D1 is the constant
matrix Jstd.

In these neighborhoods, the local geometry of a map u can be reduced to
the equivalent analysis of the Cmin{ρ,s′+1} map

f = φj ◦ u ◦ ψ−1
j′ : D1 → B, (40)

where f(0) = �0 and B = φj(Uj) is a neighborhood of �0 in R2n with a Cs
almost complex structure (on the trivialized tangent bundle B × R2n):

JB : B → Hom(R2n,R2n), JB(�x) = Jj(φ
−1
j (�x))

(as in (31)) satisfying JB(�0) = Jstd. Since the almost complex structure
on the domain is always the standard complex structure, we can refer to
f : D1 → B as a J-holomorphic map (or J-holomorphic curve) if it is pseu-
doholomorphic with respect to Jstd and JB.

Let z = (x, y) be the coordinate on D1, and (z,�b) the coordinates on the
(trivial) tangent bundle TD1, so the differential maps (34) have the following
form:

df ◦ J ′ : (z,�b) �→ (f(z),Dz(f) · Jstd ·�b)
JB ◦ df : (z,�b) �→ (f(z), JB(f(z)) · Dz(f) ·�b),
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and the generalized Cauchy-Riemann equations are, for f(z) = f(x, y) =
(f 1, . . . , f 2n)T (real column 2n-vector):

JB(f(z)) ·

⎛
⎜⎝

df1

dx
df1

dy
...

...
df2n

dx
df2n

dy

⎞
⎟⎠ =

⎛
⎜⎝

df1

dx
df1

dy
...

...
df2n

dx
df2n

dy

⎞
⎟⎠ ·

(
0 −1
1 0

)

=

⎛
⎜⎝

df1

dy
−df1

dx
...

...
df2n

dy
−df2n

dx

⎞
⎟⎠ . (41)

This is equivalent to looking at just one column:

JB(f(z)) · df
dx

=
df

dy
, (42)

since multiplying both sides by JB(f(z)) gives the other column in the matrix
equation.

Notation 5.3. For f : R2 → R2n, f(z) = f(x, y) = (f 1, . . . , f 2n), the follow-
ing two derivative expressions are each a real column 2n-vector of functions
of x, y:

∂f =
df

dz
=

1

2
· ( d
dx

− Jstd · d
dy

)f =
1

2
· df
dx

− 1

2
· Jstd · df

dy
,

∂f =
df

dz̄
=

1

2
· ( d
dx

+ Jstd · d
dy

)f =
1

2
· df
dx

+
1

2
· Jstd · df

dy
.

These identities follow as a consequence: df
dx

= (∂+∂)f , df
dy

= Jstd·(∂−∂)f .
The generalized Cauchy-Riemann equations can then be re-expressed:

df

dy
= JB(f(z)) · df

dx

Jstd · (∂ − ∂)f = JB(f(z)) · (∂ + ∂)f

0 = (JB(f(z)) + Jstd)∂f + (JB(f(z))− Jstd)∂f

0 = ∂f + (JB(f(z)) + Jstd)
−1 · (JB(f(z))− Jstd) · ∂f

=⇒ ∂f = Q(f(z)) · ∂f, (43)
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where Q : B → Homa(R
2n,R2n) is a map whose definition does not depend

on f : for �x ∈ B,

Q(�x) = (JB(�x) + Jstd)
−1 · (Jstd − JB(�x)).

For each point �x ∈ B, the matrix Q(�x) is well-defined by our earlier assump-
tion that B is chosen small enough so that JB(�x) + Jstd is invertible for all
�x ∈ B, and then the matrix Q(�x) is a-linear with respect to Jstd, Jstd, as in
Equation (2) and Lemma 1.6. By construction, Q(�0) is the zero matrix, and
Q is a Cs map (same regularity as JB).

Q(�x) is zero if and only if JB(�x) = Jstd, and Q is identically zero if and
only if JB(�x) is the constant CSO Jstd, in which case the condition for J-
holomorphic becomes just ∂f = 0, so f is holomorphic in the usual sense.
(Comment: The a-linear operator Q is denoted Q by [R], but otherwise our
sign conventions are the same.)

5.2 Complex diagonalization and the Cauchy-Riemann

equations

The eigenvalues of Jstd are±i, and for the 2×2 case, the eigenvectors in C
2 are[

1
i

]
with eigenvalue −i, and

[
1
−i
]
with eigenvalue i. Let J2×2 = J(x, y)

be a variable CSO, near Jstd. The eigenvalues are the same (Lemma 1.11), but
the eigenvectors may depend on the position, so suppose there are complex
valued functions v1(x, y) ≈ 1, v2(x, y) ≈ 0 so that the −i eigenspace of J is
the complex line spanned by

v1(x, y)

[
1
i

]
+ v2(x, y)

[
1
−i
]
. (44)

Because J is real, the i eigenspace is spanned by the conjugate vector,

v2(x, y)

[
1
i

]
+ v1(x, y)

[
1
−i
]
.

This diagonalizes J over C: let P2×2(x, y) =

[
v1 + v2 v̄1 + v̄2
iv1 − iv2 iv̄2 − iv̄1

]
, so

P−1 =
1

2(v1v̄1 − v2v̄2)

[
v̄1 − v̄2 −iv̄1 − iv̄2
v1 − v2 i(v1 + v2)

]
,

J · P = P ·
[ −i 0

0 i

]
. (45)
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Suppose f : R2 → R2 : (x, y) �→ (f 1(x, y), f 2(x, y)) is pseudoholomorphic
with respect to Jstd and J . Then combining (42) with (45) gives:

J(f(x, y)) ·
[
f 1
x

f 2
x

]
=

[
f 1
y

f 2
y

]

P ·
[ −i 0

0 i

]
· P−1

[
f 1
x

f 2
x

]
=

[
f 1
y

f 2
y

]
[ −i 0

0 i

] [
v̄1 − v̄2 −iv̄1 − iv̄2
v1 − v2 i(v1 + v2)

] [
f 1
x

f 2
x

]
=

[
v̄1 − v̄2 −iv̄1 − iv̄2
v1 − v2 i(v1 + v2)

] [
f 1
y

f 2
y

]
[ −i(v̄1 − v̄2)f

1
x − (v̄1 + v̄2)f

2
x

i(v1 − v2)f
1
x − (v1 + v2)f

2
x

]
=

[
(v̄1 − v̄2)f

1
y − i(v̄1 + v̄2)f

2
y

(v1 − v2)f
1
y + i(v1 + v2)f

2
y

]
.

The first and second entries are complex conjugate, so the above vector
equality is equivalent to setting the second entries equal and dividing by i:

(v1 − v2)f
1
x + i(v1 + v2)f

2
x = −i(v1 − v2)f

1
y + (v1 + v2)f

2
y (46)

v1 · ((f 1
x − f 2

y ) + i(f 1
y + f 2

x)) = v2 · ((f 1
x + f 2

y )− i(f 2
x − f 1

y ))

v1(f(x, y))
∂

∂z̄
(f 1 + if 2) = v2(f(x, y))

∂

∂z
(f 1 + if 2) (47)

so (46) is equivalent to (47), a perturbation of the classical Cauchy-Riemann
equation ∂f

∂z̄
= 0. The complex conjugation on the RHS is analogous to the

anti-linearity of the operator Q from Section 5.1. Equation (47) and the
subspace (44) both depend only on the ratio v2

v1
.

5.3 The effect of re-scaling

Some results in analysis require an a priori estimate that JB − Jstd is small
(possibly in some norm sense involving its derivatives) on the whole unit ball
B. The following construction will start with a given JB(�x) on B as in the
previous Subsection 5.1, and modify it by “re-scaling” to get a new almost
complex structure on the same set B.

It is convenient to use some previously established notation and return
to the global setting of the almost complex manifold M (although M = B is
a suitable example). Recall the coordinate chart φj : Uj → B, and consider
any number 0 < t ≤ 1. Let Bt ⊆ B denote the ball centered at �0 with
radius t, and let 1

t
· Id be the scalar multiplication (or “dilatation”) operator
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on R2n, which maps Bt onto B. Let Uk = φ−1
j (Bt) ⊆ Uj ⊆ M , and define

φk : Uk → B by (1
t
· Id) ◦ φj .

By the transformation rule (30), the local representation Jk of the almost
complex structure on the chart Uk is related to Jj by a similarity transfor-
mation, but the conjugating matrix is 1

t
· Id which commutes with Jj, so

Jk = Jj.
So, in the new k coordinate system, the original almost complex structure

on B, JB(�x) = Jj(φ
−1
j (�x)), is replaced by

JB,t(�x) = Jk(φ
−1
k (�x)) = Jj(φ

−1
j (t · �x)) = JB(t · �x),

that is, the new almost complex structure is related to the old one by re-
scaling the input vector �x ∈ B by t. Since all this is just a matter of
different local coordinate systems on the same almost complex manifold M ,
for the local analysis there is no loss of generality in replacing JB(�x) with
JB,t(�x) = JB(t · �x), and no change in the Cs regularity. The normalization
condition JB,t(�0) = Jstd still holds, and also the condition that JB,t − Jstd is
invertible still holds.

We can think of JB,t as a parametrized family of almost complex struc-
tures on B, where JB,1 = JB, and using the continuity of JB, there is a
pointwise limit: for all �x ∈ B,

lim
t→0+

JB,t(�x) = lim
t→0+

JB(t · �x) = JB(�0) = Jstd,

so JB,t approaches the constant complex structure on B as t → 0+, and we
can define JB,0 = Jstd, even though the above coordinate system construction
does not apply when t = 0.

Suppose there is some norm ‖ ‖ on the space of Cs mapsB → Hom(R2n,R2n)
that has the property that if H(�0) = 0, then ‖H ◦ (t · Id)‖ ≤ c · t · ‖H‖ for
some c and all t such that 0 < t < t0, c and t0 depending on H . For example,
when s = 2, the usual C2 norm has this property. Then, JB − Jstd has the
property JB(�0)− Jstd = 0 and if ‖JB − Jstd‖ is finite, then given any ε > 0,
there is some t1 so that ‖JB,t − Jstd‖ = ‖JB ◦ (t · Id) − Jstd‖ < ε for all
0 < t < t1.

The compositeQ(�x) = (JB(�x)+Jstd)
−1·(Jstd−JB(�x)) is also just re-scaled:

Qt(�x) = (JB,t(�x) + Jstd)
−1 · (Jstd − JB,t(�x))

= (JB(t · �x) + Jstd)
−1 · (Jstd − JB(t · �x)) = Q(t · �x). (48)
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If ‖Q‖ <∞ and ε > 0 is given, then there is some t1 so that ‖Q◦ (t ·Id)‖ < ε
for all 0 < t < t1.

