Notes on Differential Topology and Almost
Complex Structures

Adam Coffman
Yifei Pan

September 2, 2014

1 Linear Algebra: Complex Structure Oper-
ators

Definition 1.1. Given a real vector space V', a real linear map J : V — V
such that J o J = —Idy is called a “complex structure operator,” or more

briefly a CSO.

Example 1.2. The “standard” CSO on the space R?" is the 2n x 2n block
matrix

Jstd =

Lemma 1.3. Given V', if J is a CSO, then:
o —J isalso a CSO onV;

e For any involution N : V. — V' commuting with J (i.e., N o N = Idy,
NoJ=JoN), the composite N o J is also a CSO on V.



e For any invertible real linear map A : U — V, the composite A~toJo A
1s a CSO on U.

Lemma 1.4. Given a vector space V with a CSO Jy, another vector space
U with a CSO Jy, and a real linear map A : U — V', the following are
equivalent:

o JyoA=AoJy;
e A+ JyoAoldy=0;

e For any real scalars a, b, (a-Idy +b-Jy)o A= Ao (a-Idy+0b-Jy).

A map A satisfying any of the above equivalent properties is called c-
linear with respect to Jy and Jy (or more briefly when clear, just c-linear).
A map is a-linear with respect to Jy and Jy if it is c-linear with respect to
the CSOs _JU and Jv.

Lemma 1.5. Given vector spaces U, V', with CSOs Jy, Jy as in the previous
Lemma, the space of linear maps Hom(U, V') admits a direct sum decompo-
sition

Hom(U, V) = Hom,(U, V) & Hom, (U, V).
Any A € Hom(U, V') can be written uniquely as a sum of a c-linear map and
an a-linear map. The projection operators are

1 1
PC(A):i(A—JVOAOJU), Pa(A):i(A‘i‘JVoAOJU),

so that A = P,(A) + P,(A), and P.(A) is c-linear.

Consider V' = R?" with the usual basis, and let J, be the subset of
GL(2n,R) consisting of all CSOs on V. By the Theorem on Jordan Canonical
Form over R, the smooth map S : GL(2n,R) — J : G — G~ 1oJy40G is onto.
(Lemma 1.11 gives a proof of this special case of JCF.) Let GL(n,C) denote
the subgroup of elements A € GL(2n,R) such that A is c-linear with respect
to Jaa: Ao Jgg = Jsq0 A. Then S(G) = S(A o G) for any A € GL(n,C),
so S induces a well-defined map from the coset space GL(2n,R)/GL(n,C)
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onto J,. Since G™1o J4q0G =H 'oJyoH = HoG ' € GL(n,C), the
induced map is also one-to-one. The conclusion is that 7, is diffeomorphic
to the homogeneous space GL(2n,R)/GL(n,C), which has real dimension
(2n)? — 2n* = 2n>.

Lemma 1.6. Given V and any two CSOs Jy, Jo, if J1 + Jo is invertible,
then (J; + Jo)~' o (Jy — Jo) is a-linear with respect to Jy, Jy and also with
respect to Jsy, Js.

Hint. First, for any two CSOs Ji, Jo, the map J; + Js is c-linear with respect
to J1 and JQI (Jl + <]2) o Jl = <]2 o} (Jl + Jg)
Consider

(Jl + Jg)il o} (Jl — Jg) o} J1 + Jl 9] (Jl + Jg)il o} (Jl — Jg)
and multiply by J; + J5 to get

(Jl — JQ) 9] Jl -+ (Jl + JQ) o} Jl e} (Jl + JQ)_l o} (Jl — Jg)
(Jl — Jg) o) Jl + JQ O (Jl + Jg) o (Jl + Jg)_l O (Jl — Jg)
= —Idv - JQ e} Jl + JQ o Jl + [dv = OEnd(V)'

The calculation showing that (J; 4+ J2) ™' o (J; — Jo) anticommutes with .J
is similar. |

For CSOs J, Jy on V = R?" such that J + Jp is invertible as in Lemma
1.6, the following identity is easily checked:

(T4 Jo) ™ o (T = Jo) = —5(Id = 3Joo (7= ) o Joo (T = Jo). (1)

In view of this identity (which shows the first-order approximation in J — Jy),
and also Lemma 1.6, if J; is fixed, then the mapping

J (J+Jo) o (J—Jo)

is a local diffeomorphism from a neighborhood of Jy in 7, (so that J — Jy is
small in some matrix norm) to a neighborhood of the origin of Hom,(V, V)
(the real vector space of endomorphisms of V' which are a-linear with respect
to Jy). This is consistent with the earlier calculation that the real dimension
is 5(2n)? = 2n? and the mapping gives an explicit local coordinate chart
around Jy in 7,.



It will be more convenient later to switch the sign and consider the trans-
formation

T A= (J+Jo) o (Jo—J). 2)

Then it is elementary ([Cy] §5.1, [R]) to check that this transformation has
inverse (for J near J, and A € Hom,(V, V) with Id + A invertible):

A J=(Id+ A)oJyo (Id+ A" (3)

Lemma 1.7. Given a 2n X 2 real matriz A, if A is c-linear with respect to
the standard 2 x 2 and 2n X 2n Jguq CSO matrices, and rank(A) < 2, then A
18 the zero matrix.

Proof. First consider the 2 x 2 case; a quick calculation shows

a b ' 0 -1\ [0 -1 [ a b

c d 1 0 L1 0 c d
implies b = —c and a = d, so det(A) = a® +b*. If A is singular, then A is the
2 x 2 zero matrix. In the 2n x 2 case, a similar calculation with Jy4 shows A

is a column of n 2 x 2 blocks of that form, so if the rank is less than 2, then
all the blocks must be zero. i

Example 1.8. Given endomorphisms J;, Jo on R?™ R?*" respectively, the

block matrix
(N B
=07 g

is a CSO on R?™*2" if and only if J; and J are both CSOs and Ba,,xa, 1S
a-linear, i.e., J; - B = —B - J;. The matrix J is similar to the block matrix

= (20)

via the relation J = G~!- J, - G, where

G _ ( [d2m><2m %B : JQ ) ’

0 Id2n><2n
G—l — [d2m><2m _%B : J2
0 Id2n><2n '



Example 1.9. Suppose J is a CSO of the form (4), and that J3 is a CSO
such that J + J3 is invertible. There exists G, from Example 1.8, such that
G- Jo- Gy = J, where .Jy is in the block form (5). From (3) with Jy = Js,

there exists
G Id 0
L0 (Id+ A

Jp 0 ) ) )
! ) - Gy = Jy. The composite transformation and its

so that G5 - ( 0 7
3

inverse are:

(6)

1p.
G = Gaen= (4 AT

0 (Id+A)™
a1 o (1 1B J,-(Id+ A)
3 0 Id+ A ’

A = (L+J3) e (J3—Jy),
Jp 0 1 Ji 0 _ J1 B _
(0 Jg)HG?’ (0 Jg)G?’_(o J2>_J’
(L, B (0
(B BY s e (B0,

It can be checked that doing the steps in the other order — (3) then (5) —
gives the same matrix Gj.

Lemma 1.10. Given V with CSO J and vy,...,0, € V, if
(U1, J(U1), U, J(Va), .., Vo1, J(Up_1), Tp)
1s a linearly independent list, then so is
(U, J(U1), U, J(2), .+, Vo1, J(V_1), Us, J(Tp)) -

Proof. Except for a re-ordering of the lists, this Lemma is recalled from ([Cs]

§5.1). i

Lemma 1.11. Givenn > 1, R** with CSO Japxon, there exists G € GL(n,R)
such that G- J -G~ = Jguq.

Proof. Tt J 4 Jgyq is invertible, then (3) can be used. The following method
is less canonical but works for any .J, not requiring that J + Jq is invertible.
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Pick any non-zero ) € R?"; then the pair (¢, J(¢7)) is an independent
list by Lemma 1.10. If this is a basis, stop; otherwise, it does not span R?",
so there is some ¥ not in span{wy, J(v1)}, so (v, J (¥ ), U2) is an independent
list, and by Lemma 1.10, (¢, J(¥), U2, J(U2)) is an independent list. This
can be continued, repeating the arbitrary choice of v and adding J(), until
the list spans R?" and is a basis (this gives a proof that the dimension must
be even). Let H be the 2n x 2n matrix formed by stacking the basis vectors
as columns:

H - [’171, J(ﬁl), ’172, J(ﬁg), FRPE ,’Unfl, J(ﬁn,ﬁ,ﬁn, J(’Un)] 5

so by construction, H has linearly independent columns and is invertible.
Let (€1,...,€,) be the standard basis of R**, so that H - €y,_; = ¥} and
H - éy = J(0,). Let G = H'; then the matrix G-J-G' =H*'-J-H
satisfies:
H'J-H-éyy = H'J 0 =éy,
H'YJ-H-éy = H'YJ - J-thy=—H"' 0, =—y_1.

The conclusion is that G- J - G = Jgq. [

Example 1.12. Let C denote the usual complex conjugation on C2?, so
C(z1,22) = (Z1,22). C is a-linear with respect to the standard CSO Jgy.
With respect to real coordinates z; = x1 + iy1, 20 = X9 + iys, C has 4 x 4
matrix representation

C:

Any a-linear function A : R* — R* is of the form A = B, o C = C o By, for
some c-linear functions By and Bs; specifically, one can choose B; = AoC' and

By = C' o A. If the c-linear function B; has matrix representation [ ?; ? }

with respect to complex coordinates z;, 2o on C2, and where o = a; +ias, etc.,
then the following real linear transformations have matrix representations:

a; —asp bl —bg ai a2 bl bQ

. (05} aq bQ bl o o az —ap bQ _bl

Bl N Ci —Co d1 —dg ’ A= Bl ol = C1 Co d1 dg
Co C1 dg d1 Cy —C d2 _dl



2 Differential Topology: Coordinate charts
and the tangent bundle

2.1 Manifolds

We begin by following some notation of [H]. Let M be aC" (r > 0, or r = o0,
or 7 = w) manifold of dimension n, so that M is covered by open sets with
coordinate charts ¢, : U; — R", and for two charts, ¢; o ng,;l cor(U;NUE) —
R™ is C".

If 0 <r < sand M is a C® manifold, then M is also a C" manifold,
trivially. There is a non-trivial converse (see Proposition 2.2 below). Given a
C® manifold M, some more coordinate charts can be added so that ¢; o ng,:l :
or(U; NU,) — R™ is C" but not C*; this changes M to a C" manifold which
is not a C* manifold. The topological (C°) structure is the same but the
differential structure has changed.

For a C" manifold M and another C” manifold M’ with charts vy : Vi —
R™ , consider a map u : M’ — M. Suppose that for every point x of M’, there
are some neighborhoods = € V, u(V) C U, so that pouop=" : (V) — R
is a C"" map. Then, for any coordinate charts, ¢, o u o @Z)k_,l is """ where
it is defined, where " = min{r,7’,r"}. This follows from the equality of
composites:

proucyyy,' = gro(¢ " og)ouo (Y orp)orhy,t = (grod™")o(douor)™)o(orhy').

So, the only coordinate-independent notion of a C"" map u : M’ — M is
where " < min{r, r'}.

Definition 2.1. Given a C" manifold M, a subset A C M is a C" k-submanifold
means: at each point x of A there exists a neighborhood U of x in M and
a coordinate chart ¢ : U — R™ such that U N A = ¢~ (¢(U) N RF), where
R* = {(x1,...,2%,0,...,0)} CR™.

A C" k-submanifold is a k-dimensional C" manifold with charts ¢|yna.
For 0 < r < s, it is possible that M is a C® manifold, and A is not a C*® k-
submanifold, but by adding more coordinate charts to make M a C" manifold,
Ais a C" k-submanifold of the C" manifold M.



Proposition 2.2. Given 1 <r < s < o0, let M be a C" manifold with open
covering U, and coordinate charts ¢. Let ¥ = {(Ug, ¢g)} be a mazimal atlas,
adding all possible open subsets of M and all maps ¢z which have C" overlaps
with the given charts on M. Then, there exists a subset of W which is a C*
differential structure for M.