The conclusion is that if an estimate of the form ‖Q‖ < ε is ever required,
then the above construction shows that a “re-scaling” exists so that Q can
be replaced by some Qt which satisfies the estimate. If there is also a map
f : D1 → B under consideration, then the domain coordinates may also have
to be transformed, just by starting over at step (39) in the above construction
of local coordinates.

Lemma 5.4. For 0 ≤ t ≤ 1, if f : D1 → B is JB,t-holomorphic, then
t · f : D1 → B is JB-holomorphic.

Proof. The t = 0 case is trivial. Otherwise, there are two approaches to the
proof. The first is to use the notion that the property of being pseudoholo-
morphic is coordinate invariant; the composite φ−1

k ◦ f : D1 → Uk ⊆ M is
J-holomorphic (J being the global structure on M), so φj|Uk⊆Uj

◦ φ−1
k ◦ f :

D1 → B is JB-holomorphic, and this composite equals t · f .
Alternatively, we can just check the differential equation (42):

df

dy
= JB,t(f(z)) · df

dx

=⇒ df

dy
= JB(t · f(z)) · df

dx

=⇒ d(t · f)
dy

= JB(t · f(z)) · d(t · f)
dx

,

where the second line is multiplied by t to get the last line, which is the
definition of t · f being JB-holomorphic.

5.4 Local Existence

We recall from [Z] a basic version of the Implicit Function Theorem.

Proposition 5.5. Given Banach spacesX, Y , and Z, a neighborhood U ⊆ X
of u0, a neighborhood V ⊆ Y of v0, and a Cr map F : U × V → Z, r ≥ 1, if
F (u0, v0) = �0 and DvF (u0, v0) : Y → Z is invertible, then there exist ε1 > 0,
ε2 > 0, and a Cr function ψ : B(u0, ε1) → B(v0, ε2) such that F (u, ψ(u)) = �0.
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The notation DvF refers to a partial derivative, the (possibly infinite-
dimensional) Jacobian linearization of F (u0, ·) : ({u = u0} × V ) → Z.

Corollary 5.6. For X, Y , Z, (u0, v0) ∈ U × V , r, and F as in Proposition
5.5, if F (u0, v0) = z0 and DvF (u0, v0) : Y → Z is invertible, then there is
some ε2 > 0, some ε3 > 0, and some ε4 > 0 so that B(z0, ε3) ⊆ F ({u1} ×
B(v0, ε2)) for each u1 ∈ B(u0, ε4).

Proof. Consider the function

G : Z × U × V → Z : (z, u, v) �→ F (u, v)− z.

It satisfiesG(z0, u0, v0) = �0, it has the same Cr regularity as F , and DvG(z0, u0, v0) :
Y → Z (where z0 and u0 are both fixed) is equal to the invertible map
DvF (u0, v0) : Y → Z, so Proposition 5.5 applies to G. There exists some
ψ : B((z0, u0), ε1) → B(v0, ε2) such that G(z, u, ψ(z, u)) = �0. There is some
product of balls, B(z0, ε3)× B(u0, ε4) ⊆ B((z0, u0), ε1), and for (z, u) in this
set, F (u, ψ(z, u)) = z.

The next result proves the local existence theorem of Nijenhuis and Woolf,
following the sketch appearing in [S]. Some of the technical details are omit-
ted, as described in the remarks.

Theorem 5.7. Given r > 1, a Cr+1 manifold M , and a Cr almost complex
structure J , for any v ∈ M there is some neighborhood U of �0 ∈ TvM such
that for all �X ∈ U , there exists a J-holomorphic map f : D1 →M such that
f(0) = v and df(0) · d

dx
= �X.

Proof. This being a local result, we can replace M with the unit ball B,
and point v with �0, and then the Cr structure is represented on B as JB,
normalized and scaled as previously, so that JB(�0) = Jstd and the Cr norm
‖Q‖ is less than some sufficiently small ε1 > 0.

Define the following map:

Φ : (−1, 1]× Cr+1(D1, B) → Cr+1(D1,R
2n)

(t, f) �→ f − T ((Q ◦ (t · f)) · ∂f),

where T is the Cauchy-Green operator satisfying ∂ ◦ T = Id.
(* Remark: The regularity of both the input and the output of T should

be checked. This may be where we need the a priori norm on Q? *)
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Φ satisfies Φ(0, f) = f , so Φ(0, ·) is the canonical embedding. The func-
tion Φ is a Cr map of Banach spaces in a neighborhood of the origin, and
this is enough for the Implicit Function Theorem to apply.

(* Remark: the Cr property should be checked. This is one place where
r > 1 is used — see [IR]. *)

The first conclusion from Corollary 5.6 is that there is some ε3-neighborhood
of the origin, W ⊆ Cr+1(D1,R

2n) and some ε4 > 0 so that for all t ∈ [0, ε4],
the image of

Φ(t, ·) : Cr+1(D1, B) → Cr+1(D1,R
2n)

contains W .
Let h : R2n → Cr+1(D1,R

2n) denote the linear map �v �→ h�v, where

h�v : z = (x, y) �→ z · �v = x · �v + y · Jstd · �v. (49)

There is some ball Bε5 ⊆ R2n so that �v ∈ Bε5 =⇒ h�v ∈ W . In particular,
for any |t| < ε4 and �v ∈ Bε5 , there exists ft,�v = ψ(t, h�v) ∈ Cr+1(D1, B) such
that h�v = Φ(t, ft,�v). The second conclusion from Corollary 5.6 is that the
map ψ is Cr.

Applying ∂ to both sides of h�v = Φ(t, ft,�v) gives

�0 = ∂ft,�v − (Q ◦ (t · ft,�v)) · ∂ft,�v.

By Equations (43) and (48), this means ft,�v is pseudoholomorphic with re-
spect to JB,t.

(* Remark: This is where it should be checked that the ∂◦T = Id identity
applies as claimed. *)

Define

ϕ : (−ε4, ε4)×Bε5 → R
2n

(t, �v) �→ dft,�v(0) · d
dx
.

In the case t = 0, Φ(0, h�v) = h�v =⇒ f0,�v = h�v, so ϕ(0, �v) = df0,�v(0) · ddx =
�v.

ϕ(0, ·) is the identity map on Bε5, and ϕ is Cr, being the composite of a
Cr map with two linear maps: ϕ = E ◦ ψ ◦ (Id × h), where E is the linear
map evaluating the derivative, g �→ dg(0) · d

dx
= dg

dx
(0). Corollary 5.6 applies

again.
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The conclusion is that there is some 0 < t0 < ε4, some 0 < ε6 < ε5, and
some 0 < ε7 so that the image of ϕ(t0, ·) : Bε6 → R2n contains Bε7 : for any
�Y ∈ Bε7, there is a �v ∈ Bε6 so that dft0,�v(0) · ddx = �Y . Let U = t0 ·Bε7 = Bt0·ε7,
so that then for any �X in U , �X = t0 · �Y for some �Y ∈ ϕ(t0, Bε6), and

�X = t0 · �Y = t0 · dft0,�v(0) ·
d

dx
= d(t0 · ft0,�v)(0) ·

d

dx
.

The map t0 ·ft0,�v is pseudoholomorphic with respect to JB by Lemma 5.4.

Another local existence theorem is for a curve connecting two points.
This proof follows [D].

Theorem 5.8. Given r > 1, a Cr+1 manifold M , and a Cr almost complex
structure J , for any v ∈ M there is some neighborhood U of v such that for
all points p, q ∈ U , there exists a J-holomorphic map f : D1 → M such that
f(0) = p and f(1

2
) = q.

Proof. Again it is enough to work locally, and show that there is some neigh-
borhood U of �0 ∈ B so that for �p, �q ∈ U , there is a map f : D1 → B with
f(0) = �p and f(1

2
) = �q.

The first part of the Proof proceeds exactly as in the Proof of Theorem
5.7, including the construction of the same Φ, ψ, and the same neighborhood
W , just before Equation (49).

This time, define h : R2n × R2n → Cr+1(D1,R
2n) : (�p, �q) �→ h�p,�q, where

h�p,�q : z = (x, y) �→ �p+ 2z · (�q − �p) = �p+ 2x · (�q − �p) + 2y · Jstd · (�q − �p).

There is some ball Bε5 ⊆ R2n so that �p, �q ∈ Bε5 =⇒ h�p,�q ∈ W . In particular,
for any |t| < ε4 and �p, �q ∈ Bε5, there exists ft,�p,�q = ψ(t, h�p,�q) ∈ Cr+1(D1, B)
such that h�p,�q = Φ(t, ft,�p,�q).

Again, h�p,�q being holomorphic implies ft,�p,�q is JB,t-holomorphic.
Define

ϕ : (−ε4, ε4)× Bε5 × Bε5 → R
2n × R

2n

(t, �p, �q) �→ (ft,�p,�q(0), ft,�p,�q(
1

2
)).

In the case t = 0, Φ(0, h�p,�q) = h�p,�q =⇒ f0,�p,�q = h�p,�q, so ϕ(0, �p, �q) =
(f0,�p,�q(0), f0,�p,�q(

1
2
)) = (�p, �q).
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So, ϕ(0, ·, ·) is the identity map on Bε5 × Bε5 , and ϕ is Cr, being the
composite of a Cr map with two linear maps: ϕ = E ◦ ψ ◦ (Id× h), where E
is the linear map evaluating at a pair of points, g �→ (g(0), g(1

2
)). Corollary

5.6 applies again.
The conclusion is that there is some 0 < t0 < ε4, some 0 < ε6 < ε5, and

some 0 < ε7 so that the image of ϕ(t0, ·, ·) : Bε6 ×Bε6 → R2n × R2n contains
Bε7 ×Bε7 : for any �p0, �q0 ∈ Bε7 , there are �p1, �q1 ∈ Bε6 so that ft0,�p1,�q1(0) = �p0
and ft0,�p,�q(

1
2
) = �q0. Let U = t0 · Bε7 = Bt0·ε7, so that then for any �p, �q in U ,

(�p, �q) = t0 · (�p0, �q0) for some (�p0, �q0) = ( 1
t0
�p, 1

t0
�q) ∈ ϕ(t0, Bε6, Bε6), and

(�p, �q) = t0 · (�p0, �q0) = t0 · (ft0,�p1,�q1(0), ft0,�p1,�q1(
1

2
))

= ((t0 · ft0,�p1,�q1)(0), (t0 · ft0,�p1,�q1)(
1

2
)).

The map t0 · ft0,�p1,�q1 is pseudoholomorphic with respect to JB by Lemma
5.4.

Yet another local existence theorem is for a curve with specified higher-
order derivatives. This proof follows [IR] Prop. 1.1, which claims further that
the regularity hypothesis on J can be improved to Cr−1, by a different proof.

Theorem 5.9. Given 1 ≤ k < r, and a Cr almost complex structure J on
the ball B ⊆ R2n, for any �v ∈ B there is some neighborhood U of �v and some
ε > 0 such that for all points �p ∈ U , and all �v1, �v2, . . . , �vk ∈ Bε, there exists
a J-holomorphic map f : D1 →M such that f(0) = �p and ( d

dx
)�f(0) = �v�.

Proof. Again since it is enough to work locally, we can assume �v = �0 ∈ B, and
show that there is some neighborhood U of �0 ∈ B so that for �p, �v1, . . . , �vk ∈ U ,
there is a map f : D1 → B with f(0) = �p and ( d

dx
)�f(0) = �v�.

The first part of the Proof proceeds exactly as in the Proof of Theorem
5.7, including the construction of the same Φ, ψ, and the same neighborhood
W , just before Equation (49).

This time, define h : R2n×(R2n)k → Cr+1(D1,R
2n) : (�p, V ) �→ h�p,V , where

V = (�v1, . . . , �vk) and

h�p,V : z = (x, y) �→ �p+

k∑
�=1

1

�!
z��v�.
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There is some ball Bε5 ⊆ R2n so that �p, �v1, . . . , �vk ∈ Bε5 =⇒ h�p,V ∈ W .
In particular, for any |t| < ε4 and �p, �v1, . . . , �vk ∈ Bε5 , there exists ft,�p,V =
ψ(t, h�p,V ) ∈ Cr+1(D1, B) such that h�p,V = Φ(t, ft,�p,V ).

Again, h�p,V being holomorphic implies ft,�p,V is JB,t-holomorphic.
Define

ϕ : (−ε4, ε4)× Bε5 × (Bε5)
k → R

2n × (R2n)k

(t, �p, V ) �→ (ft,�p,V (0),
d

dx
ft,�p,V (0), . . . , (

d

dx
)kft,�p,V (0)).

In the case t = 0, Φ(0, h�p,V ) = h�p,V =⇒ f0,�p,V = h�p,V , so ϕ(0, �p, V ) =
(f0,�p,V (0),

d
dx
f0,�p,V (0), . . . , (

d
dx
)kf0,�p,V (0)) = (�p, V ).

So, ϕ(0, ·, ·) is the identity map on Bε5 × (Bε5)
k, and ϕ is Cr, being the

composite of a Cr map with two linear maps: ϕ = E ◦ ψ ◦ (Id × h), where
E is the linear map evaluating the map and its x derivatives at 0. Corollary
5.6 applies again.

The conclusion is that there is some 0 < t0 < ε4, some 0 < ε6 < ε5, and
some 0 < ε7 so that the image of ϕ(t0, ·, ·) : Bε6 × (Bε6)

k → R2n × (R2n)2k

contains Bε7×(Bε7)
k: for any �p 0, �v 0

1 , . . . , �v
0
k ∈ Bε7, there are �p

1, �v11, . . . , �v
1
k ∈

Bε6 so that ft0,�p1,V 1(0) = �p 0 and ( d
dx
)�ft0,�p1,V 1(0) = �v 0

� . Let U = t0 · Bε7 =
Bt0·ε7, so that then for any �p, �v1, . . . , �vk in U , (�p, V ) = t0 · (�p 0, �v 0

1 , . . . , �v
0
k ) for

some (�p 0, �v 0
1 , . . . , �v

0
k ) = ( 1

t0
�p, 1

t0
�v1, . . . ,

1
t0
�vk) ∈ ϕ(t0, Bε6, Bε6, . . . , Bε6), and

(�p, V )

= t0 · (�p0, �v 0
1 , . . . , �v

0
k )

= t0 · (ft0,�p1,V 1(0),
d

dx
ft0,�p1,V 1(0), . . . , (

d

dx
)kft0,�p1,V 1(0))

= ((t0 · ft0,�p1,V 1)(0),
d

dx
(t0 · ft0,�p1,V 1)(0), . . . , (

d

dx
)k(t0 · ft0,�p1,V 1)(0)).

The map t0 · ft0,�p1,V 1 is pseudoholomorphic with respect to JB by Lemma
5.4.

6 Normal form for coordinates near a disk

Recall D1 is the unit disk in C, with a C∞ differentiable structure and the
constant, 2 × 2, C∞ almost complex structure Jstd. In this Section, an im-
portant property of D1 is that it is a contractible topological space; by the
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Riemann Mapping Theorem, any contractible open subset of C is either C

or holomorphically equivalent to D1, so such a set could replace D1 without
changing the results.

Let M be a Cr manifold with r ≥ 1 and dimM = 2n, and let J be a Cs
almost complex structure on M as in Section 3 with 0 ≤ s ≤ r − 1.

We will be interested in J-holomorphic maps u : D1 → M , and our goal
in this Section is to follow a construction of [IR] (Proof of Theorem A1) and
[MS1] (Lemma 2.2.2), to find a convenient chart for a neighborhood of the
whole image u(D1) and a simple form for J in that chart. So, this is not the
local problem as in Section 5, this is a global construction for “big” disks.
See also [R], [ST2].

6.1 Differential topology: real coordinate charts

To start, we assume only that u is a Cρ map D1 →M , which is also a (global)
embedding, so 1 ≤ ρ ≤ r. (For maps which are not embeddings, one could
restrict the domain to avoid singularities or self-intersections, but once u is
an embedding of a disk, we do not want to shrink the domain any further.)

Theorem 6.1. Given an embedding u : D1 →M as above, there exists a Cρ
differentiable structure on M containing (U, φ), where U is a neighborhood
of the image u(D1), and φ : U → D1 × R2n−2 ⊆ R2n is an onto chart such
that (φ ◦ u)(x, y) = (x, y, 0, 0, . . . , 0) for all (x, y) ∈ D1.

Proof. As a notational convenience, the map u : D1 → M factors as a
composite ι◦u0, where ι : u(D1) → M is the inclusion, and u0 : D1 → u(D1)
is a homeomorphism of the disk onto its image.

By Proposition 2.14, there is a Cρ differentiable structure on M so that
the image u(D1) is a Cρ 2-submanifold of M . ι is a Cρ inclusion, and u0 is a
Cρ homeomorphism, which has a Cρ inverse by Proposition 2.15.

By Proposition 2.17, there exists a “tubular neighborhood” of u(D1) in
M , given by the following: there is a Cρ (2n−2)-bundle p : E → u(D1), with
zero section θE : u(D1) → E : x �→ [x, k,�0], and a Cρ embedding f : E → M
such that U = f(E) is a neighborhood of u(D1) in M , and f ◦ θE = ι.

The bundle E → u(D1) pulls back (as in Definition 2.6) to u∗0E → D1

so that the canonical bimorphism ε : u∗0E → E is a Cρ homeomorphism.
Since D1 is contractible, there exists a trivial vector bundle pD : D1 ×R2n−2

and an isomorphism of vector bundles τ : D1 × R2n−2 → u∗0E which is a Cρ
homeomorphism ([H] Cor. 4.2.5.) and is the identity on the base D1. Denote
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the zero section of the trivial bundle θD : D1 → D1 × R2n−2 : (x, y) �→
(x, y, 0, 0, . . . , 0).

D1 × R2n−2

pD

����
���

���
���

τ �� u∗0E

��

ε �� E

p

��

f

���
��

��
��

��

D1

θD

������������� u0 �� u(D1)

θE

��

ι ��M

For U = f(E), let φ = (f ◦ ε ◦ τ)−1, then φ : U → D1 × R2n−2 is the
claimed coordinate chart:

φ ◦ u = τ−1 ◦ ε−1 ◦ f−1 ◦ ι ◦ u0
= τ−1 ◦ ε−1 ◦ θE ◦ u0
= θD.

In preparation for another change of coordinates on R2n, which fixes the
disk D1×{�0}, we will need the following consequence of the Inverse Function
Theorem, a special case of Exercise 1.8.14. of [GP].

Theorem 6.2. For σ ≥ 1, let H : D1×R2n−2 → R2n be a Cσ map such that at
every point (x, y,�0), H(x, y,�0) = (x, y,�0) and D(x,y,�0)H is nonsingular. Then

there is an open neighborhood U of D1×{�0} such that H|U is invertible with
a Cσ inverse.

Proof. Let (x0, y0,�0) be any element of D1 × {�0}. By the Inverse Function
Theorem, there is some neighborhood U(x0,y0) of (x0, y0,�0) in D1 × R2n−2

so that H(U(x0,y0)) is open in R
2n and H|U(x0,y0)

: U(x0,y0) → H(U(x0,y0)) is
invertible with a Cσ inverse H(U(x0,y0)) → U(x0,y0).

Because H(x0, y0,�0) = (x0, y0,�0), U(x0,y0) ∩ H(U(x0,y0)) is an open neigh-

borhood of (x0, y0,�0) in D1×R2n−2, and there is an open set V(x0,y0) such that

(x0, y0,�0) ∈ V(x0,y0) ⊆ V(x0,y0) ⊆ U(x0,y0) ∩H(U(x0,y0)) (where the bar denotes
closure in R

2n). Denote

h(x0,y0) =

((
H|U(x0,y0)

)−1
)∣∣∣∣

V(x0,y0)

,

so for �v ∈ V(x0,y0), h(x0,y0)(�v) ∈ U(x0,y0) and H(h(x0,y0)(�v)) = �v. For �v ∈ V(x0,y0)
of the form �v = (x, y,�0), H(h(x0,y0)(�v)) = �v = H(�v), and because H is
one-to-one on U(x0,y0), h(x0,y0)(�v) = �v.
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The collection of all open subsets V(x0,y0) for every point (x0, y0) ∈ D1 is

an open cover of D1 × {�0}. By the paracompact property of D1 × {�0}, this
cover has a locally finite open refinement: a collection of open sets Vk indexed
by k, that covers D1 × {�0}, where each Vk is contained in some V(x0,y0), and

every point (x0, y0,�0) has some neighborhood Q so that Q∩ Vj is non-empty
for only finitely many j. For each k, we choose some (x0, y0) so that Vk ⊆
V(x0,y0) and Vk ⊆ V(x0,y0) ⊆ U(x0,y0), and denote this U(x0,y0) by Uk. Define
hk = h(x0,y0)|Vk : Vk → Uk, so for �v ∈ Vk, hk(�v) = h(x0,y0)(�v) ∈ U(x0,y0) = Uk
and H(hk(�v)) = �v.