Sketch of Proof. The construction is non-trivial ([H] §2.2) and uses the prop-
erty that the coordinate charts in the C" structure can be approximated by
C* charts in a compatible way. i

2.2 Bundles

Let B, E, and F be topological spaces. A function p : £ — B is a
fiber bundle means that for neighborhoods U, in B, the map p looks like
a projection Uy x F' — Uy. More precisely, there exists a covering of B
by open subsets Uy, so that for each k, there is a homeomorphism &, from
the open set p~'(U;,) C E to U, x F, satisfying 7 o & = p]p_l(Uk), where
7« Uy X F'— U}, is the usual projection onto the first factor.

It follows from the above definition that p is onto and continuous. The
inverse image of a point, p~!({z}), is a “fiber,” and as a subspace of E,
it is homeomorphic to F, as follows. The restriction of ® to p~*({z}) is
a continuous, one-to-one function, with image contained in U, x F. Given
y € pt({z}), Pu(y) satisfies m,(Pr(y)) = ply) = x, so Op(y) € {z} x F.
If w e {z} x F, then w = ®(y) for some y € p~'(U}), and z = m(w) =
m(Px(y)) = p(y), so y € p~'({x}). So, the image of &y - 1({z)) 18 exactly
{z} x F. The inverse of ®x| i, is equal to the restriction of ®; ! to the
subspace {z} x I, so @[, 1, has a continuous inverse. The Compos1te
of @pf,-1(,y) with the pl”OJeCthn 7p : {z} x F' — F is a homeomorphism,
which can be denoted:

TR o (cpk\ e ) =0, p'({a)) > F

A section of p : E — B is a continuous function s : B — E such that
pos is the identity map on B. Such a map could be called a “global” section
to distinguish from a “local” section s : V. — E with (p o s)(z) = z for
zeV CB.



2.3 Vector Bundles

Consider the special case of a fiber bundle where F' = R™, B is a C° manifold,
and B is covered by coordinate charts ¢ : U, — R" as in Subsection 2.1.
Then the topological space E is a C® manifold of dimension n+m. The open
sets p~1(Ug) are a covering of E by coordinate neighborhoods, with charts
(1, X Idgm) o @, : p~H(Uy) — R™™. The composites

(¢; X Idgm) 0 ®; 0 (¢ x Idgm) o Bp)~ -
((6r % Tdgn) 0 @) (p~ (U) Np~'(U;)) — R

are continuous.
A fiber bundle p : E — B as above is a vector bundle means that on each
intersection of charts in B, x € U; N Uy,

P, 0L R™ — R™
is linear (and invertible), and as a function of z,
gjx » U; N U, = GL(m,R) : gj(z) = P, 0 @,;i

is a continuous function. By construction, these transition functions satisfy
the cocycle identities: gpr(x) = Idgm and g;j(x)gjr(x) = gix(x). Here, F' =
R™ is not just an abstract vector space, it is the actual Cartesian m-space
of column m-vectors, with the standard basis €1, ..., €. g;jx(x) is not just
an abstract linear map, but a size m x m matrix where the entries are real
valued functions depending on x.

Conversely, given B, a coordinate chart covering Uy, and transition func-
tions g;r on U; N Uy satisfying the cocycle identities, a vector bundle p :
E — B can be constructed, using a quotient space. Before describing the
construction, we will need two point-set topological Lemmas.




Lemma 2.3. Given topological spaces 1l and Z, an onto function @ : 11 — FE,
and the quotient topology induced by Q) on E, suppose V' is an open subset of
E and [V — Z is any function. The following are equivalent:

(i) f is continuous;
(i) fo(Qlo-1v)) : Q"HV) — Z is continuous.

Further, if f : Q YV) — Z is any continuous function which is constant on
subsets of the form Q~*({v}) forv € V, then there exists a unique continuous

function f 'V — Z such that f o (Qlg-1v)) = f.

Proof. By definition of quotient topology, a set U is open in E iff Q7'(U) is
open in II. It follows that @ is continuous and Q~'(V) is open in II. For
(i) = (ii), the map in (i¢) is the composite of the continuous function f
with the restriction of the continuous function @ to the subspace Q~1(V).

For (i) = (i), let U be any open set in Z; we want to show f~(U)
is open in V. By hypothesis, (f o (Q|g-1(v))) ' (U) is open in Q~*(V). It
follows that (Q|g-1y) "' (f 1 (U)) = WNQ (V) for some W open in II, and
this set equals {x € Q7*(V) : (Qlo—101)(x) € f~1(U)}. If y is any element of
I with Q(y) € f~1(U) €V, then y € Q7*(V) and Q(y) = (Qlo-1(v))(y), so
the above expression simplifies to {z € I : Q(z) € f~YU)} = Q' (f~1(U)).
This is an open set in II, so by definition of quotient topology, f~'(U) is
open in £, and contained in V', so it is open in V.

Now suppose f is given, and for v € V, let flv) = f(x) for any x €
Q7 '({v}); f is well-defined by hypothesis. For z € Q~'(V), with Q(z) = v,
(f o (Qlo-1n))(x) = f(Q(x)) = f(v) = f(x), so if f is continuous, then f
is continuous by the previous paragraph. For uniqueness, if ho (Qlg-1v)) =
]io (Qlo—1vy) = f,let v € V with Q(z) = v, so h(v) = (ho (Qlo-1(v)))(x) =
f(x) = (fo(Qlorw))(x) = f(v). §

Lemma 2.4. Given topological spaces Z, 11, E, and a continuous map Q) :
IT — E, suppose there is an open covering U, of Z, and a collection of
functions fo : Uy — Il such that each Qo f, : U, — FE is continuous. If
Q(fa(2)) = Q(fs(2)) for all z € U, N Ug, then there is a continuous map
f:Z — E with Q(fu.(2)) = f(2) for all « and z € U,

Proof. The functions f, need not be continuous. Define f(2) = Q(f.(2))
for any a with z € U,; f is well-defined by hypothesis. Let V' be any open
set in E; then f~H(V) = Uf (V)N U,. Each set f~1(V) N U, is equal
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to{ze€Z:f(z)eVandzeU,} ={z€U,: f(z) eV} ={2€U,:
Q(fu(2)) € V} = (Qo fo) 1 (V), which is open in Z by hypothesis, so f~1(V)
i

is a union of open sets.

Let A be the index set {k} for the given covering of B by coordinate
charts Uy, with the discrete topology, and consider this disjoint union as a
topological space:

0= Uk x {k} xR™.
keA

-

Define a relation on the set of triples: (x,k,d) ~ (y,j,b) means: =z =y €
U; N Uy and gji(z) : @ — b. This is an equivalence relation by the cocycle
identities. The equivalence class of any point (z,k,ad) € U, x {k} x R™ is
denoted [z, k, @], and satisfies:

. x, 7, k(T a if © Uj U
[kava]:U{ {( ’ gé( )( ))} ifx;UngZ

jEA

Let E be the set of all equivalence classes. Define the onto function ) : II —
E : (z,k,d) — [z,k,d], and let E have the quotient topology as in Lemma
2.3. By definition, a set V is open in E if and only if Q=*(V) is open in II.
Fix k and a coordinate chart ¢ : U, — R™ for B. Then the set U, X
{k} x R™ is open in II. @ is one-to-one on this open set: if (y, k, l;) ~ (z,k,a)
then y = z and gpi(z) : @ — a. Q1 (Q(Uy x {k} x R™)) is the set of points

in IT that are equivalent to points in Uy, x {k} x R™:

Q QU x {k} x R™)) = | J(U; nT) x {j} x R™,

JEA

so it is a union of open sets and is open in II. By definition of quotient
topology, Q(Ux x {k} x R™) is open in E; FE is covered by open sets of this
form.

The main consequence of the quotient topology is that Lemma 2.3 gives
the following criterion for a function to be continuous on F. Let Z be any
topological space; a function f : E — Z is continuous if and only if there
is a continuous function f . II — Z such that f = f o). This f must
be constant on equivalence classes: if (z,k,ad) ~ (y, 7, 5) then f((a:, k,ad)) =

F(lsk, @) = f([9.5.5) = F((y,.5)), and for any such f, there is a unique
induced map f. So, to define a continuous function f: F — Z, it is enough
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to define a continuous f on all the open sets Uy, x {k} x R™ and then check
that for all j, if + € U;NUy, then f((x,k,@)) = f((x, 4, g;x(2)(@))). Then, for
any equivalence class [z, k,d] = Q((z, k,@)), f([z,k,d]) = f(Q((z, k,d))) =
f ((x, k,d)), independent of the choice of representative (x, k, @).

In the other direction, to define a continuous function f : Z7 — FE, it is
enough to cover Z by open sets V, and apply Lemma 2.4 to @ : Il — E. If
there is a collection of continuous functions f, : V, — II, then each @ o f, is
continuous, and f(z) = Q(f.(z)) is a well-defined continuous function Z — F
(not depending on «) if f,(z) ~ fz(z) for all z € V, N V. Equivalently, if
fa(2) = (f2(2).4, J2(2)) and f3(2) = (£5(2), k. f3(2), then fa(2) = f3(2) €
Uy (U and ga(f1(2)) : F2(2) o P2(2).

Define p : Il — B : (x k,d) — x. Then p is constant on equivalence
classes: if (z,k,@) ~ (y,j,b), then z = y so p((z, k,@)) = p((y,j, b)) =z =
y. Also, p is continuous on each subset Uy, x {k} x R™ so it induces the
continuous function p : £ — B : p(|z, k,d]) = x by Lemma 2.3.

To show that p : E — B defines a vector bundle, we need to define the
functions ®;, : p~'(Uy) — Up x R™. Lemma 2.3 applies to the open set
p Y (Uy) in E. The set Q' (p~*(Uy)) is equal to

(po Q)" (Uh) =p " (Ux) = | JWunU)) x {j} x R™ (8)
JEA

For (y, 7, I;) in this set, define

~ = -

D : (y,5,0) = (v, (g;x(y)) "1 (b)) € Up x R™,

then @, is continuous and if (y’,j’,g’) ~ (y, 7, E) for y € Uy, N U; N Uy, then
v =y, gy(y) : b=V, and

-

Sy, ) = () () = (v, v, (90:(8) " (975 (4)) (0)))
= (1 (g3(y) (1) = Du((y.4,0)).

So, there is an induced continuous map ®; : p~'(U) — U, x R™, with
D, 0 Qlog-1p-1(,)) = Pw, and for any x € U, NU;, and b € R™,

-

([, 5. 8]) = (z, (gsu(2) " (D)) (9)

In particular, for any € Uy and @ € R™, [z, k,d] € p~'(Uy), and @y ([x, k, d]) =
(x,d). By construction, (m o ®)([z, k a]) =z = (plp-1 ) [z, k, a)).
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To show that &, is a homeomorphism, we need a continuous inverse.
Define a collection of continuous functions indexed by j € A,

\If]k.(UkﬂU]) x R — (UkﬂUJ) X {j}XngH
(.0) — (y.4, (gx(v) (D).
Fory e U, NU; NUy,

Vinl(y,0) = (4.5 (950(9))(0)) .
(Y4 955 (w) (95 (1)) (D))
= (4.7 (g5 )(B) = V3l(y. b)),

so these functions satisfy QoW = QoW on (UyNU;NU; ) xR™, and the sets
(UxNU;) xR™ are an open cover of Uy xR™, so the function ¥y, : U, xR™ — E
defined by W (z,d) = Q(Vix((z,a))) = [z, k, d] is continuous by Lemma 2.4,
and a two-sided inverse of ®;. (We could have defined Wy, only and then
U, = @ o WUy, but the above application of Lemma 2.4 shows that ¥, can
be defined in a coordinate-independent way.) This is enough to show that
p: E — B is a fiber bundle with fiber R™.