For indices j and k, define the following closed set:

Wjk = {�x ∈ Vj ∩ Vk : hk(�x) �= hj(�x)},
so Wjk ⊆ Vj ∩ Vk ⊆ Vj. Consider (x, y,�0) ∈ Vk and the following two cases.

Case 1. If (x, y,�0) ∈ Vk \ Vj , then Vk \ Vj is an open neighborhood of
(x, y,�0) disjoint from Wjk.

Case 2. If (x, y,�0) ∈ Vk ∩ Vj , then H(x, y,�0) = (x, y,�0) ∈ Vk and
H(x, y,�0) = (x, y,�0) ∈ Vj ⊆ Uj , so (x, y,�0) ∈ Vk ∩ H(Vk ∩ Uj). To show
that Vk ∩ H(Vk ∩ Uj) is disjoint from Wjk, suppose, toward a contradic-
tion, that there is some �v ∈ (Vk ∩ H(Vk ∩ Uj)) ∩Wjk. From �v ∈ Wjk, any
open set containing �v must also contain some element �x ∈ Vj ∩ Vk with
hk(�x) �= hj(�x). Since Vk ∩ H(Vk ∩ Uj) is an open set containing �v, there is
some such �x ∈ (Vk ∩H(Vk ∩Uj)) ∩ (Vj ∩ Vk). So, �x = H(�w) for �w ∈ Vk ∩Uj .
hk(�x) ∈ Uk, and H(hk(�x)) = �x = H(�w), and since H is one-to-one on Uk,
hk(�x) = �w. hj(�x) ∈ Uj , and H(hj(�x)) = �x = H(�w), and since H is one-to-one
on Uj , hj(�x) = �w; however, this contradicts hk(�x) �= hj(�x).

From Cases 1. and 2., we can conclude that every point (x, y,�0) ∈ Vk is
in either the open set Vk \ Vj or the open set Vk ∩H(Vk ∩Uj), and the union

Njk =
(
Vk \ Vj

) ∪ (Vk ∩H(Vk ∩ Uj))

is an open neighborhood of the set {(x, y,�0) ∈ Vk}, disjoint from Wjk.
Consider a point (x, y,�0) ∈ D1×{�0}. The local finiteness property of the

cover {Vj} is that there exists some neighborhood Q of (x, y,�0) that has a
non-empty intersection with only finitely many Vj. For each of the (finitely
many) k such that (x, y,�0) ∈ Vk, Q∩Njk is an open neighborhood of (x, y,�0)
in Vk, disjoint from Wjk. If Q ∩ Vj = Ø, then Q ∩ Vk ⊆ Vk \ Vj ⊆ Njk, so

Q ∩ Njk = Q ∩ Vk and the intersection over all j, Pk =
⋂
j

Q ∩Njk is the
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same as a finite intersection, and it is an open neighborhood of (x, y,�0) in
Vk which is disjoint from Wjk for all j. Let P(x,y) be the intersection of the

finitely many Pk, so P(x,y) is an open neighborhood of (x, y,�0) contained in

every Vk neighborhood of (x, y,�0).
Let P be the union of all open sets P(x,y) for (x, y) ∈ D1; we will define

h : P → D1 × R
2n−2. Given �p ∈ P , there is some (x, y) and some k so

that �p ∈ P(x,y) ⊆ Pk ⊆ Vk, and Pk is contained in Njk for all j. Define
h(�p) = hk(�p); by construction, there is no j such that hj(�p) is defined but
not equal to hk(�p). If there is some other (x′, y′) and j with �p ∈ P(x′,y′) ⊆
Pj ⊆ Vj, then h(�p) = hj(�p) is equal to the previously calculated hk(�p). For
any �p ∈ P , there is some (x, y) and some k so that �p ∈ P(x,y) ⊆ Pk, so
H(h(�p)) = H(hk(�p)) = �p.

Given (x, y) ∈ D1, there is some k so that P(x,y) ⊆ Pk ⊆ Vk, and

h(P(x,y)) = hk(P(x,y)), so h(P(x,y)) is an open neighborhood of (x, y,�0) in

Uk ⊆ D1×R2n−2. Let U be the union of the open sets h(P(x,y)), so D1×{�0} ⊆
U = h(P ) ⊆ D1×R2n−2. For any �x ∈ U , there is some (x, y) so that �x = h(�p)
for �p ∈ P(x,y), and there is some k so that �x = hk(�p) for �p ∈ P(x,y) ⊆ Pk.
h(H(�x)) = h(H(hk(�p))) = h(�p) = hk(�p) = �x. The conclusion is that
h : P → U is the inverse of H|U : U → P .

6.2 Linear algebra: normalizing the complex structure
operator

Now consider M with Cs almost complex structure J as in Section 3, and a
map u : D1 → M which is a J-holomorphic, Cρ embedding, and such that
J ◦ u : D1 → Hom(TM, TM) is Ct.

Initially,M has some Cr structure, s ≤ r−1, 1 ≤ ρ ≤ r, and t ≤ r−1. Let
φk : Uk → R2n be a coordinate chart onM , where J has matrix representation
Jk : Uk → Hom(R2n,R2n), so Jk ◦ φ−1

k is Cs. The map u restricts to u :
u−1(Uk) → Uk, so that φk ◦ u : u−1(Uk) → R2n is Cρ. The local coordinate
representation of J ◦ u : u−1(Uk) → Hom(R2n,R2n) is (Jk ◦ φ−1

k ) ◦ (φk ◦ u) =
Jk ◦ u, which is Ct, t ≥ min{ρ, s}.

Let U1 be the neighborhood of u(D1) from Theorem 6.1, and let φ : U1 →
D1 × R2n−2 be the Cρ chart with φ ◦ u = θD. As in Example 3.3, the matrix
representation of J on this chart is JD : D1×R2n−2 → Hom(R2n,R2n), defined
by (32) for �x ∈ D1 × R2n−2 by picking any k such that φ−1(�x) ∈ U1 ∩ Uk;

46



then
JD(�x) = (D�x(φk ◦ φ−1))−1 · Jk(φ−1(�x)) · D�x(φk ◦ φ−1)

does not depend on k. JD has regularity Cmin{s,ρ−1} on D1 × R2n−2, but for
�x of the form (x, y,�0),

JD(x, y,�0) = JD(θD(x, y)) = JD(φ(u(x, y)))

= (D(x,y,�0)(φk ◦ φ−1))−1 · Jk(u(x, y)) · D(x,y,�0)(φk ◦ φ−1),

which has regularity Cmin{t,ρ−1}.
Now we use the J-holomorphic property of u. It follows from general

principles that its local representation φ◦u = θD is pseudoholomorphic, but it
is worth checking the specifics in this case. To check θD is pseudoholomorphic
with respect to Jstd on D1 and JD = dφ ◦ J ◦ d(φ−1),

JD ◦ dθD = dφ ◦ J ◦ d(f ◦ ε ◦ τ) ◦ dθD = dφ ◦ J ◦ d(f ◦ ε ◦ τ ◦ θD)
= dφ ◦ J ◦ du = dφ ◦ du ◦ Jstd = d(φ ◦ u) ◦ Jstd = dθD ◦ Jstd.

In the (x1, y1, x2, y2, . . . , xn, yn) coordinate system of D1 × R2n−2, the differ-
ential of θD is given by

dθD =

⎛
⎜⎜⎜⎜⎜⎝

1 0
0 1
0 0
...

...
0 0

⎞
⎟⎟⎟⎟⎟⎠

2n×2

. (50)

The above equation then becomes

JD ◦ dθD = dθD ◦ Jstd =

⎛
⎜⎜⎜⎜⎜⎝

0 −1
1 0
0 0
...

...
0 0

⎞
⎟⎟⎟⎟⎟⎠

2n×2

.

One can conclude that for points on the disk, �x = (x, y, 0, . . .0) = θD(x, y),
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the matrix representation of JD(�x) is

JD(x, y, 0, . . . , 0) =

⎛
⎜⎜⎜⎜⎜⎝

0 −1 ∗ . . . ∗
1 0 ∗ . . . ∗
0 0 ∗ . . . ∗
...

...
. . .

0 0 ∗ . . . ∗

⎞
⎟⎟⎟⎟⎟⎠

2n×2n

=

(
Jstd B
0 J2

)
. (51)

The lower right (2n− 2)× (2n− 2) block J2 is a CSO on the tangent space
to the fiber R2n−2 = p−1

D (x, y) at �x. Both B2×(2n−2) and J2 are functions of
(x, y). On the whole space D1 × R2n−2, JD(�v) has regularity Cmin{s,ρ−1} and
may not have the above block form; however, the restriction JD(x, y,�0) and
the blocks B(x, y) and J2(x, y) may have some higher order of smoothness,
Ct for t ≥ min{s, ρ− 1}.

We now want to find matrices G so that G · JD ·G−1 = Jstd, at all points
(x, y,�0) on the disk. There are two methods; Method 1 gives a canonical
formula, which only applies under a certain condition, while Method 2 works
for any JD but involves making some arbitrary choices.

Method 1. If JD(x, y,�0) has the property that J2(x, y,�0) + Jstd is invert-
ible, then from (6) in Example 1.9, there exists G(x, y) such that:

G(x, y) =

(
Id −1

2
B(x, y) · J2(x, y)

0 (Id+ A(x, y))−1

)
, (52)

A(x, y) = (J2(x, y) + Jstd)
−1 · (Jstd − J2(x, y)),

JD(x, y,�0) �→ G(x, y) · JD(x, y,�0) ·G(x, y)−1 =

(
Jstd 0
0 Jstd

)
=Jstd. (53)

G(x, y) has the same Ct regularity as JD(x, y,�0).
The invertibility of J2(x, y,�0) + Jstd on the whole disk D1 is a significant

assumption. JD can be normalized to Jstd at one point by a linear transfor-
mation of R2n, as in Section 3.2, and then JD ≈ Jstd near that point, but the
formula (52) may still not be applicable globally.

Method 2. The Proof of Lemma 1.11 can be modified to constructG(x, y),
depending on JD(x, y,�0). At each point (x, y,�0) ∈ D1 × R2n−2, we want to
find a basis of T(x,y,�0)(D1 × R

2n−2) = R
2n. In particular, we will construct

vector fields �vk : (D1 × {�0}) → R2n. Let �v1(x, y,�0) = �e1, the constant vector
in the x1 direction; then JD(x, y,�0) · �v1(x, y,�0) = �e2 is also a constant vector
field (by the form of (51)). Let �v2(x, y,�0) = �e3 be a third constant vector
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field; then JD(x, y,�0) · �e3 is a Ct vector expression, using entries of B and

J2 from (51), and the list
(
�e1, �e2, �e3, JD(x, y,�0) · �e3

)
is independent at every

point by Lemma 1.10. If n = 2, we have a basis of R4. For n > 2, that
list gives four independent sections of the trivial bundle D1 × R2n → D1,
spanning a Ct sub-bundle. There exists a Ct complementary sub-bundle ([H]
Theorem 4.2.2. — we can think of it as the normal bundle), which is trivial
([H] Cor. 4.2.5.), so there exists a non-vanishing Ct section �v3(x, y,�0), such
that the five element list (�v1, . . . , �v3) is independent at every point. (By an
approximation, �v3 can be chosen to be a C∞ section of D1 × R2n, but this
is not a significant improvement.) Then JD(x, y,�0) · �v3(x, y,�0), a Ct vector
field, so that the six element list

(
�v1, . . . , �v3(x, y,�0), JD(x, y,�0) · �v3(x, y,�0)

)
is

independent at every point by Lemma 1.10. This can be repeated — choosing
another independent vector field �vk and then adding JD · �vk, until there are
2n vector fields forming a basis at every point. The construction of Lemma
1.11 still works: let

G(x, y) = [�v1, J(�v1), �v2, J(�v2), . . . , �vn−1, J(�vn−1), �vn, J(�vn)]
−1 .

Then G(x, y) has a block form as in (52) with Ct entries, and satisfies (53).
Using G(x, y) defined by either Method 1 or Method 2, define:

H : D1 × R
2n−2 → R

2n : �x =

⎡
⎢⎢⎢⎢⎢⎣

x1
y1
...
xn
yn

⎤
⎥⎥⎥⎥⎥⎦ �→ G(x1, y1) · �x, (54)

a Ct mapping which, by the form (52) of G(x, y), fixes D1 × {�0} pointwise.
If t ≥ 1 (a significant new assumption), then the Jacobian of H is D�xH =⎛

⎜⎜⎜⎜⎝
1 + ∂G13

∂x1
x2 + · · ·+ ∂G1,2n

∂x1
yn 0 + ∂G13

∂y1
x2 + · · ·+ ∂G1,2n

∂y1
yn G13 . . .

0 + ∂G23

∂x1
x2 + · · ·+ ∂G2,2n

∂x1
yn 1 + ∂G23

∂y1
x2 + · · ·+ ∂G2,2n

∂y1
yn G23 . . .

...
... G33 . . .

0 +
∂G2n,3

∂x1
x2 + · · ·+ ∂G2n,2n

∂x1
yn . . . G2n,2n

⎞
⎟⎟⎟⎟⎠ .

In particular, D(x1,y1,�0)
H = G(x1, y1), which is invertible, so Theorem 6.2

applies: there is an open neighborhood U2 of D1 × {�0} such that H|U2 :
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U2 → H(U2) ⊆ R2n is invertible with a Ct inverse. If B ≡ 0, H is a vector
bundle isomorphism of D1 × R2n−2, so U2 can be taken to be D1 × R2n−2,
instead of using Theorem 6.2.

As in Example 3.1, the almost complex structure JD restricts to U2, and
induces an almost complex structure dH ◦ JD ◦ d(H−1) on H(U2), with reg-
ularity Cmin{s,ρ−1,t−1}. By construction, the matrix representation at points
(x, y,�0) is G(x, y) · JD(x, y,�0) · (G(x, y))−1 = Jstd.

Let U = φ−1(U2), a neighborhood of u(D1) in U
1. The composite H ◦φ :

U → R2n has local coordinate representation H ◦ φ ◦ φ−1
k , which is Cmin{ρ,t}.

The matrix representation of J in the H ◦ φ chart is as in Example 3.3,
formula (32) for �x ∈ H(U2) ⊆ R2n:

J ′(�x) = (D�x(φk ◦ φ−1 ◦H−1))−1 · Jk((H ◦ φ)−1(�x)) · D�x(φk ◦ φ−1 ◦H−1)

= DH−1(�x)H · (DH−1(�x)(φk ◦ φ−1))−1 · Jk(φ−1(H−1(�x))) (55)

·DH−1(�x)(φk ◦ φ−1) · (DH−1(�x)H)−1

= DH−1(�x)H · JD(H−1(�x)) · (DH−1(�x)H)−1,

and (55) is a Cmin{s,ρ−1,t−1} expression.
For a point on the image u(D1), �x = H(φ(u(x, y))) = H(θD(x, y)) =

(x, y,�0),

J ′(x, y,�0) = D(x,y,�0)H · (D(x,y,�0)(φk ◦ φ−1))−1 · Jk(φ−1((x, y,�0)))

·D(x,y,�0)(φk ◦ φ−1) · (D(x,y,�0)H)−1

= D(x,y,�0)H · (D(x,y,�0)(φk ◦ φ−1))−1 · Jk(u(x, y))
·D(x,y,�0)(φk ◦ φ−1) · (D(x,y,�0)H)−1

= G(x, y) · JD(x, y,�0) · (G(x, y))−1 = Jstd.

7 Normal coordinates in 4 dimensions

The goal of this Section is to find a coordinate chart where the matrix repre-
sentation has a normal form at every point, not just on the disk. In general,
this can only be achieved locally. The notion of “normal coordinates” is con-
sidered by [S], [ST1], [T] — we work out some of the linear algebra details,
but do not prove the main analytical step (Proposition 7.1).
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7.1 The construction

We continue with the construction from Section 6, but in the special case
where n = dimM = 4 and everything is smooth: r = s = t = ρ = ∞.
There is a J-holomorphic curve u : D1 → M with an open neighborhood
u(D1) ⊆ U , and a coordinate chart H ◦ φ : U → R4 so that H ◦ φ ◦ u = θD :
(x, y) �→ (x, y, 0, 0). The matrix representation J ′ of J in this chart satisfies,
for (x, y) ∈ D1,

J ′(x, y, 0, 0) = Jstd =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ .

Let u(z0) ∈M be any point on the given J-holomorphic curve. Without loss
of generality (by re-parameterizing u), we can assume z0 is the center 0 of
the disk D1.

The idea is that given a J-holomorphic curve, an implicit function the-
orem argument, similar to the local existence results in Section 5, shows
that there exists a (complex) one-parameter family of nearby curves. The
curves and the parameter can be used to define a chart with two complex
coordinates ζ and w. For c ∈ Dρ, denote

θc : Dρ → Dρ ×Dρ : ζ �→ (ζ, c).

The following Proposition is adapted from Lemmas 5.4 and 5.5 of [T].

Proposition 7.1. Given J ′ on a neighborhood of �0 in R4 as above, there
exists some ρ > 0 and a diffeomorphism Θ : Dρ ×Dρ → R4 of the form

Θ(ζ, w) �→ (ζ, w + τ(ζ, w))

such that:

• Θ : (ζ, 0) �→ (ζ, 0);

• Θ : (0, w) �→ (0, w);

• for each constant w = c, the composite

Θ ◦ θc : ζ �→ (ζ, c+ τ(ζ, c)) (56)

is pseudoholomorphic with respect to Jstd on Dρ and J ′.
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For (ζ0, w0) ∈ Dρ ×Dρ, the Jacobian of Θ is

D(ζ0,w0)Θ =

[
I 0
T1 I + T2

]
for 2× 2 blocks including the identity matrix I and T1 and T2 depending on
τ . The Jacobian of θc is as in (50), so writing J ′(Θ(ζ0, c)) in terms of 2× 2
blocks, the J ′-holomorphic property from (56) gives

Dζ0(Θ ◦ θc) · Jstd = J ′ · Dζ0(Θ ◦ θc)[
I
T1

]
· Jstd =

[
Jstd +B1 B2

B3 Jstd +B4

]
·
[
I
T1

]
[

Jstd
T1 · Jstd

]
=

[
Jstd +B1 +B2 · T1

B3 + Jstd · T1 +B4 · T1
]
. (57)

The matrix representation of J ′ using Θ−1 as a chart, as in Example 3.3,
formula (32), is the following CSO at (ζ0, c) ∈ Dρ ×Dρ:

J0(ζ0, c) = (D(ζ0,c)Θ)−1 · J ′(Θ(ζ0, c)) · (D(ζ0,c)Θ)

=

[
I 0
T1 I + T2

]−1

·
[
Jstd +B1 B2

B3 Jstd +B4

]
·
[
I 0
T1 I + T2

]

=

[
I 0

−(I + T2)
−1 · T1 (I + T2)

−1

]

·
[

Jstd +B1 +B2 · T1 B2 · (I + T2)
B3 + Jstd · T1 +B4 · T1 (Jstd +B4) · (I + T2)

]

=

[
I 0

−(I + T2)
−1 · T1 (I + T2)

−1

]

·
[

Jstd B2 · (I + T2)
T1 · Jstd (Jstd +B4) · (I + T2)

]
(58)

=

[
Jstd B2 · (I + T2)
0 (I + T2)

−1 · (Jstd +B4 − T1 ·B2) · (I + T2)

]
(59)

where step (58) used (57). Expression (59) is also the matrix representation
of the original CSO J , using the chart Θ−1◦H◦φ on some small neighborhood
of u(z0). When c = 0, J ′(Θ(ζ0, 0)) = Jstd and all the Bk blocks are 0, so

J0(ζ0, 0) =

[
Jstd 0
0 (I + T2)

−1 · Jstd · (I + T2)

]
.
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From Θ(0, w) = w, T2 = 0 at (ζ0, w0) = (0, 0), so J0(0, 0) = Jstd.
Formula (59) can be re-written

J0(ζ, w) =

[
Jstd B5

0 Jstd +B6

]
, (60)

where B5(ζ, 0) = 0 and B6(0, 0) = 0.

Remark 7.2. A alternative normalization as in [S], [ST2] §4, using similar
methods, results in a block normal form[

Jstd +B7 0
0 Jstd +B8

]
4×4

,

where B7(ζ, 0) = 0 and B8(0, 0) = 0.