To show that this construction (being given g;; and constructing p and
®,) gives a vector bundle with transition functions agreeing with the given
data, consider z € U; N Uy. Then p~'({z}) = {[a:,j,l;] b€ R™}, and
ch‘p—l({x}) 2p_1({33'}) — {33'} x R™, with

(@&l (ap) ([, ,8)) = (2, (gs(2)) 7 (D))
as in (9). So (mrm o (klp-1((zp)) ™" : R™ = p~'({z}) is defined by
[z, 5, (g;x(x))(a@)]. (10)
Again using (9), ®;1,-1(ap) ([, 5. 8]) = (2,5), s0
(TR 0 (@5]p-1(ap)) © (T © (Phlp-1¢gap)) ™ = gjx(@) : R™ = R™,

which shows p : E — B is a vector bundle with transition functions g;.

Returning to (7), the coordinate change functions on the manifold £ can
be expressed in terms of gj;. Consider an element x € U; N U; N Uy, and an
element [z,4,b] € p~*(U;) Np~'(Uy). Then, from (9),

-

(¢k X IdRm) o Py : [xvi7a = (¢k(x)v (gik(x))_l( )) € R™™ (11)
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has inverse

(¢, x Idgm) 0o @)~ R™™  — p~HU;) N p 1 (Uy)
(@,a@) — [0, (D)4, (gl (D)@ (12)

So, the composite in (7) maps (¥, a@) to:

(65 x Idgm) 0 ®; [ (1), 4, (guk(dy " (7)))(@)]
= (06 (), (955(05 " (9)) " (g (&5, ())(@)))
= (8508, )(@), (gjx(¢5 " (1)))(@)) - (13)

For an open set V' C B, a local section s : V — E can be defined using
Lemma 2.4. Using the coordinate charts Uy, C B, V has an open cover
VN U. On VNUy, denote sy, : VNU, — I by sp(x) = (si(2), si(x), 53 (2)),
which can be any function where Qos; : VNU, — E is continuous. Suppose
further that for x € VNUNUy, Q(sk(x)) = Q(sw(z)), which by construction
means s;.(z) = s (x) and (gsi,(x)s%(x)(s,ﬁ(m)))@k?’(x)) = 5,7(x). Then Lemma
2.4 defines a continuous function s : V' — FE at any point x € V N Uy by
s(x) = Q(sg(x)). The definition of section requires p(s(z)) = x for z € V,
and by construction of p, p(s(x)) = p([si(z), s2(z), 5> (x)]) = si(x) = .
So, on VN Uy, sp(x) = (z,s3(x), §3(x)), which can be replaced by s} (z) =
(@, K, (grs2 (2) (@ 1))(53(x))) ~ si(x) without changing s. It follows that if s}, :
V N U SR™ s any collection of continuous functions such that for x €
VU NUj, (9j6(2))(5k(x)) = §;(z), then the formula s(x) = [z, k, 5 ()]
defines a continuous local section s : V' — E.

2.4 Hom bundles

Let Hom(R™, R?) denote the real vector space of ¢ x m real matrices. For
invertible matrices A, and Byy,, the matrix product function Cyx,, —
B-C - A7 is an invertible linear transformation of Hom(R™, RY).

Now let B be a C° manifold, and suppose there are two vector bundles
on B using the same coordinate charts Uy (this can always be achieved by a
“refinement” of two open covers). First, p; : F; — B has transition functions
gjlk(x) : R™ — R™, and second, py : Ey — B has transition functions
g(r) « R — R% Let GL(g x m,R) denote the set of invertible linear

transformations of Hom(R™, R?), embedded as an open subset of R@™* via

14



matrix representation. Define a new function g?k :U;NUy = GL(g x m,R),
by the formula

g?k:(x) : Coxm — Q?k(x) -C- (gjl'k(x))_l‘ (14)

The collection of g3 () functions satisfies the cocycle identities (this is easily
checked) so they are transition functions for a new bundle with base B.
Let Hom(E}, Es) be the bundle with base B, fiber F' = Hom(R™,RY), and
transition functions g?k on the charts Uy, so Hom(E}, Es) can be constructed
as in Section 2.3, as a quotient of

I = J Uk x {k} x Hom(R™,RY).
keA

For V' C B, alocal section S : V' — Hom(E}, Es) is defined as a collection of
matrix valued functions on coordinate charts. If Si : VNU, — Hom(R™, R?)
is any collection of continuous functions such that for x € VN U, N Uj,

gi(@) - Si(@) - (gju(2)) ™" = Sj(), (15)
then a continuous local section S : V' — Hom(E, E») is defined on V N Uy
by S(z) = [z, k, S(z)].

Suppose s' is a local section V' — Fj, defined by s'(x) = [z, k, 5.(7)]

as in Section 2.3. Then S acts on s' as follows: define 52 : VN U, — RY

by multiplying matrix times column vector: §2(z) = Si(z) - si(z). If z €

V' N U, NUj, then, using (14):

() E2) = () (Sele) - 5h())
() Su(2) - (gh(2)) " gh(a) - Fh(a)
= S(a) - 5L(a) = 57(0).

This shows §,%(z) defines a local section V' — FEj, which can be denoted

s*(x) = S(x) - s'(2) = [w,k, 5 ()] = [, k, k() - 5 (2)]. (16)
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2.5 Maps of bundles

Given two fiber bundles p; : E; — Bi, ps : Fs — By as in Section 2.2, a
continuous map I' : By — FE, is a fiber map means: there exists a continuous
f: By — By such that ppo' = fop;. A fiber map satisfies p1(y) = =z =
p2(T(y)) = f(pi(y)) = f(x), so I maps the fiber p;'({z}) C E, to the fiber
py ({f(2)}) C Eo.

In the special case where E; is a vector bundle with fiber R™* and local
trivializations @}, and Fj is a vector bundle with fiber R™2 and local trivial-
izations 2, ' : F; — FE5 is a morphism of vector bundles means: T'is a fiber
map, and for each x € Uy € Bi, @2 ;) 0 Il -1,y 0 (P4 ,) 7t R™ — R™2
is linear. I' is a bimorphism means: the above linear map is invertible for
every x, and I' is an isomorphism means: I' is a bimorphism, By = B,, and
f : By — By is the identity map.

To see how this is related to the construction with transition functions,
we need another point-set topology lemma.

Lemma 2.5. Let 114, 11, E5 be topological spaces, let Q1 : Iy — E; be an
onto function so that Ey has the quotient topology, and let Qo : Iy — FE5 be
continuous. Suppose there is a covering of Ey by open sets V,,, and there is
a collection of functions fo : Q7 (Va) — Iy such that:

o Q20 fo: Q7Y (Vy) — By is continuous;

o forx € Qfl(Va), T € Qfl(vﬁ): if Q1(71) = Q1(x2) then Qa(fa(z1)) =
Q2(fp(22)).

Then, there exists a continuous function f : E1 — FEs such that for any
y e Van Vs, if zy € Q7' (Va), w2 € Q7' (Vp) satisfy Qi(x1) = Qu(x2) = v,
then f(y) = Q2(falz1)) = Qa(f5(22)).

Proof. By definition of quotient topology, Q;'(V,) is open, so the collec-
tion Q;'(V,) is an open covering of II;. For z € (Q7' (VL)) N (Q7'(Vs)),
Q2(fa(2)) = Q2(fs(2)) by hypothesis, so Lemma 2.4 applies with Z = II;.
There is a continuous map f : II; — Ey with Qa(fa(2)) = f(2).

Now, for any v € V, N Vs, if 2, € Q7'({v}) € Q7' (V,) and = €
Q' ({v}) € QT'(Vs), Qi(x1) = Qi(x2) = v, so by hypothesis,

f(xl) = Q2(fa(z1)) = Q2(fs(22)) = f($2)a
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showing f is constant on each set Q7'({v}). By Lemma 2.3 applied to
7 = Fjy, there is a continuous function f : £, — Eg such that f le = f. The
conclusion is that for any y € Vo N Vg, if 21 € Q7' (Va), 22 € Q1 (V) satisfy

Qi(z1) = Qi(22) = y, then f(y) = f(Qi(21)) = f(21) = Qa(falz1)) =
Qa(fs(z2)). i

Suppose B; and B are manifolds, with transition functions gjl-k on an
open cover U for By, and transition functions gza on an open cover V,, for
By, defining vector bundles p; : £} — B; and py : E5 — By as in Section 2.3.
We want to apply Lemma 2.5 to see what sort of local expressions define a
vector bundle morphism E; — Es.

E, is covered by open sets p; ' (Uy), and as in (8),

Q7' (P (Ux) = (pro @) (Ux) = | (U nTy) x {j} x R™

JEA

A function f;, : Q7 (pr"(Uy)) — Il can be defined piecewise, fi.((x,,b)) =
fri((z, 7, b)), on the pieces of the domain:

fri: U Up) x {j} xR™ = T = | J Vi x {a} x R™ (17)

aclAo

(ZL‘,],E) = (fk]((‘r .77 )) fk]((‘r .77 )) fkj((l‘ .77b)))

Q2 o fi is continuous if and only if every Q)2 o fi; is continuous. To sat-
isfy the other hypothesm of Lemma 2.5, consider (z1,j1,b1) € Q1 Ypr ' (UL))

and ($2,j2,b2) S Q1 (P (U3). Qi((z1,1.b1)) = Qi((x2,2,bs)) means
(331,]1751) ~1 (5752732,52) so 1 = xp € U, NU; NU;, NUj, and 9]1'23*1(951) :

b, — by. Functions 1 satisfying fk((xl,jl,l;l)) ~o fi((xQ,jg,l;Q)) when
(21, J1,b1) ~1 (22, jo, bo) Will satisfy:

flijl((xhjlvgl)) = filjg((xhj??ggl'gjl(‘rl)(gl)))
f (1,1, 00) = G- fi2 (21,2, gy, (21)(B1)))
G = )(51)))(flij1((xlaj1:gl)))'

gf;fjl (@1.51.61))F3, (@1,72,9, 5, (21

By Lemma 2.5, a collection f), satistying the above identities defines a contin-

uous map I El — E2 : [33' ja ] [fkj((x ja )) fkj((x ja )) fkj((x ]76))]
For this to be a fiber map, there must be some continuous function f :
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By — Bs so that for x € U, N Uj, po(D([z,,0])) = fri((z, 4, b)) matches
Fp1([z,5,0]) = f(z), so fr; depends only on z. By refining, if necessary,
the covering of B (using more and smaller open coordinate neighborhoods),
we can assume that for each k there is some o = f2(k) so that f(Uy) C V.
Then f3;((x, 7, b)) can be replaced by f2(k), and fk;’((x,j, b)) can be re-
(k:)f,fj((ac,j,g))(f(x))f_];?((x’j’ b)) without changing I'. It follows
that if f : By, — B, is a continuous map with f(Uy) € Vi), and there
are continuous functions ﬁ;’ (U NU;) x {7} x R™ — R™ such that for
reU,NUNU; NU,,,

placed by gf&

Fi (@,31,80)) = Gy e (F @) (@, G2 01, (@B, (18)
then the collection
fil(@3.8) = (@) 20, Fd((@,5.5)) (19)

-

= (J@). ). il kgl () 0))) (20)

defines a fiber map £y — E», for x € U,NUj, so by (18), all these expressions
are equal:

L([z.k,a]) = T([z, 7, 95,(2)(@)])

To check whether T" is a morphism of vector bundles, using Equations (9)
and (10), for z € U, N Uj,

(Pro)” :R™ = pri({2}) @ [2,5, (g5(2))(@)] = [, k, a].

This is mapped by I' to
[£@)., 20, Fid (. k,@)]
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and then by ®2 . : pgl({f(x)}) — R™ to
ga,fz(k)(f(flf))(ﬁi((% k. @) = o p20 (F(@) (Fi (2, , g (2)(@))))-

Since g}, (z) and g3, 2, (f(2)) are linear, I" will be a morphism of vector bun-

dles if for each fixed x, j, the transformation R™ — R™2 : b fk]??((x,j, b))

is linear. So, f;;’ can be represented as a mo X m; matrix with entries de-
pending on x, subject to the transformation rule (18). Considering (20), the
J index only appears at one point in the RHS, so the following notation can
be introduced: fk] ((z,7,0)) = F3(z) - G () - b, for a my x my matrix F3(z)
with entries depending continuously on x, indexed by k only. It follows that
F3((x,k,@)) = F2(x) - @ The transformation rule (18) applied to F?, after
a brief computation, becomes:

F () = ghagy e (f(2)) - F(2) - gjp (). (21)

The conclusion here is that a vector bundle morphism can be expressed

in the following simple form — a matrix representation. Given f : By — By,

and any collection of functions F(z) : Uy — Hom(R™ R™2) satisfying (21)
for x € U, N U;, the following formula defines a vector bundle morphism:

D([z, k. a)) = [f(x), f2(k), F(x) - a. (22)

To see the local coordinate expression for a morphism of vector bundles,

use coordinate charts ¢y, : Uy — R™ for 31 and ¢, : V, — R™ for By, with

f(Ux) C Viogry as above. Let py'(Uy,) Npy ' (U;) be an open set in Ey, so that
as in (7),

(5 x Idgmi) 0 @) (py ' (Ux) N py ' (U;)) C R™F™

is a coordinate neighborhood, where as in (12),

(¢ x Idgm ) o @p) " RMP™ 5 prl(

(v,a) [ v

-

QQ

)N py(Ur)
) J: (g5(¢5 " ()))(@)]
0), k d.

l

<

(
'@
This is mapped by I' to:

£ @), L0, Fid (67 ), k. @)

1
= [f(@;l(ﬁ)) F2R), i (031 (9). - (gu(63 1 ()))(@))
= [f(&r (@), f2(k), Fi(¢y, () -] ,
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and then, as in (11), by (¢ X Idgms) o ®? to:

(alF (62O, (gpa (£ (67 @) (671 @), k. @) (23)
= (ValF @ @) (92 e (G @G (@) (94l @)@
= (PO D)), 62 o (F(0 (@) - Fi (0 (@) - @)

A special case of a vector bundle morphism is that a section S : B —
Hom(F,, Ey) can define a morphism I'g : Ey — E5 by the formula, for x € Uy,

@1

[z, k,d] — [z, k, Sk(z) - d. (24)

More precisely, recall S is defined on U, by matrix valued functions S(x),

so for (x7]76) € Ql_l(pl_l(Uk)) g H17 let fk((xvjvc_i)) = fk]((x7]76)) -
(x,7,8;(z) - @) € Iy as in Lemma 2.5 and (17). Converting from j to k
coordinates using (15),

(.4, 8j(x) - @) ~ (2, k, gy;(z) - Sj(x) - @) = (2, k, Sp(x) - gy (x) - @),
so f(z) =z, f2(k) = k, and the expression

satisfy the transformation rule (18). This is a special case of the previous F}?
construction, with F(z) = Si(z), and where the transformation rules (15)
and (21) are equivalent. In the (7, @) local coordinates as in (23), the formula
for I'g is

(@,d@) = ((¢aodp)(®), g2:(05 (D)) - Siley (D)) - @) (25)
= ((¢a 0 & )(D), Sal0} (D)) - ghr(o (D)) - @) .

The action of S on a section s' : V — E1 as in (16) from Section 2.4 is
the same as composing I's : B} — E5 with st

S(z) - s'(x) = [z, k, Sp(x) - §,1€(x)] = (Igosh)(x).

Definition 2.6. Given a continuous function f : By — By and a vector
bundle E — By with fiber R", open cover Vj, C By, and transition functions
gjk, the open sets f~!(By) are an open cover of By, and the functions g;; o f
satisfy the cocycle identities on f~1(V;) N f~1(V4), so they define a bundle
with base By and fiber R™: the pullback bundle f*E — B;.
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There is a canonical bimorphism ¢ : f*E — E. Since f maps f~!(V4) to
Vi, define f? from (19) by f?(k) = k. Let F2(x), as in (22), be the constant
matrix /dg». Then, the transformation rule (21) is satisfied, so

[z, k. d) — [f(x), k,d]

is a well-defined morphism of vector bundles f*E — F.

Conversely, if ' : Ey — Fy is a morphism of the form [f(x), f2(k), F3(z) -
d@|, then there is a morphism v : E; — f*E, such that e oy = . As
previously assumed, f(Uy) C Vizqy. For x € Uy C f7'(V), define 7 :
[z, k@)~ [z, f2(k), F}(x) - @); for & € [~ (Vpyj), define € : [z, f2(5),0] —
[f(x), 2(5),b]. 7 is a well-defined morphism, satsifying the transformation
rule (21), using the transition functions gJQ-k o f from Definition 2.6. If " is a
bimorphism, then ~ is an isomorphism.

2.6 Regularity for bundles

Let B be a C" manifold as in Section 2.1, and let E be a vector bundle with
open cover U, C B as in Section 2.3. Expression (7) shows E' is a manifold
with at least C° regularity. If £ is a C* manifold, then by (13), ¢;0¢; ' is cs
with s’ > s, so B is a C*¥ manifold; if the given regularity of B is r < s, then
r can be replaced by s’ and then r > s. The remaining case is r > ¢’ > s, so
in either case, given E and B, we can assume 0 < s < r.

If E is a C* manifold, then by (13), every function g o¢, " : ¢p(U;NUL) —
GL(m,R) is C* with s’ > s. Conversely, if every g;z o ¢! is C* then E is a
C® manifold with s = min{r, s'}.

If £ and E, are two bundles with base B as in Section 2.4, and E; is a
C*' manifold and FEj is a C* manifold, then s; < r, so < r, every gjl.k o gb,?l
is C*1 with s/ > s;, and every gJQ.k o ¢t is C*2 with s > sy. By (14), every
g5 0 ¢t is C% with sy > min{s}, sh} > min{s;, so}, so Hom(E;, Ey) is a
cmin{s1s2} manifold.

Because a section is a continuous map s : B — F, the a priori regularity
is at most C®, as in Section 2.1. In general, a section s(x) = [z, k, Sp(x)] is
Cl,0<t<s<r,if on open sets Uy,

(¢or X Idgm) o ®posod, ' : op(Uy) — R™™

T o= (U507 1(9))),
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or equivalently sj o gb,;l ‘R > R™, is C", ¢ > t.

If Sis a C' section of Hom(FE}, E») and s' is a C** section of Fy, then by
(16), s2(z) = S(x) - s*(z) is a ™1} gection of Fs.

For two vector bundles E;, F5, so that E; is a C** manifold, By is a C™
manifold, Fs is a C*2 manifold, and Bs is a C"? manifold, consider a morphism
[': Ey — Ey with ppol’ = fop;. I' can be a C* map with s3 < min{sy, s},
and f can be a C" map with r3 < min{ry,rs}; there is nothing in the first
component of the local coordinate formula (23) that raises or lowers the
regularity of f, since ¢, o f o ¢,;1 is exactly the local coordinate formula for
f as a map B; — Bs. The expressions in the second component of (23)
are g2 gy 0 f o ot = (92 24y © ') © (Ym0 f o ¢p') and gl o ¢!, which
already appear in the local coordinate expressions for Fs, f, and E;, and
(7,@) — f[2((6:1(9), k,@)) = (F? o ¢ )(¥) - @ which is linear in @, but C*
in the ¢ coordinates.

If S is a C* section of Hom(Ey, Ey), so that Sy o ¢ ' is C on ¢y (Uy),
and S defines a morphism I's : Ey — F5 as in (24), then by (25), I's is a C'
map from the C*' manifold E; to the C*2 manifold Es.

For a C™ manifold By, vector bundle £ — B,, so that F is a C* manifold
and Bj is a C™ manifold, with 0 < s < ry, consider a C™ map f : By — By,
with r3 < min{ry,79}. Then the pullback bundle f*F, as in Definition 2.6,
with transition functions gz o f, is a cmindrsst manifold, and the canonical
bimorphism ¢ : f*E — E is a C™"{35} map.

2.7 The tangent bundle

Let M be a C" manifold with » > 1 and coordinate charts ¢, : Uy — R".
For z € U, N Uj, denote by Dy, (2)(¢; o ng,;l) the n x n Jacobian matrix of
first derivatives of ¢; o ¢;', evaluated at ¢p(x) € ¢x(Uy). The functions
9ix(®) = Dy (¢ 0 @1 ") satisfy the cocycle identities: gpx(z) = Idgn and
6ij(2)gjk(z) = gi(x), by the Chain Rule, so they define a vector bundle
TM — M with fiber R". The composites g o ¢,;1 are C"~! functions, so
TM is a C"~! manifold.

Elements of T'M are, as in Section 2.3, equivalence classes of ordered
triples, where z € Uy, C M, @ € R", and [z, k, @] is the equivalence class of
(x, k,d) under the relation

(,k,@) ~ (y,4,0) <= =y and Dy m)(d;0 95 )-@=b.  (26)
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We could call x a “base point” and @ a “tangent vector.” A vector field on M
(or an open subset) is a section of T'M, so it can be defined as in Section 2.3
by the formula v(x) = [z, k, Uk(x)], where ¥} : Uy — R™ is any collection of
functions subject to the coordinate change rule 7;(z) = Dy, ) (¢j00; ") - Tx(2)
on Uy NU;. A vector field is C*, 0 <t < r — 1, if on open sets Uy, ¥y, o ¢,;1
R" — R, is C*, ¢/ > t.

Let M’ be another C"" manifold with v > 1 and coordinate charts ) :
Vie — R™, as in Section 2.1. Suppose u : M’ — M is a C"" map, and there
is an expression f2(k’) so that u(Vi) € Upz2gy, as in (19).

A map from one tangent bundle to another, of the form I' : TM’ — T'M,
defined as in Section 2.5 by a formula of the form

P([, K, d)) = [u(2), f2(K), Fi(a') - a],

is well-defined on the whole spaceqif and only if it respects the equivalence
relation (26); if (2, k', @) ~ (2, j',b), then

(ula'), f2(K'), Fip(2') - @) ~ (ula'), f2(5), (') - D),

that is:
b = Dy, ovpt)-d,
Fi(@)-b = Fi(2)- Dwk,(x/)(l/)j/ ot)-d
= Dy ue) (@120 © S - (') -,

FI?’(x/> = (D<Z>f2 oy (u()) (¢f2 © ¢f2(k’))) F3’( ) Dwk/ (¢J/ O¢k/ )
= D¢f2(j/)(u(x’ (¢f2(k:’) o ¢;21(j/)) ' Fj?)/(l‘ ) Dwk/ (¢]' © ¢k/ ) ( )

The transformation rule (27) exactly matches rule (21).

Example 2.7. Given an open set U C R", the product U x R™ can be
considered a trivial vector bundle as follows. U admits an open covering by
one open set, itself, so A = {1}, with one coordinate chart Id : U — R",
giving U a C“ differential structure. Let there be one transition function
g11(x) = Id € Hom(R™,R™). The equivalence classes in Il = U x {1} x R™
are singletons, {(z,1,d)} = [z,1,d], so @ : Il — E is a homeomorphism,
FE is a vector bundle with projection p : £ — U and a homeomorphism
¢, : E - UxR"™: [z,1,d — (x,d). When m = n, this construction
matches the definition of tangent bundle, and there is no information lost by
identifying [z,1,d] € TU with (z,d@) € U x R". This TU is a C* manifold.
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For u : M' — M as in Section 2.1, denote by Dz(¢ o uo ™) the n x n/
Jacobian matrix of first derivatives, evaluated at # € R”. For a fixed map u,
and fixed point 2’ € M’, but different charts v;/, ¥y, ¢;, ¢, the Jacobians
Dy, (¢jouo w’,l) and Dy, ) (¢ 0 w0 ;') are related by the chain rule:

Dy, @) (¢ 0 wo )
= Dy, (o (gbkogb‘ oqﬁjouog/)j_,loqﬁj/oqﬁk_/l)
= Dy, @) (9r © 0;1) - Dy, (o) (95 0w 03 ) - Dy ary (1 0 93" (28)
Notation 2.8. Correspondlng to the previously considered map u : M’ —
M, with charts u(Vj) C Uy, abbreviate j = f2(j') and k = f*(K).
Then, in view of the above transformatlon rule (28) for Jacobians, the matrix
expression

Fii(2") = Dy, @ (@5 0 uo ;") = Dy, o) (Sp2(ry o w0 9 )

satisfies (27), so the map on trivializations defined by the formula:

(xlvjlvg) ( ( )ijw (¢Jouo¢ ) ) (29)

respects the equivalence relation (26), and the following differential map
du : TM'" — TM is a well-defined morphism of vector bundles:

du : [xlajlvg] = [u(:zc’),j, ij/(x')(¢j cuo w;’l) ) (;]

For a C"" map u : M’ — M, by (29), the morphism du is a C""~' map
from the C"”~! manifold TM’ to the C"~! manifold 7M. The composite of
vector bundle morphisms is another morphism, and the differential map of a
composite satisfies d(u o v) = (du) o (dv), by the chain rule.