7.2 Entries in the matrix representation

Formula (60) can be written in terms of real entries, (depending on ζ , w):

J0(ζ, w) =

[
Jstd B5

0 Jstd +B6

]
=

⎡
⎢⎢⎣

0 −1 a1 a2
1 0 a3 a4
0 0 b1 −1 + b2
0 0 1 + b3 b4

⎤
⎥⎥⎦ .

The property J2 = −IdR4 constrains the entries:

(b2 − 1)a3 = a1b1b2 − a2b
2
1 − a1b1 − a2

a4 = a1b2 − a2b1 − a1

(1− b2)b3 = b21 + b2

b4 = −b1.

For (ζ, w) near the origin, J0 is close to Jstd, so the fractions in the following
expression are well-defined, with |b2| < 1.

J0(ζ, w) =

⎡
⎢⎢⎢⎣

0 −1 a1 a2

1 0
a1b1b2−a2b21−a1b1−a2

b2−1
a1b2 − a2b1 − a1

0 0 b1 −1 + b2

0 0 1 +
b21+b2
1−b2 −b1

⎤
⎥⎥⎥⎦ . (61)
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This real matrix acts by matrix multiplication on column vectors; consider-
ing column vectors in C4, the eigenvalues are ±i, and the −i eigenspace is
spanned by:⎡
⎢⎢⎣

1
i
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
0
1
i

⎤
⎥⎥⎦+

b2 − ib1
b2 − 2 + ib1

⎡
⎢⎢⎣

0
0
1
−i

⎤
⎥⎥⎦+

a1 + i(a1b2 − a2b1 − a1)

b2 − 2 + ib1

⎡
⎢⎢⎣

1
−i
0
0

⎤
⎥⎥⎦ .

The +i eigenspace is spanned by the complex conjugates of these vectors.
The above set of −i eigenvectors can be re-written with complex coefficients
β1, β2:

T 0,1 = spanC

{
∂

∂ζ̄
,
∂

∂w̄
+ β1

∂

∂w
+ β2

∂

∂ζ

}
(62)

β1(ζ, w) =
b2 − ib1

b2 − 2 + ib1

β2(ζ, w) =
a2 + i(a1b2 − a2b1 − a1)

b2 − 2 + ib1
.

Conversely, given complex coefficients β1, β2 in an expression of the form
(62) with |β1| < 1, the real entries a1, a2, b1, b2 in a CSO of the form (61)
are uniquely determined by:

a1 + ia2 =
2i(β1β2 + β2)

β1β1 − 1

b1 + ib2 =
2iβ1(β1 + 1)

β1β1 − 1
.

In terms of β1, β2, the matrix (61) for J0(ζ, w) is:⎡
⎢⎢⎢⎢⎣

0 −1 2(Im(β2)Re(β1)−Im(β1)Re(β2)−Im(β2))
|β1|2−1

2(Im(β2)Im(β1)+Re(β2)Re(β1)+Re(β2))
|β1|2−1

1 0 −2(Im(β2)Im(β1)+Re(β2)Re(β1)−Re(β2))
|β1|2−1

2(Im(β2)Re(β1)−Im(β1)Re(β2)+Im(β2))
|β1|2−1

0 0 −2Im(β1)
|β1|2−1

−1 + 2(|β1|2+Re(β1))
|β1|2−1

0 0 1− 2(|β1|2−Re(β1))
|β1|2−1

2Im(β1)
|β1|2−1

⎤
⎥⎥⎥⎥⎦ .

As in Section 5.2, the eigenvectors of the matrix J0 can be used to find
the nonlinear Cauchy-Riemann equations satisfied by J-holomorphic curves.
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The following calculations are analogous to (44)–(47). The diagonalizing
matrix of eigenvectors, its inverse, and the diagonalization of J0 are:

P =

⎡
⎢⎢⎣

1 1 β2 β̄2
i −i −iβ2 iβ̄2
0 0 1 + β1 1 + β̄1
0 0 i− iβ1 −i+ iβ̄1

⎤
⎥⎥⎦ ,

P−1 =
1

2

⎡
⎢⎢⎢⎢⎣

1 −i β̄2(1−β1)
β1β̄1−1

iβ̄2(1+β1)

β1β̄1−1

1 i β2(1−β̄1)
β1β̄1−1

−iβ2(1+β̄1)
β1β̄1−1

0 0 β̄1−1
β1β̄1−1

i(1+β̄1)

β1β̄1−1

0 0 β1−1
β1β̄1−1

−i(1+β1)
β1β̄1−1

⎤
⎥⎥⎥⎥⎦ ,

D =

⎡
⎢⎢⎣

−i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 i

⎤
⎥⎥⎦ .

If f : D1 → R
4, f(x, y) = (f 1, f 2, f 3, f 4), is the coordinate representation as

in (40) of a J-holomorphic curve in a neighborhood of �0 ∈ R4 where J0 has
the form (61), (62), then from

df

dy
= J0(f(x, y))

df

dx
= PDP−1 df

dx
,

this equality of vectors follows:

P ·D · P−1

⎡
⎢⎢⎣
f 1
x

f 2
x

f 3
x

f 4
x

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
f 1
y

f 2
y

f 3
y

f 4
y

⎤
⎥⎥⎦

⎡
⎢⎢⎣

−i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 i

⎤
⎥⎥⎦P−1

⎡
⎢⎢⎣
f 1
x

f 2
x

f 3
x

f 4
x

⎤
⎥⎥⎦ = P−1

⎡
⎢⎢⎣
f 1
y

f 2
y

f 3
y

f 4
y

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

−if 1
x − f 2

x − i β̄2(1−β1)
β1β̄1−1

f 3
x +

β̄2(1+β1)

β1β̄1−1
f 4
x

if 1
x − f 2

x + iβ2(1−β̄1)
β1β̄1−1

f 3
x +

β2(1+β̄1)

β1β̄1−1
f 4
x

−i β̄1−1
β1β̄1−1

f 3
x +

1+β̄1
β1β̄1−1

f 4
x

i β1−1
β1β̄1−1

f 3
x +

1+β1
β1β̄1−1

f 4
x

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
f 1
y − if 2

y +
β̄2(1−β1)
β1β̄1−1

f 3
y + i β̄2(1+β1)

β1β̄1−1
f 4
y

f 1
y + if 2

y +
β2(1−β̄1)
β1β̄1−1

f 3
y − iβ2(1+β̄1)

β1β̄1−1
f 4
y

β̄1−1
β1β̄1−1

f 3
y + i 1+β̄1

β1β̄1−1
f 4
y

β1−1
β1β̄1−1

f 3
y − i 1+β1

β1β̄1−1
f 4
y

⎤
⎥⎥⎥⎥⎦ .
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The first and second entries on either side are complex conjugate, and the
third and fourth entries are also conjugate, so for |β1| �= 1, the above vector
equality is equivalent to a system of two complex equations (63), (64). In
analogy with (46), setting the fourth entries equal and multiplying by |β1|2−
1:

i(β1 − 1)f 3
x + (1 + β1)f

4
x = (β1 − 1)f 3

y − i(1 + β1)f
4
y (63)

=⇒ ∂

∂z̄
(f 3 + if 4) = β1(f(x, y)) · ∂

∂z
(f 3 + if 4).

Setting the second entries equal and multiplying by |β1|2 − 1:

(β1β̄1 − 1)(if 1
x − f 2

x)− iβ2(β̄1 − 1)f 3
x + β2(1 + β̄1)f

4
x

= (β1β̄1 − 1)(f 1
y + if 2

y )− β2(β̄1 − 1)f 3
y − iβ2(1 + β̄1)f

4
y (64)

=⇒ ∂

∂z̄
(f 1 + if 2) =

1

1− β1β̄1

(
−β2β̄1 ∂

∂z̄
(f 3 + if 4) + β2

∂

∂z
(f 3 + if 4)

)

= β2(f(x, y)) · ∂
∂z

(f 3 + if 4).

Equation (64) looks more complicated than (46) or (63), but there is a sig-
nificant simplification using (63) in the last step.

If a local parametric equation for a pseudoholomorphic curve is written
in complex form as

(ζ, w) = (u1(z), u2(z)) = (f 1 + if 2, f 3 + if 4),

then u2 satisfies a Beltrami equation

u2z̄ = β1(u
1(z), u2(z))u2z,

and u1 satisfies a nonlinear inhomogeneous Cauchy-Riemann equation

u1z̄ = β2(u
1(z), u2(z))u2z.

Example 7.3. By construction, (ζ, w) = (u1(z), c) is J-holomorphic for any
holomorphic u1 and constant c.
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Example 7.4. In the special case β1 ≡ 0, the matrix (61) for J0(ζ, w) is:

J0(ζ, w) =

⎡
⎢⎢⎣

0 −1 a1 a2
1 0 a2 −a1
0 0 0 −1
0 0 1 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 −1 2Im(β2) −2Re(β2)
1 0 −2Re(β2) −2Im(β2)
0 0 0 −1
0 0 1 0

⎤
⎥⎥⎦ .

The projection (ζ, w) �→ w is a pseudoholomorphic map Dρ ×Dρ → Dρ; the
fibers are the J-holomorphic curves (z, c) — ([ST1] §3) calls this the “pseudo-
holomorphically fibered” case. A curve of the form (ζ, w) = (u1(z), u2(z)) is
J-holomorphic if u2 is holomorphic, and u1z̄ = β2(u

1(z), u2(z))u2z. In partic-
ular, a curve in the form of a graph over the w-axis, (ζ, w) = (u1(z), z), is
J-holomorphic if u1z̄ = β2(u

1(z), z).

8 Pointwise properties and relation to CR

singularities

Given a Cρ, ρ ≥ 1, map f : D1 → B as in Section 5.1, but not necessarily J-
holomorphic, we consider just the differential of f at the origin. The Jacobian
matrix df(0) is a real 2n× 2 matrix representation of a real linear map from
T0D1 → T�0B; both these tangent spaces have the standard CSOs Jstd.

Lemma 8.1. If df(0) is c-linear and f is singular at 0, then df(0) is the
zero matrix.

Proof. The definition of “f singular at 0” is that df(0) has rank < 2, so
Lemma 1.7 applies.

Definition 8.2. Given an almost complex Cr manifold M , r ≥ 1, with
arbitrary (C0) almost complex structure J , and an embedded two-dimensional
submanifold S ⊆M containing p ∈ S (so that the tangent plane TpS is well-
defined), the point p ∈ S is a “CR singular” point if the tangent plane TpS
is a J(p)-invariant subspace of TpM .