Remark 2.9. The linear map Dy, (» (; ouory, 1), and therefore the differential
du, can be defined even if u is merely dlfferentlable, not necessarily C!.

Example 2.10. As a special case, consider the C" manifold M, and choose
just one of its coordinate charts, ¢, : U, — R™. Also, consider the open set
or(Ux) C R™ as a C¥ manifold with one coordinate chart Id : ¢x(Uy) — R™,
as in Example 2.7, so that the tangent bundle of ¢, (Uy) is trivial, with a
homeomorphism @, : T(¢r(Uy)) — ¢x(Ux) x R : [v,1,d] — (¥,d). The
differential of the map ¢y, : Uy — ¢y (Uy) is:

dy, : [p, k,0] = [61(p), 1, Dy (Id 0 &y, 0 6.") - b] = [0k (p), 1, ).

So, the differential map of the coordinate chart, in the k coordinates on the
open set Uy, is represented by the identity matrix on tangent vectors.
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Example 2.11. The composite ¢; o u o %—/1 from Notation 2.8, but now
considered as a map from the manifold ;(V;) € R™ (with trivial tangent
bundle as in Example 2.7) to the manifold ¢;(U;) (as in Example 2.10), has
differential map d(¢; ou o w]’,l) Ty (Vy) = T(9;(U;)) -

[(2), 1,8~ [6;(u(2)), 1, Dray, @y (Ido (¢;0uorp;') o (1)) - b]
= [6;(u(a"), 1, Dy, (b 0 wo ;") - b,

which is the same matrix and vector expression as (29), but with base points
P;(2"), ¢;(u(x")). For v € ¢ (Vy) and o’ = wj’,l(ﬁ) € Vjs, the above expres-
sion becomes:

[777 L, b] = [(¢] ocuo %71)(?7): 1, D5(¢j cuo w;l) ) b]v
Definition 2.12. A C! map u : M’ — M is an immersion means: du is
one-to-one on fibers; that is, D¢j,($/)(¢j R TRe @Z)j’,l) has rank n’ < n at every
point 2’ (the rank does not depend on coordinate charts).

Definition 2.13. A map u : M’ — M is an embedding means: w« is an
immersion and u is a homeomorphism onto its image u(M’).

Proposition 2.14. Given " > 1 and a C"" embedding v : M' — M, the
image u(M) is a C"" submanifold of M. Conversely, a C" submanifold of
M is the image of a C™" embedding.

Sketch of Proof. Assuming there is an embedding v : M’ — M, the existence
of submanifold charts in a C"" structure on M as in Definition 2.1 uses the

Implicit Function Theorem. The converse is that the inclusion map of a
submanifold is a C"" embedding. See ([H] Theorem 1.3.1.). |

Proposition 2.15. Ifu: M' — M is a C" embedding and a homeomorphism,
then the inverse u™! is also a C" embedding and a homeomorphism, by the
Inverse Function Theorem ([H]). I

Definition 2.16. Let A be a C" submanifold of M. A C* tubular neighborhood
of Ais an open set f(E) with M C f(E) C V, where E is a C* vector bundle
with base A and f : E — M is a C¥ embedding (so 0 < ¢ < s <r)such
that for x € A, f(]x, k,ﬁ]) = .
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Proposition 2.17. If 1 < r < oo and A is a C" submanifold of M, then
there exists a C" tubular neighborhood of A.

Sketch of Proof. The definition of k-submanifold (Definition 2.1) is that there
is a local version of a tubular neighborhood: at a point in A, there is a C" map
¢! from a neighborhood of the trivial bundle R¥ x R"~* to a neighborhood
of the point in M.

The claimed global existence, with s’ = s = r, is stated but not proved
as Exercise 4.6.1. of [H]. One construction sets the bundle £ from Definition
2.16 equal to the normal bundle of A ([H] §§4.2, 4.5.), a subbundle of TA —
however, T'A is a C"~! bundle, so s < r — 1 in this case. Some C" approxi-
mation to the embedding of the normal bundle must be used instead, as in

P]. |

3 Almost complex structures

3.1 Representation in local coordinates

Continuing with a C" manifold M, let dim M = 2n and r € [1, 00], so T'M is
a C"~! manifold; denote the tangent space at the point = by p~!(x) = T, M.
The bundle Hom(T'M,TM) (from Section 2.4) is also a C"~! manifold, and
a section J : M — Hom(T'M,TM) is defined by matrix valued functions on
open sets in M, J, : U, — Hom(R?", R*"), satisfying (15):

J(x) = D)k 0 ;") - Ji(x) - Dyyay(d5 0 &3
= (Dgy () (¢ 0 0p )"+ Ji(2) - D,y (5 0 & ). (30)

so J(z) = [z, k, J()] is well-defined. If Ji(x) is a CSO on R*" (J;,(z)- Ji(z) =
—Idg2n), then, because (30) is a similarity transformation, so is J;(x) for any
J (Lemma 1.3). For 0 < s <r —1, a C® section J : M — Hom(T'M,TM)
such that each matrix Ji(z) is a CSO is an “almost complex structure”
of regularity C* on M. As in (24), J also defines a C* homeomorphism
TM — TM:

[z, k,d] — [z, k, Jp(x) - d],

which satisfies the transformation rule (27), as shown by (30). This vector
bundle morphism can also be denoted J; the regularity condition is that each
Jro ¢t i R — Hom(R?" R?") is C*' with s’ > s.
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Example 3.1. For u : M’ — M as in Notation 2.8, suppose u is an invertible
C"" embedding with 0 < r” < min{r,7’}, and there are open covers so that
w(Vj) = U;. Let J be a C° almost complex structure on M, 0 < s <r — 1.
Using (29), the vector bundle morphism

(du)toJodu=du " oJodu:TM —TM
is defined in local coordinates by

(',4',b)
= (2,7, D, uteyy (g 0o u™ 0 97 1) - Ji(u(')) - Dy, ary(d5 0 wo by ) - b),

so the matrix expression
Jin(@") = (Dy,, @y (¢ 0wo ;1)) Ji(u(x')) - Dy, ary(d5 0 wo by )

is a CSO similar to J;(u(2')), and defines a C™"{*7"~1} almost complex struc-
ture J'(z') on M’.

Example 3.2. As a special case of Example 3.1, let u = ¢, " : ¢y (Uy) — Uy,
as in Example 2.10. An almost complex structure J on M restricts to an
almost complex structure on the open set Uy. Then

(d(o;") o Jod(gpt) « [0,1,0] = [7, 1, Ju(6; (7)) - 0] (31)

is an almost complex structure on ¢;(U,) C R?*", where the matrix-valued
function @ +— Ji(¢;, (7)) is the same as the local formula for J in the k
coordinate chart Uy and has the same C* regularity.

Example 3.3. Let M be a C" manifold with C® almost complex structure J,
0 < s <r—1, defined on charts ¢, : V; — R?*" by Ji(x). Consider an open
subset V of M, and a map ¢ : V — R?" so that ¢ is a homeomorphism onto
its image U = ¢(V), and ¢ o ¢; ' is C? for all k (with 1 < p, so, ¢ could be a
chart, added to the C" atlas of M, but we are not assuming any local formula
for J on this chart). U has an open cover Uy = U, and Uy = ¢(V NVj). The
coordinate chart on Uj is the inclusion ¢q : Uy — R?*. The tangent bundle
of U has a (global) trivialization [z,0,d] = (z,d) € U x R*  and local
trivializations with transition functions g;;(z) depending on the coordinate
charts for Uy,. U has an almost complex structure J' = dp o J o d(¢p™') as
in Example 3.1 with u = ¢~!. J' has some matrix representation in the
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neighborhood Uy with the globally trivial tangent bundle: to calculate it, we
will first find the matrix representation in the U, neighborhoods, and then
use formula (30) to convert from Uy coordinates to Uy coordinates.

Because U is an open subset of R?*". there are two different ways to
assign coordinate charts to the open sets U. It will turn out that the matrix
representation of J' in Uy does not depend on the method.

Method 1. Assign to Uy, the chart equal to the composite ¢y o ¢~ 1|y, :
U, — R?". The coordinate change functions on U from U; to Uy, are (¢, 0
¢ Ho(gpjop~ 1)t = ¢k0¢;1, which are C" functions, and from U, to Uy, are ¢0
¢t o (do|y,) ", which are C* functions (by hypothesis and Proposition 2.15),
so with these charts, U is a C™®{"*} manifold. The coordinate representation
for ¢ in the Vj,, Uy neighborhoods is (¢ 0 ¢~!) oo ¢, !, which is the identity
on ¢r(V NVy). By construction (similar to Example 2.10), in the Vj, and Uy
neighborhoods,

dé : [v,k,d] — [$(x), k.,
and similarly for d(¢~'), so the matrix representation of d¢ o J o d(¢~!) in

the Uy, neighborhood is [z, k, d] — [z, k, J(¢'(z)) - d]. Using (30) to convert
from Uy, coordinates to Uy coordinates, Ji,(¢~!(x)) transforms to

Jo(@) = (Da(dr0¢7")) ™"+ Je(¢7(2) - Daldr 0 ¢71). (32)

This matrix expression is a C™"{#r=1} function of x, and by (30), does not
depend on k (replacing k with j gives the same matrix).

Method 2. Assign to Uy the chart equal to the inclusion ¢o|y, : Uy — R?".
The coordinate change functions on U from U; to U}, are identity maps on UpN
Uj, so with these charts, U is a C* manifold. The coordinate representation
for ¢ in the Vj,, Uy, neighborhoods is ¢y, ogbogb];l = ngong,;l. By construction,
in the Vi and Uy neighborhoods,

d¢ : [.CI?, kaa] = [¢(£If),k,D¢(x)(¢O¢];1) : 6]7

-

d(¢7") : [p(x), k0] = [o,k,Du(ppod™) b
So, the matrix representation of d¢ o J o d(¢~!) in the Uy neighborhood is
(Da(dr0¢™)) ™" Ji(¢™(2)) - Dulgro ¢7").

Using (30) to convert from Uy coordinates to Uy coordinates, the matrix
representation does not change, so Jj(z) is exactly the same as (32).
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3.2 Pointwise normalization

Given any chart on M, ¢; : U; — R*", the matrix Jj(¢j_1(5)) is a CSO on
T 671 g)M, which can be temporarlly denoted JO. There exists some G €

GL(Qn R) such that J = G7! - Juq - G. We may consider a new chart on
M, ¢y : U, — R?™ where Uy, = U; and ¢, = G o ¢;. Then, ¢;*(0) = gbj_l((]),
and by the transformation rule (30),

Te(@:1(0) = Dy, iy (@50 di )™ Ji(651(0) - Dy, i1y (95 0 1)
= (Dg(G~ >>1 J? - Dg(G™)
= G- J G = Jg (33)

The conclusion is that at any point x € M, there is some chart ¢, on M
so that Ji(x), the matrix representation of J at the one point z in the k
coordinate system, is equal to Jgyq.