Lemma 8.3. If df(0) is c-linear and f is not singular at 0, then there is a
neighborhood U of 0 in D1 so that the image f(U) is an embedded real surface
in B with a CR singularity at �0.
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Proof. The definition of “not singular at 0” is that df(0) has maximum rank,
2, so there is some neighborhood U of 0 in the domain so that the restriction
f : U → B is an embedding. The image of df(0) is a two-dimensional
subspace of T�0B, equal to the tangent space of the image of the embedding at
�0. If df(0) is c-linear, then the image subspace is invariant under Jstd in T�0B:
for df(0) : �u �→ �v in the image of df(0), Jstd ·�v = Jstd ·df(0) ·�u = df(0) ·Jstd ·�u
is also in the image of df(0).

The product space D1×B has an almost complex structure. The tangent
space at (z, �x) is a direct sum TzD1⊕T�xB, and the map (�a,�b) : (Jstd ·�a, JB(�x)·
�b) is a CSO. In matrix form, the product CSO is a (2 + 2n)× (2 + 2n) block
matrix, where Jstd and JB(�x) are the upper left and lower right blocks. At
(0,�0), the CSO is exactly the (2 + 2n)× (2 + 2n) standard CSO Jstd.

The following Lemma applies to both singular and non-singular maps f .

Lemma 8.4. If df(0) is c-linear, then the “graph” map

g : D1 → D1 × B : z �→ (z, f(z))

has the property that its image g(D1) is an embedded real surface with a CR
singularity at (0,�0).

Proof. The map g has the property that dg(0) = Id ⊕ df(0), that is, it is a
(2 + 2n) × 2 matrix with a 2 × 2 identity block stacked on top of a 2n × 2
df(0) block. It has rank 2 (from the Id block), and is c-linear with respect to
the 2× 2 and (2 + 2n)× (2 + 2n) standard CSOs, so Lemma 8.3 applies.

So, g is an embedding of the whole disk D1, not just a neighborhood near
0.

There is nothing special about the single point 0 in the above Lemmas.
If f is J-holomorphic (so that df is c-linear at every point), then the rank of
df will be 0 at every singular point of f , and centered at every non-singular
point, there is a small disk whose image under f is an embedded surface
which is CR singular at every point, so it could be called an embedded J-
holomorphic disk. The image of a graph g of a J-holomorphic map f is an
embedded J-holomorphic disk g(D1) in D1 ×B, even if f is singular.

Returning to the general case of Lemma 8.3, where f is not necessarily
J-holomorphic, but at the single point 0, the differential df(0) is c-linear
and f is non-singular at 0, we can put f into a “standard position” by a
linear coordinate change. In fact, corresponding to any Jstd-invariant real
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2-dimensional subspace S of T�0B, there is some c-linear transformation H
such that H maps S to the subspace

S1 = {(x1, y1, 0, . . . , 0)T} ⊆ R
2n.

In the case where S is the image of the c-linear map df(0), the composite map
H ◦ f has the property that d(H ◦ f) = H · df , and the image of d(H ◦ f)(0)
is the subspace S1. If B is a ball centered at �0, then H can be chosen to be
unitary, so the target space does not change: H(B) = B. H can even be
chosen so that d(H ◦ f) : d

dx
�→ d

dx1
.

Putting a non-singular map f with c-linear differential df(0) into stan-
dard position by a c-linear transformation H can also be thought of as just
choosing a different coordinate chart for the target M . Returning to the
global set-up (40), where f = φj ◦ u ◦ ψ−1

j′ , let φk = H ◦ φj . This will be a

coordinate chart for M in which the local representation φk ◦ u ◦ ψ−1
j′ of the

map u is in standard position, since H ◦f = H ◦ (φj ◦u◦ψ−1
j′ ) = φk ◦u◦ψ−1

j′ .
The local representation of the almost complex structure transforms from the
j chart to the k chart by (30), Jk = H · Jj ·H−1, where H = φk ◦ φ−1

j . Since
H is c-linear, the almost complex structure still satisfies the normalization
conditions: at the origin, H ·JB(0) ·H−1 = H ·Jstd ·H−1 = Jstd, and at every
point, H · JB ·H−1 + Jstd = H · (JB + Jstd) ·H−1 is invertible.

Continuing to consider a non-singular map f with c-linear differential
df(0), Lemma 8.3 applies, and we further may suppose f is in standard
position, so that the image of some small disk in the domain is an embedded
real surface whose tangent plane at �0 is the Jstd-invariant subspace S1. So,
there is some even smaller neighborhood of �0 in B, in which this surface
patch can be described as the graph of 2n− 2 real functions of class Cρ over
the tangent space. If R2n has coordinates x1, y1, x2, y2, . . . , xn, yn, then the
equations of the surface are, for x1, y1 near (0, 0):

x2 = H1(x1, y1)
...

yn = H2n−2(x1, y1),

where at the origin, the H� functions have value 0 and first derivatives 0.
If f is not just c-linear and non-singular at 0 but also J-holomorphic in

a neighborhood of 0, then there is a non-linear change of coordinates ([MS1]
Lemma 2.2.2) so that the image is just the z1-axis; in the above notation,
the graphing functions H� are all identically zero.
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In the case where df(0) is the zero matrix, the graph map g(z) = (z, f(z))
is already in standard position since it is non-singular and dg(0) has image
equal to T0D1 inside T0D1 ⊕ T�0B. In terms of the above construction, the
defining equations of the image of g are exactly the components of f :

x1 = f1(x, y)
...

yn = fn(x, y),

and again at the origin, the f� functions have value 0 and first derivatives 0.

Example 8.5. Consider a target space C3, which is R6 with the standard
almost complex structure Jstd. Let f : D1 → C3 be given by

f(z) = (z, z̄2, zz̄)T ,

or in terms of the real coordinates,

f(x, y) = (x, y, x2 − y2,−2xy, x2 + y2, 0)T .

Then

df =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0
0 1
2x −2y
−2y −2x
2x 2y
0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

so df(x, y) is c-linear only at the origin. The map f is an embedding in
standard position, and the image is totally real except for the CR singular
point at �0 where the surface is tangent to the z1-axis. This surface, the
algebraic normal form for non-degenerate CR singular surfaces in C3 as in
[C1], already happens to be given in the form of a graph and could be written
in terms of the target coordinates (z1, z2, z3) only: {z2 = z̄21 , z3 = z1z̄1}.
Example 8.6. The map f : D1 → C

2 given by f(z) = (z̄2, zz̄) is singular at
the origin, where its differential is the 4×2 zero matrix, and non-singular and
not c-linear at every other point. The map is two-to-one, branched at the
origin, since f(z) = f(−z). The image of f(x, y) = (x2−y2,−2xy, x2+y2, 0)
in the (x1, y1, x2, y2) coordinate system is exactly the circular cone {x21+y21 =
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x22, x2 ≥ 0} in the three-dimensional subspace {y2 = 0}, so the vertex of the
cone is the image of the singular point, and the smooth points of the cone are
totally real. The image of the graph g(z) = (z, f(z)) is exactly the embedded
surface with an isolated CR singularity in C3 from the previous Example.

Example 8.7. For f(z) = (z̄2, zz̄) as in Example 8.6, consider the composite
F (z) = f(z2), so the map F : D1 → C2 given by F (z) = (z̄4, z2z̄2) is singular
at the origin, where its differential is the 4× 2 zero matrix, and non-singular
and not c-linear at every other point. The map is four-to-one, branched at
the origin, since F (z) = F (−z) = F (iz) = F (−iz). The image of F (x, y) =
((x2−y2)2−4x2y2,−4xy(x2−y2), (x2+y2)2, 0) in the (x1, y1, x2, y2) coordinate
system is exactly the same circular cone {x21 + y21 = x22, x2 ≥ 0, y2 = 0} as
the image of f . The image of the graph G(z) = (z, F (z)) is the embedded
surface with an isolated CR singularity:

{(z1, z2, z3) : z2 = z̄41 , z3 = z21 z̄
2
1},

which has a higher order of contact with its complex tangent plane in C3

than the surface from Example 8.5.

The following result generalizes Lemma 8.1.

Lemma 8.8. Given a Cs almost complex structure JB on B and a Cs+1 map
f : D1 → B, if there is an integer k ≤ s+ 1 such that

∂Jf = o(|z|k−1)

and, for all � such that 0 ≤ � ≤ k,(
d

dx

)�
f(0) = �0,

then, for all (j,m) such that j +m ≤ k,(
d

dx

)j (
d

dy

)m
f(0) = �0.

Proof. From the definition (38) of ∂J and the calculation of (41), the first
hypothesis implies

∂Jf = df + JB · df · Jstd = o(|z|k−1)

=⇒ JB · df = df · Jstd + o(|z|k−1)

=⇒ df

dy
(z) = JB(f(z)) · df

dx
(z) + o(|z|k−1).
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The proof of the claim is by induction on m. The m = 0 case is exactly the
second hypothesis.

For the inductive step establishing the claim for m > 0, assume(
d

dx

)j (
d

dy

)�
f(0) = �0

for all (j, �) such that � < m and j + � ≤ k. Then, for any j such that
j +m ≤ k,(

d

dx

)j (
d

dy

)m
f =

(
d

dx

)j (
d

dy

)m−1
df

dy

=

(
d

dx

)j (
d

dy

)m−1(
JB(f(z)) · df

dx
+ o(|z|k−1)

)
.

The derivative of the second term is o(1), and the derivative of the first term,
when evaluated at 0, is �0 by the rules for derivatives, the existence of k − 1
derivatives of JB, and the inductive hypothesis.

Example 8.9. Consider, for k ≥ 1, the smooth map

f(x, y) = (yk, xyk−1, y2k, 0).

Then f : D1 → B, where B ⊆ C2 has the standard complex structure.
The image of f in the (x1, y1, x2, y2) coordinate system is contained in

(but not equal to) the parabolic cylinder {x2 = x21, y2 = 0} (not depending
on k).

Since f maps the real axis to the single point �0,
(
d
dx

)�
f(0) = �0 for all

� > 0, and the second hypothesis of Lemma 8.8 is satisfied for any k.
By construction, ( d

dy
)kf(0) �= �0 and ( d

dx
)( d
dy
)k−1f(0) �= �0. The conclusion

from Lemma 8.8 is that ∂f = o(|z|k−1) must be false.
The same conclusion can be drawn more directly, from expanding

f(z, z̄) =

((
z − z̄

2i

)k
+ i

(
z + z̄

2

)(
z − z̄

2i

)k−1

,

(
z − z̄

2i

)2k
)
,

so d
dz̄
f(z, z̄) involves terms of the form z̄k−1.

The graph g with image in C3, g(z) = (z, f(z, z̄)) maps the real axis to
(x, 0, 0), so the image of g coincides with the z1-axis along a real line, which
is the CR singular locus of the image.
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The Example shows that ∂f can vanish to arbitrarily high order, so f is
smooth but not holomorphic, f has high order of contact with a holomorphic
map, and f is constant on an entire segment in the domain, but f is not
constant.

The following result, used in [IR], generalizes Lemma 8.8.

Lemma 8.10. Given a Cs almost complex structure JB on B and Cs+1 maps
u, v : D1 → B, if there is an integer k ≤ s+ 1 such that

∂Ju = o(|z|k−1), ∂Jv = o(|z|k−1)

and, for all � such that 0 ≤ � ≤ k,(
d

dx

)�
u(0) =

(
d

dx

)�
v(0),

then, for all (j,m) such that j +m ≤ k,(
d

dx

)j (
d

dy

)m
u(0) =

(
d

dx

)j (
d

dy

)m
v(0).

Proof. As in the Proof of Lemma 8.8,

∂Ju = o(|z|k−1) =⇒ du

dy
(z) = JB(u(z)) · du

dx
(z) + o(|z|k−1),

∂Jv = o(|z|k−1) =⇒ dv

dy
(z) = JB(v(z)) · dv

dx
(z) + o(|z|k−1).

The proof of the claim is by induction on m. The m = 0 case is exactly the
second hypothesis.

For the inductive step establishing the claim for m > 0, assume(
d

dx

)j (
d

dy

)�
u(0) =

(
d

dx

)j (
d

dy

)�
v(0)

for all (j, �) such that � < m and j + � ≤ k. Then, for any j such that
j +m ≤ k,(

d

dx

)j (
d

dy

)m
u =

(
d

dx

)j (
d

dy

)m−1
du

dy

=

(
d

dx

)j (
d

dy

)m−1(
JB(u(z)) · du

dx
+ o(|z|k−1)

)
.
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The derivative of the second term is o(1). The derivative of the first term is,
by the chain rule and the product rule, assuming the existence of k−1 deriva-
tives of JB, a sum of (possibly repeated) terms of the form (JB)xαyβ(u(z)) ·
uxγyδ · · ·uxηyθ , with α+ β ≤ k− 1, and few enough derivatives uxγyδ , etc., to
satisfy the inductive hypothesis, so that when evaluated at 0, the derivative is
(JB)xαyβ(u(0))·uxγyδ(0) · · ·uxηyθ(0) = (JB)xαyβ(v(0))·vxγyδ(0) · · · vxηyθ(0).
Example 8.11. Consider, for k ≥ 1, the smooth maps

u(x, y) = (x+ yk, y + xyk−1, x+ y2k, y), v(x, y) = (x, y, x, y).

Then u, v : D1 → C2 and u = v+f where f is the smooth map from Example
8.9. The map v is just a holomorphic embedding of the disk into the line
z1 = z2, v(z) = (z, z), and u is a smooth but not holomorphic map, which is
an embedding near 0, satisfying the hypotheses of Lemma 8.10.

Note u(x, 0) = v(x, 0) for all x, so the maps coincide along the x-axis.

By construction,
(
d
dx

)�
u(0) =

(
d
dx

)�
v(0) for all �, but ( d

dy
)ku(0) �= �0 =

( d
dy
)kv(0) and ( d

dx
)( d
dy
)k−1u(0) �= �0 = ( d

dx
)( d
dy
)k−1v(0). The conclusion from

Lemma 8.10 is that ∂u = o(|z|k−1) must be false.
The same conclusion can be drawn more directly, from expanding

u(z, z̄) =

(
z +

(
z − z̄

2i

)k
+ i

(
z + z̄

2

)(
z − z̄

2i

)k−1

, z +

(
z − z̄

2i

)2k
)
,

so d
dz̄
u(z, z̄) involves terms of the form z̄k−1.

9 Finding J so that a surface is J-holomorphic

For JB as in Subsection 5.1, recall f : D1 → (B, JB) is JB-holomorphic if and
only if it satisfies Equation (43): ∂f = Q(f(z)) · ∂f , where Q is an a-linear
operator depending on the position �x ∈ B: Q(�x) = (JB(�x) + Jstd)

−1 · (Jstd −
JB(�x)).

We consider the following problem: Consider u : D1 → CN — is there
a continuous CSO J defined near �0 ∈ CN so that u is J-holomorphic? A
necessary condition is that u satisfies ∂u(z) = Q(z)∂u for z ∈ D1, where
Q is some continuous function from D1 to the space of a-linear operators on
CN , with Q(0) = 0.
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From the linear algebra in Section 1, the a-linearity of Q(z) is equivalent
to complex N ×N matrix representations B1(z) or B2(z), where

∂u(z) = B1(z)∂u = B2(z)∂u.

It is convenient to assume u(0) = 0, and that u is continuous on the
closed disk D1 and continuously differentiable on D1. It is key to the con-
struction to assume that u is one-to-one on D1. Then the image of u is the
compact, continuously embedded disk u(D1) ⊆ CN , and the inverse map
u−1 : u(D1) → D1 is automatically continuous.

Given u, one (not necessarily unique) way to find an a-linear operator
Q(z) with ∂u(z) = Q(z)∂u(z) is to construct the following N ×N complex
matrix, Q̃(z):

∂u =

⎡
⎢⎣
u1z̄
...
uNz̄

⎤
⎥⎦
N×1

=

⎡
⎢⎣
u1z̄
...
uNz̄

⎤
⎥⎦
N×1

[
u1z . . . u

N
z

]
1×N

|u1z|2 + · · ·+ |uNz |2

⎡
⎢⎣
u1z
...

uNz

⎤
⎥⎦
N×1

=
1

|u1z|2 + · · ·+ |uNz |2

⎡
⎢⎣
u1z̄u

1
z · · ·

...
· · · uNz̄ u

N
z

⎤
⎥⎦
N×N

⎡
⎢⎣
u1z
...

uNz

⎤
⎥⎦
N×1

= (Q̃(z) ◦ C)∂u.
Multiplying by Q̃ is c-linear; C is the a-linear complex conjugation as in
Example 1.12, Section 1. We now make some more assumptions — that
u has the properties that ∂u �= 0 for z �= 0, and that Q̃ as defined above
extends continuously to D1, including the origin, where Q̃(0) = 0. The
complex entries of Q̃N×N (and also the real entries of the real 2N × 2N
representation) are all bounded by ‖∂u‖/‖∂u‖. For example, if u is Jstd-
holomorphic and non-constant, then Q̃ ≡ 0.

Using the assumption that u is one-to-one,

∂u = (Q̃(u−1(u(z))) ◦ C)∂u
will match Equation (43) if, for �x = u(z),

Q̃(u−1(�x)) ◦ C = (JB(�x) + Jstd)
−1 · (Jstd − JB(�x)).

Using the inverse formula (2), if A = Q̃(u−1(�x)) ◦ C is small enough so that
Id+A is invertible (which holds for �x = u(z) sufficiently close to �0, and which

65



can be assumed to hold for all z ∈ D1 by re-scaling exactly as in Section 5.3),
then, for each �x, the real 2N × 2N operator J(�x) is a CSO so that u and J
satisfy (43):

J(�x) =
(
Id+ Q̃(u−1(�x)) ◦ C

)
◦ Jstd ◦

(
Id+ Q̃(u−1(�x)) ◦ C

)−1

.

As a function of �x ∈ u(D1), J is continuous, and J(�0) = Jstd. By point-
set topology, the continuous function Q̃ ◦ u−1 extends from the closed set
u(D1) ⊆ CN to a continuous function CN → Homa(C

N ,CN), and J(�x) also
extends from the closed set u(D1) ⊆ C

N to a continuous almost complex
structure on all of CN . The conclusion is that u is J-holomorphic with
respect to this continuous extension.

Pointwise estimates for Q̃ and J are related to re-scaling as in Section 5.3.
However, any stronger estimate for J , for example, of the form ‖J(�x)−Jstd‖ ≤
C1‖�x‖α, for α > 0, would require an estimate of a similar form on Q̃ ◦ u−1,

‖(Q̃ ◦ u−1)(�x)‖ ≤ C2‖�x‖α, (65)

measured at points �x = u(z) ∈ u(D1), or equivalently, as a function of z:

‖Q̃(z)‖ = ‖Q̃(u−1(u(z)))‖ ≤ C2‖u(z)‖α.
The composition with the inverse u−1 is a big loss in (65); even if u is smooth,
u−1 is continuous but fast-growing, and not necessarily differentiable. The
continuous extension of the composite Q̃ ◦ u−1 might extend to something
α-Hölder continuous, or differentiable, at the origin, but would be hard to
estimate without an explicit formula for u.

Example 9.1. In the Example from [CP1], u is smooth and vanishing to
infinite order, and Q̃(z) also vanishes to infinite order, where ‖Q̃(z)‖ is com-
parable to ‖∂u‖/‖∂u‖, but

‖Q̃(z)‖
‖u(z)‖α ≈ ‖∂u‖

‖u(z)‖α‖∂u‖
is unbounded as z → 0, for any α > 0. (We did not find any other examples

of smooth functions u with bounded ‖∂u‖
‖u(z)‖α‖∂u‖ .)

The Example (u1(z), u2(z)) from [CP1] is also not one-to-one C → C2,
but it is non-zero except at z = 0, so it can be modified to

u(z) = (u1, u2, z · u1, z · u2)
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to get a smooth, one-to-one map C → C4.

∂u = (u11, u
2
z, u

1 + zu1z, u
2 + zu2z)

is still non-vanishing as a vector, and ‖∂u‖ ≥ |u1z| ≥ F (n)p(n)|z|p(n)−1 on
even annuli An.

∂u = (u1z̄, u
2
z̄, zu

1
z̄, zu

2
z̄)

satisfies ‖∂u‖ = (1 + |z|2)1/2‖∂(u1, u2)‖, so the estimates for ‖∂u‖/‖∂u‖ on
D1 are comparable to the estimates in [CP1], and the complex entries of Q̃4×4

are bounded by ‖∂u‖/‖∂u‖. As described above, this u is J-holomorphic
with respect to a continuous almost complex structure on C4, and still has
the property of having an isolated zero of infinite order.
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