By the continuity of J, and considering the inverse formula appearing in
Equation (1), there is some possibly smaller neighborhood U, C Uy of = on
which Jy + Jgqg is invertible at every point of U,. The neighborhood U, has
coordinate chart ¢, equal to just the restriction of ¢y to Uy, so Jy(x) = Jgq
still works. Later, it will be convenient to assume that coordinate charts
in M are always chosen with these two properties (the normalization at the
point z, and the invertibility of the sum on the neighborhood).

There is an even stronger normalization possible in the n = 1 case.

Proposition 3.4 (Korn, Lichtenstein). If M is a C'™ real surface with
C* almost complex structure J, 0 < «, then around each point xq there is
some chart ¢, : U, — R? so that the matriz representation is constant:

Je(x) = Jgq for all x € Uy.

Sketch of Proof. See [Chern], [NN], Theorems II1.3.16-111.3.20 of [MP], pp
77, 78. The proof in [MS,] assumes J is C'*°. |
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4 Pseudoholomorphic maps

Given a C" manifold M with a C* (0 < s <r — 1) almost complex structure
J, and similarly (M’, J'), a C"" map u : M’ — M is pseudoholomorphic with
respect to J', J, if the map du : TM' — T M satisfies:

Jodu=duolJ.

Example 4.1. As a trivial example, if u is a diffeomorphism and M’ has the
induced almost complex structure (du)™' o J o du from Example 3.1, then u
is pseudoholomorphic.

Example 4.2. As even more trivial examples, the identity map v on (M, J)
is pseudoholomorphic, and any constant map M’ — M, so that du has matrix
representation = 0, is also pseudoholomorphic.

In terms of local charts as in Notation 2.8, the morphism duo.J’ is defined
by:

(«,7,8) = (@), j, Dy, (b5 0w v 1) - T (a') - b)
and the map J o du by:
(«,7,8) = (u(a), 4, J(u(@)) - Dy (@ ouody') - B),  (34)

so u is pseudoholomorphic if and only if there are pairs of charts covering M’
and M such that u(V}/) C Uj, on which the following matrix-valued functions
of 2/ are equal:

Dy, @ (¢j 0wo v t) - Ty (2') = Ji(u(x') - Dy, (@jouoyt).  (35)
For 7 € 1, (Vy) and 2’ = ¢3! (0) € Vjr, LHS of (35) is:
Di(¢j 0uowyt) - (Jj oty ')(D) (36)
and RHS is:
(Jj 005 ) ((¢5 0uo ;) (V) - Da(dj ouwoyt). (37)

The regularity of the LHS expression (36) is C*, A > min{r” — 1,5}, and
of the RHS (37) is C*, p > min{r” — 1, s}; the equality LHS=RHS does not
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immediately give any information about or restrictions on s, s’ or r”. The
composite J; ou o gzﬁj_,l from (37) is a local coordinate representation of the
composite J o u, which will appear in Section 6.2.

Considering Examples 2.11 and 3.2, the equality (35) is equivalent to each
composite map ¢, ouowj’,1 (Vi) = ¢,(U;) being pseudoholomorphic with
respect to the induced almost complex structures J, oqﬁj_/l on (V) C R¥™
and J; o gzﬁ;l on ¢;(U;) € R*". So, for maps u, the pseudoholomorphic
property can be checked locally by comparing the above matrix functions
depending on v. The local analysis or geometry of pseudoholomorphic maps
can be considered, without loss of generality, by only looking at a C"" function
from an open set in R?" to R?", its Jacobian matrix of first derivatives, and
C*® (respectively C*') matrices J () and J'(7).

Of course, Equation (35) is exactly the statement that the differential is
c-linear at each point with respect to the CSOs at that point. The equality
of matrices can be called the generalized Cauchy-Riemann equations. In
analogy with Lemmas 1.4, 1.5, we could define an operator

0s(u) = %(du—i— JoduolJ), (38)

(so, it projects du to its a-linear part) and then wu is pseudoholomorphic if
and only if 0;(u) = 0.

5 J-holomorphic curves

Notation 5.1. For r > 0 and 2y € C (or R?), let D(zg,r) denote the Eu-
clidean open disk in the plane with center zy and radius r, and as the special
case with zy = 0, abbreviate D(0,7) = D,.

The D, notation need not be confused with the already used Jacobian
determinant notation D.
The notation for a ball in higher dimensions is similar.

Notation 5.2. For r > 0 and z; in some normed vector space, let B(zo,)

denote the open ball with center z; and radius r. As special cases with zy = 0,
abbreviate B(0,7) = B, and B(0,1) = B.
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5.1 Local formulation

For the local analysis of pseudoholomorphic maps u : M’ — M near the
points 2’ — p = u(z’), in the case where M’ is a real surface, the following
set up is convenient.

M is a C" 2n-manifold, n > 1, r > 1, with a C® almost complex structure,
J, 0 <s <r—1. There is a coordinate chart U; (not depending on the map
w) so that ¢;(p) = 0, the matrix representation of .J in the local trivialization
satisfies J;(p) = Jaa (by Equation (33)), and J; + Jgq is invertible at every
point of U;. The coordinate chart image in R?" can be chosen to be the unit
ball, B = ¢;(U;), centered at 0 with radius 1.

M’ is a C" real surface, ' > 1, with C* almost complex structure J’,
0<s<r'—l,andu: M — MisCP, 1< p<min{r/,r}. By the continuity
of u, there is some neighborhood V' of z’ so that

u(V) € Uj, (39)

and by Proposition 3.4, there is a C**! differential structure on M’ (s' +1 <
'), and some chart Vj; C V so that ¢, : Vjy — Dy C C = R?, ¢ (') =0,
and the induced almost complex structure on the unit disk D, is the constant
matrix Jyq.

In these neighborhoods, the local geometry of a map u can be reduced to
the equivalent analysis of the C™™{#s"+1} map

f:¢jouo¢j71:D1—>B, (40)
where f(0) = 0 and B = ¢,(U;) is a neighborhood of 0 in R?" with a C*®

almost complex structure (on the trivialized tangent bundle B x R*"):

Jp : B — Hom(R*" R*™),  Jp(Z) = J;(¢7'(2))

J

(as in (31)) satisfying Jg(0) = Jyuq. Since the almost complex structure
on the domain is always the standard complex structure, we can refer to
f: Dy — B as a J-holomorphic map (or J-holomorphic curve) if it is pseu-
doholomorphic with respect to Jguq and Jp.

Let z = (z,y) be the coordinate on Dy, and (z, l;) the coordinates on the
(trivial) tangent bundle T'Dy, so the differential maps (34) have the following
form:

df o J': (2,0) +— (f(2),D.(f) - Jyaq - b)
Jpodf : (2,b) — (f(2),Je(f(2)) D.(f)-b),



and the generalized Cauchy-Riemann equations are, for f(z) = f(z,y) =

(fY ..., 27 (real column 2n-vector):
aft it aft dft
dx dy dx dy
) ) ) ) 0 —1
Ip(f(2)) - : : = : : '(1 0 )
arendfn afendfn
dx dy dx dy
at o _dft
dy dx
= L (41)
df2n . df2n
dy dx
This is equivalent to looking at just one column:
af _ df
J C— = 42
a3 = 0 (12)

since multiplying both sides by Jg(f(2)) gives the other column in the matrix
equation.

Notation 5.3. For f: R? — R f(z) = f(z,y) = (f,..., f*), the follow-
ing two derivative expressions are each a real column 2n-vector of functions
of z, y:

i 1 d d 1 df 1 df

a = — = — [ — — s [— —_ e — — — . JS C—,
/ dz 2 (dx td dy)f 2 dr 2 td dy
. df 1 d d. . 1 df 1 df
== Gt g =5 gptgJwa g

5
These identities follow as a consequence: L = (9+9)f, % = Juq-(0—0)f.
The generalized Cauchy-Riemann equations can then be re-expressed:

af

dy = JB(f(Z))%
Jaa- (0 —0)f = Jp(f(2)-(0+0)f
0 = (J(f(2) + Jaa)Of + (Jp(f(2)) = Jsta)Of
0 = 9f + (Jp(f(2) + Jaa)~" - (JB(f(2)) = Jsta) - Of
= Jf = Q(f(2))-9f, (43)
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where @Q : B — Hom, (R?**, R?") is a map whose definition does not depend
on f: for ¥ € B,

Q(f) = (JB(f) + Jstd)_1 ’ (Jstd - JB(f))‘

For each point ¥ € B, the matrix Q(Z) is well-defined by our earlier assump-
tion that B is chosen small enough so that Jg(Z) 4+ Jgq is invertible for all
Z € B, and then the matrix Q(Z) is a-linear with respect to Jgq, Jstq, as in
Equation (2) and Lemma 1.6. By construction, Q(0) is the zero matrix, and
@ is a C* map (same regularity as Jp).

Q(Z) is zero if and only if J5(Z) = Juq, and @ is identically zero if and
only if Jp(Z) is the constant CSO Jgyq, in which case the condition for J-
holomorphic becomes just df = 0, so f is holomorphic in the usual sense.
(Comment: The a-linear operator @ is denoted @ by [R], but otherwise our
sign conventions are the same.)

5.2 Complex diagonalization and the Cauchy-Riemann
equations

The eigenvalues of Jgq are &4, and for the 2x 2 case, the eigenvectors in C? are

l 1 } with eigenvalue —i, and l 1. } with eigenvalue i. Let Jouo = J(,y)

be a variable CSO, near Jg4. The eigenvalues are the same (Lemma 1.11), but
the eigenvectors may depend on the position, so suppose there are complex
valued functions vy (z,y) ~ 1, va(z,y) =~ 0 so that the —i eigenspace of J is
the complex line spanned by

1 1

v1(z,y) ; + va(x,y) il (44)

Because J is real, the i eigenspace is spanned by the conjugate vector,

1 1
UQ(xuy) i +U1(l‘,y) —4

V1 + U2 U1 + Ug 0
iUl — Z"UQ i@g — 7;?_)1 ’

This diagonalizes J over C: let Pyyo(z,y) = {

Pl 1 Uy — Uy —ily — it
2(v107 — valn) | V1 — U2 i(vg +wvg) |’
—1 0
J-P_P-{O J (45)
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Suppose f : R? = R? : (z,y) — (f(z,v), f*(z,y)) is pseudoholomorphic
with respect to Jgq and J. Then combining (42) with (45) gives:

B 17 B 1
e | | = | B ]
—i 0] L[] _ [/
ply i B L]
—1 0 ’171 — ?_)2 —2'171 - Z"UQ [ f; | o [ 171 - 7_)2 _Z"Dl - i172 fg}
0 i vp—vy d(vr+we) || 2] [ vi—ve (v +vy) ;
{ —i(0y =) fy — (0 + ) f2 ] _ [ (00— 02)fy —i(01 +02) f ]
i(vr —wva) fy — (v1 +v2) f7 | | (0 =) fy (o F o) fy |

The first and second entries are complex conjugate, so the above vector
equality is equivalent to setting the second entries equal and dividing by ¢:

(v — U2)f; +i(v1 + vz)f§ = —i(v; — U2)fy1 + (v1 + U2)fy2 (46)
v ((fe = f) +ilfy + 12) = va- ((fo + £) —ilf2 = £,))

() g i) = el )g (i) )

so (46) is equivalent to (47), a perturbation of the classical Cauchy-Riemann
equation % = 0. The complex conjugation on the RHS is analogous to the
anti-linearity of the operator @ from Section 5.1. Equation (47) and the

subspace (44) both depend only on the ratio 2.

5.3 The effect of re-scaling

Some results in analysis require an a priori estimate that Jg — Jgq is small
(possibly in some norm sense involving its derivatives) on the whole unit ball
B. The following construction will start with a given Jz(Z) on B as in the
previous Subsection 5.1, and modify it by “re-scaling” to get a new almost
complex structure on the same set B.

It is convenient to use some previously established notation and return
to the global setting of the almost complex manifold M (although M = B is
a suitable example). Recall the coordinate chart ¢; : U; — B, and consider
any number 0 < ¢t < 1. Let B; C B denote the ball centered at 0 with
radius ¢, and let % - Id be the scalar multiplication (or “dilatation”) operator
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on R?" which maps B, onto B. Let U, = gb;l(Bt) C U; € M, and define
o1, : Uy — B by (5 -1d) o ¢;.

By the transformation rule (30), the local representation J; of the almost
complex structure on the chart Uy is related to J; by a similarity transfor-
mation, but the conjugating matrix is % - Id which commutes with J;, so
Jk = Jj.

So, in the new k coordinate system, the original almost complex structure
on B, Jp(Z) = J;(¢; (), is replaced by

Tpa() = Ji(dy (7)) = Jj(¢; (¢ - ) = Jp(t - ),

that is, the new almost complex structure is related to the old one by re-
scaling the input vector ¥ € B by t. Since all this is just a matter of
different local coordinate systems on the same almost complex manifold M,
for the local analysis there is no loss of generality in replacing Jg(Z) with
Jp(Z) = Jp(t - Z), and no change in the C° regularity. The normalization
condition J B,t((j) = Jsq still holds, and also the condition that Jp; — Jgq is
invertible still holds.

We can think of Jp; as a parametrized family of almost complex struc-
tures on B, where Jp; = Jp, and using the continuity of Jp, there is a
pointwise limit: for all ¥ € B,

lim JB,t(f) = lim JB(t : f) = JB(O)

t—0t t—0t+

Jstda

so Jp: approaches the constant complex structure on B as t — 01, and we
can define Jp o = Jgq, even though the above coordinate system construction
does not apply when ¢ = 0.

Suppose there is some norm || || on the space of C* maps B — Hom(R?*", R?")
that has the property that if H(0) = 0, then |[H o (t - Id)|| < ¢ -t - ||H|| for
some ¢ and all ¢ such that 0 <t < ty, ¢ and ¢y depending on H. For example,
when s = 2, the usual C? norm has this property. Then, Jg — Jgq has the
property JB(6) — Jstq = 0 and if ||Jp — Jgq| is finite, then given any € > 0,
there is some t; so that ||Jp; — Jaal = [|Jp o (t - Id) — Jsall < € for all
0<t<ty.

The composite Q(Z) = (J(Z)+Jga) "+ (Jsta—J(Z)) is also just re-scaled:

Qi) = (Jpu(Z) + Jstd)_l (Jsta — Ipt(Z))
= (Jp(t-Z)+ Jaa)™' - (Jaa — J(t- 1)) = Q(t-T).  (48)
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If |Q|| < oo and € > 0 is given, then there is some ¢; so that ||Qo (¢t-Id)|| < e
for all 0 < t < ty.

The conclusion is that if an estimate of the form ||Q|| < € is ever required,
then the above construction shows that a “re-scaling” exists so that () can
be replaced by some (); which satisfies the estimate. If there is also a map
f : D1 — B under consideration, then the domain coordinates may also have
to be transformed, just by starting over at step (39) in the above construction
of local coordinates.

Lemma 5.4. For 0 <t <1, if f : Dy = B is Jgi-holomorphic, then
t-f:Dy— B s Jg-holomorphic.

Proof. The t = 0 case is trivial. Otherwise, there are two approaches to the
proof. The first is to use the notion that the property of being pseudoholo-
morphic is coordinate invariant; the composite ¢,;1 of: Dy = U, CMis
J-holomorphic (J being the global structure on M), so @-]ng]j o ¢I;1 of:
D, — B is Jg-holomorphic, and this composite equals ¢ - f.

Alternatively, we can just check the differential equation (42):

df af
dy Jpi(f(2)) I
=L~ s L

ait-f) d(t - f)

— L e sy 1

where the second line is multiplied by ¢ to get the last line, which is the
definition of ¢ - f being .Jz-holomorphic. i

5.4 Local Existence

We recall from [Z] a basic version of the Implicit Function Theorem.

Proposition 5.5. Given Banach spaces X, Y, and Z, a neighborhood U C X
of ug, a neighborhood V-CY of vy, and a C" map F : U xV — Z, r > 1, if
F(ug,v9) = 0 and D, F(ug,v) : Y — Z is invertible, then there exist €, > 0,
€2 >0, and a C" function 1 : B(ug, e1) — B(vy, €2) such that F(u,(u)) = 0.
i
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The notation D,F' refers to a partial derivative, the (possibly infinite-
dimensional) Jacobian linearization of F'(ug,:) : ({u=1uo} x V) — Z.

Corollary 5.6. For X, Y, Z, (ug,v9) € U XV, r, and F as in Proposition
5.5, if F(ug,v9) = 2o and DyF(ug,vg) : Y — Z is invertible, then there is
some €3 > 0, some €5 > 0, and some ¢4 > 0 so that B(zp,€e3) C F({ui} x
B(vg, €2)) for each uy € B(ug, €4).

Proof. Consider the function
G:ZxUxV —=Z:(z,u,v)— F(u,v) — 2.

It satisfies G(zo, ug, vo) = 0, it has the same C" regularity as F, and D,G(z0, ug, Vo) :
Y — Z (where zy and wy are both fixed) is equal to the invertible map
D, F(ug,vo) : Y — Z, so Proposition 5.5 applies to G. There exists some
¥ B((20,u0), €1) — B(vp, €2) such that G(z,u,(z,u)) = 0. There is some
product of balls, B(zg, €3) X B(ug, €4) C B((20, up), €1), and for (z,u) in this
set, F(u,y(z,u)) = 2. |

The next result proves the local existence theorem of Nijenhuis and Woolf,
following the sketch appearing in [S]. Some of the technical details are omit-
ted, as described in the remarks.

Theorem 5.7. Given r > 1, a C"' manifold M, and a C" almost complex
structure J, for any v € M there is some neighborhood U of 0 € T,M such
that for all X e U, there exists a J-holomorphic map f : Dy — M such that
£(0) = v and df(0) - £ = X.

Proof. This being a local result, we can replace M with the unit ball B,
and point v with 0, and then the C" structure is represented on B as Jg,
normalized and scaled as previously, so that .J 3(5) = Jsq and the C" norm
|Q|| is less than some sufficiently small €; > 0.

Define the following map:

P - (_1’ 1] % CT+1(D1,B) - CT+1(D1,]R2n)
t.f) = F=T{Qo(t-f)) 9f),

where T is the Cauchy-Green operator satisfying 9 o T' = Id.
(* Remark: The regularity of both the input and the output of 7" should
be checked. This may be where we need the a priori norm on Q7 *)
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¢ satisfies (0, f) = f, so ®(0, ) is the canonical embedding. The func-
tion ® is a C" map of Banach spaces in a neighborhood of the origin, and
this is enough for the Implicit Function Theorem to apply.

(* Remark: the C" property should be checked. This is one place where
r > 1is used — see [IR]. *)

The first conclusion from Corollary 5.6 is that there is some e3-neighborhood
of the origin, W C C""!(D;, R?") and some ¢, > 0 so that for all t € [0, 4],
the image of

®(t,:) : C""(Dy, B) — C" (D, R*™)

contains W.
Let h: R?*™ — C™"1(Dy,R*) denote the linear map v +— hy, where

hg:z=(v,y) =2z U=x-T+y- Jsq- . (49)

There is some ball B, C R** so that ¥ € B, = hy € W. In particular,
for any |t| < €4 and T € B,,, there exists f;; = (¢, hy) € C"*(Dy, B) such
that hy = ®(¢, fr.5). The second conclusion from Corollary 5.6 is that the
map v is C".

Applying 9 to both sides of hy = ®(t, f,5) gives

0=0fs—(Qo(t- fi5) Ofis

By Equations (43) and (48), this means f; 7 is pseudoholomorphic with re-
spect to Jp .

(* Remark: This is where it should be checked that the doT = Id identity
applies as claimed. *)

Define

@ . (—64,64) X B€5 — RQn

d
t,v) — d #(0) - —.
(t.9) = dfisl0)
In the case t = 0, ®(0, hy) = hy = fo5 = hy, 50 ©(0,7) = dfy5(0)- L =
.
©(0,:) is the identity map on B, and ¢ is C", being the composite of a
C" map with two linear maps: ¢ = E o o (Id X h), where E is the linear
map evaluating the derivative, g — dg(0) - % = Z—g(()). Corollary 5.6 applies
again.
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The conclusion is that there is some 0 < ty; < €4, some 0 < €5 < €5, and
some 0 < €7 so that the image of ¢(t,:) : B — R*" contains B, : for any
Y € B,,, there is a 7 € B, so that dfy,, v( ) =Y. Let U = ty-B., = Byy.e.,
so that then for any X in U, X=t,-Y for some Y € ©(to, Beg), and

. . d d
X =ty Y =to-dfy,50) - I d(to - fro,5)(0) - Iz

x
The map ty- fi,.5 is pseudoholomorphic with respect to Jz by Lemma 5.4. §

Another local existence theorem is for a curve connecting two points.
This proof follows [D].

Theorem 5.8. Given r > 1, a C™' manifold M, and a C" almost complex
structure J, for any v € M there is some neighborhood U of v such that for
all points p,q € U, there exists a J-holomorphic map f : D; — M such that

f(0)=pand f(3) =

Proof. Again it is enough to work locally, and show that there is some neigh-
borhood U of 0 € B so that for §,§ € U, there is a map f : D; — B with
£(0) = pand f(3) =

The first part of the Proof proceeds exactly as in the Proof of Theorem
5.7, including the construction of the same ®, ¢/, and the same neighborhood
W, just before Equation (49).

This time, define i : R* x R* — C"(Dy,R*™) : (p, §) — hjg, where

hpg:z=(x,y) = p+2z-((—D)=p+2x-(T— D)+ 2y Jsa- (T— D).

There is some ball B., C R?" so that p,§ € B., => h;; € W. In particular,
for any |t| < €, and p,§ € B.,, there exists f; ;7 = (¢, hyz) € C"(Dy, B)
such that hzz = O (¢, fi54)-

Again, hzs being holomorphic implies f; 57 is Jp ~holomorphic.

Define

¢ :(—€4,64) X B, x B, — R x R*™

5D = Feal0), furaly))

In the case t = 0, ®(0,hz5) = hzg = fozqg = hyg 50 ¢(0,7,¢) =
(fo400), foza(3)) = (. Q)



So, ¢(0,:,:) is the identity map on B, X B, and ¢ is C", being the
composite of a C" map with two linear maps: ¢ = EF ot o (Id x h), where F
is the linear map evaluating at a pair of points, g — (g(0), g(3)). Corollary
5.6 applies again.

The conclusion is that there is some 0 < ty < €4, some 0 < €5 < €5, and
some 0 < €7 so that the image of ¢(tg,:,:) : By X Beg — R?" x R*™ contains
B., x Be,: for any py, o € B..,, there are py, ¢ € B, so that fi, 5.5 (0) = po
and fy, 54(3) = Q. Let U = to - Be, = Byy.e;, s0 that then for any p, ¢ in U,
(7, q) = to - (Po, qo) for some (po, Go) = (%ﬁ, %q‘) € ¢(to, Beg, Beg), and

1

(ﬁv (T) = tlo- (ﬁov (jz)) = 1o - (fto,ﬁl,il(o)v fto,ﬁl,§1(§))
1
= ((to ’ ftoﬁl@l)(o)a (tO ’ ftoﬁl@l)(é))'

The map ¢y - fi, 5.4 is pseudoholomorphic with respect to Jp by Lemma
5.4. i

Yet another local existence theorem is for a curve with specified higher-
order derivatives. This proof follows [IR] Prop. 1.1, which claims further that
the regularity hypothesis on J can be improved to C"~!, by a different proof.

Theorem 5.9. Given 1 < k < r, and a C" almost complex structure J on
the ball B C R?*", for any T € B there is some neighborhood U of U and some
€ > 0 such that for all points p € U, and all Uy, Vs, ..., U, € Be, there exists
a J-holomorphic map f: Dy — M such that f(0) = § and (:£) f(0) = .

Proof. Again since it is enough to work locally, we can assume v = 0 € B, and
show that there is some neighborhood U of 0 € B so that for p, @, ..., 0 € U,
there is a map f : D1 — B with f(0) = g and ()" f(0) = .

The first part of the Proof proceeds exactly as in the Proof of Theorem
5.7, including the construction of the same ®, ¢, and the same neighborhood
W, just before Equation (49).

This time, define i : R?" x (R*")* — C™™(Dy,R*™) : (p, V) = h;y, where
V= (Ul,...,ﬁk) and

| —

ZZUZ.

k
hﬁy:z:(x,y)i—)ﬁ—i-z
=1

!

~
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There is some ball B, C R*" so that p,t,...,0x € B, = hzy € W.
In particular, for any |t| < €4 and p,0y,...,0 € Be,, there exists fiz;v =
(t, hyy) € C"TH(Dy, B) such that hyy = ®(t, fizv)-

Again, hzy being holomorphic implies f; v is Jp-holomorphic.

Define

@ (—€y,€4) X By, x (B,)F — R¥™ x (R*™)*
d

BV) o GO e fugw(0), o (o) v (0).

In the case t = 0, ®(0, hyyv) = hyy = fopv = hpv, so (0,0, V) =
o (), 2 foar (O),- - (2 for(0)) = (5 V).

So, (0, -, ) is the identity map on B, x (B, ), and ¢ is C", being the
composite of a C" map with two linear maps: ¢ = E o1 o (Id x h), where
E' is the linear map evaluating the map and its x derivatives at 0. Corollary
5.6 applies again.

The conclusion is that there is some 0 < ty < €4, some 0 < €5 < €5, and
some 0 < €7 so that the image of (tg,:,:) : Bey X (Be)* — R x (R?1)%k
contains B, X (B, )*: for any p° 4,°,...,0,° € B.,, there are p*, 0}, ..., 0} €
B, so that fi, ;11(0) = 5% and () iy 511(0) = 3,0 Let U = to- Be, =
Biy.er, S0 that then for any p, vy, ..., 0, in U, (9, V) =to-(p'°,9,°, ..., 9,°) for

some (p % 7% ...,00) = (%ﬁ, %171, e %Uk) € ¢(to, Beg, Begs - - - » B ), and
(7, V)
= to'(_‘O,Ulo,...,ﬁk())
d d.,
= tO'(fto,ﬁl,vl(o)a@fto,ﬁl,vl(o)a---a(@) Jro.1.v1(0))
d d

= ((to- fron,v1)(0), @(to o v1)0), ., (@)k(to *Joprv1)(0)).
The map %o - fi, 7 v is pseudoholomorphic with respect to Jp by Lemma
5.4. |
6 Normal form for coordinates near a disk

Recall Dy is the unit disk in C, with a C*> differentiable structure and the
constant, 2 x 2, C* almost complex structure Jgy. In this Section, an im-
portant property of D; is that it is a contractible topological space; by the
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Riemann Mapping Theorem, any contractible open subset of C is either C
or holomorphically equivalent to Dy, so such a set could replace D; without
changing the results.

Let M be a C" manifold with » > 1 and dim M = 2n, and let J be a C*
almost complex structure on M as in Section 3 with 0 < s <r — 1.

We will be interested in J-holomorphic maps u : D; — M, and our goal
in this Section is to follow a construction of [IR] (Proof of Theorem Al) and
[MS;] (Lemma 2.2.2), to find a convenient chart for a neighborhood of the
whole image u(D;) and a simple form for .J in that chart. So, this is not the
local problem as in Section 5, this is a global construction for “big” disks.
See also [R], [STy].

6.1 Differential topology: real coordinate charts

To start, we assume only that v is a C” map D; — M, which is also a (global)
embedding, so 1 < p < r. (For maps which are not embeddings, one could
restrict the domain to avoid singularities or self-intersections, but once u is
an embedding of a disk, we do not want to shrink the domain any further.)

Theorem 6.1. Given an embedding u : Dy — M as above, there exists a CP
differentiable structure on M containing (U, ¢), where U is a neighborhood
of the image u(D;), and ¢ : U — Dy x R*"=2 C R?" 4s an onto chart such
that (pou)(x,y) = (x,y,0,0,...,0) for all (z,y) € D;.

Proof. As a notational convenience, the map v : D; — M factors as a
composite ¢ oug, where ¢ : u(D;) — M is the inclusion, and uy : D1 — u(D;)
is a homeomorphism of the disk onto its image.

By Proposition 2.14, there is a C? differentiable structure on M so that
the image u(D;) is a C? 2-submanifold of M. ¢ is a C? inclusion, and uy is a
C? homeomorphism, which has a C? inverse by Proposition 2.15.

By Proposition 2.17, there exists a “tubular neighborhood” of u(D;) in
M, given by the following: there is a C* (2n—2)-bundle p : £ — u(D;), with
zero section Og : u(Dy) = E : x + [z, k,0], and a C? embedding f : E — M
such that U = f(F) is a neighborhood of u(D;) in M, and f o fg = .

The bundle £ — (D) pulls back (as in Definition 2.6) to ujE — D,
so that the canonical bimorphism ¢ : ujE — E is a C” homeomorphism.
Since D, is contractible, there exists a trivial vector bundle pp : D; x R?7—2
and an isomorphism of vector bundles 7 : D; x R*""2 — y$F which is a C?
homeomorphism ([H] Cor. 4.2.5.) and is the identity on the base D;. Denote
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the zero section of the trivial bundle 0p : D; — Dy x R*"™2 . (x,y) —
(x,y,0,0,...,0).

Dy xR¥2 Tt f S [
{ l GE/HP\
0p
Dy —2 (D)) =M
For U = f(E), let ¢ = (foeoT)™!, then ¢ : U — Dy x R*" 2 is the

claimed coordinate chart:

pou = 17 roetoftoroug

7 hoe ol oug

Op.
|

In preparation for another change of coordinates on R?", which fixes the
disk Dy x {0}, we will need the following consequence of the Inverse Function
Theorem, a special case of Exercise 1.8.14. of [GP].

Theorem 6.2. Foro > 1, let H : Dy xR?**=2 — R?" be a C° map such that at
every point (x,y,0), H(z,y,0) = (x,y,0) and D ,y.5H is nonsingular. Then

there is an open neighborhood U of Dy x {0} such that H|y is invertible with
a C? inverse.

Proof. Let (xo,10,0) be any element of D; x {0}. By the Inverse Function
Theorem, there is some neighborhood Upy, e of (20,%0,0) in Dy x R?=2
so that H(U(z,ye) 18 open in R* and H|U(m0,y0) t Uzoo) = H(Ulwg o)) 18
invertible with a C” inverse H(U(z.40)) = Ulwo.uo)-

Because H (x, yo, 5) = (0, Yo, 5), Utzo,y0) N H (Ulzg,y)) is an open neigh-
borhood of (x, yo, 6) in D; x R?"~2_and there is an open set Vio,y0) Such that
(z0,10,0) € Vizowo) € Viwowo) € Utowo) N H (Uzg,ye)) (Where the bar denotes
closure in R?*"). Denote

—1
o 0) = (<H|U(xo7yo)> )

so for v € V(Imyo)’ h(éto,yo)_gﬁ) € U(x07y0) and H(h(xoyyo)(ﬁ)) =v. Forv € V(Imyo)
of the form ¢ = (z,y,0), H(R(z,y0)(¥)) = U = H(7), and because H is
one-to-one on Uz yo)s Mwo,y0) (V) = T.

)

V(wo,yo)
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The collection of all open subsets V|, ,,) for every point (zg,yo) € Dy is
an open cover of D; X {6} By the paracompact property of Dy x {6}, this
cover has a locally finite open refinement: a collection of open sets Vj, indexed
by k, that covers D; x {6}, where each V} is contained in some Vi, ., and
every point (zg, Yo, 6) has some neighborhood @) so that () NV} is non-empty
for only finitely many j. For each k, we choose some (zg,yo) so that V} C
Vizowo) 20d Vi € Vigowo) S Ulgyo)s and denote this U, o) by Uy. Define
h, = h(:voyyo)’VTg Ve — Uk, so for v € Vk, hk(ﬁ) = h($07y0)(?7) c U(xo,yo) = U,
and H (hy (7)) = 0.

For indices 7 and k, define the following closed set:

Wi = [TV, A Ve (@) £ by @),

so Wi, CV;NV;, C VJ Consider (z,y, 6) € Vi and the following two cases.

Case 1. If (z,y,0) € Vi \ 'V}, then Vi \ V; is an open neighborhood of
(z,y,0) disjoint from Wjy.

Case 2. If (z,y,0) € V; NV, then H(z,y,0) = (2,y,0) € V, and
H(x,y,@) = (x,y,ﬁ) €V, C Uj so (x,y,@) € Vi N H(VyNU;). To show
that Vi, N H(V, N U;) is disjoint from Wj, suppose, toward a contradic-
tion, that there is some 7 € (V, N H(V, NU;)) N Wy From ¢ € Wy, any
open set containing ¥ must also contain some element ¥ € V; NV} with
hi(Z) # hi(Z). Since Vi, N H(V, NUj) is an open set containing v, there is
some such © € (V, N H(V,NU;)) N (V;NVy). So, ¥ = H(wW) for @ € V, NU;.
hi (%) € Uy, and H(hy(¥)) = £ = H(w), and since H is one-to-one on Uy,
hi(Z) = W. h;(Z) € U;, and H(h;(Z)) = & = H(w), and since H is one-to-one
on Uj, h;(Z) = w; however, this contradicts hy(Z) # h;(Z).

From Cases 1. and 2., we can conclude that every point (z,y, 6) e Vi is
in either the open set Vj \ V; or the open set Vi, N H(V;, NU;), and the union

Nij = (Vi \V;) U (Vi N H(V, N Tj))

is an open neighborhood of the set {(z,y, 6) € Vi }, disjoint from Wy,
Consider a point (z,y,0) € D; x {0}. The local finiteness property of the

cover {V;} is that there exists some neighborhood @ of (z,y,0) that has a

non-empty intersection with only finitely many V;. For each of the (finitely

many) k such that (z,y, 6) € Vi, QN Njj is an open neighborhood of (z, y, 6)

in V4, disjoint from Wy, f QNV; = @, then QN Vy C Vi \'V; C Ny, so

Q N Ny, = @ NV, and the intersection over all j, P, = ﬂQ N N, is the

J
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same as a finite intersection, and it is an open neighborhood of (z,y,0) in
Vi which is disjoint from Wy, for all j. Let P, be the intersection of the
finitely many P, so P, is an open neighborhood of (z, v, 6) contained in
every Vj neighborhood of (z, v, 6)

Let P be the union of all open sets P, for (z,y) € Dy; we will define
h: P — Dy x R 2 Given p € P, there is some (x,y) and some k so
that p € P,y € Pr € Vi, and P is contained in Ny, for all j. Define
h(p) = hi(p); by construction, there is no j such that h;(p) is defined but
not equal to hg(p). If there is some other (2/,4’) and j with g’ € Py C
P; C'Vj, then h(p) = h;(p) is equal to the previously calculated hy(p). For
any p € P, there is some (x,y) and some k so that p' € Py, C P, so
H(L(@) = H((P) = 5

Given (z,y) € D, there is some k so that P,,) € P, C Vj, and
WM Puy) = he(Pay), 50 h(Pay) is an open neighborhood of (z,y,0) in
Uy € Dy xR?"2. Let U be the union of the open sets h(P)), so Dy x {0} C
U= h(P)C Dy xR?* 2. For any ¥ € U, there is some (z,y) so that & = h(p)
for p' € Py, and there is some k so that & = hy(p) for p € Py, C P.
h(H(Z)) = h(H(hx(p))) = h(p) = hi(p) = ¥ The conclusion is that
h: P — U is the inverse of H|y : U — P. |

6.2 Linear algebra: normalizing the complex structure
operator

Now consider M with C® almost complex structure J as in Section 3, and a
map u : D; — M which is a J-holomorphic, C” embedding, and such that
Jow: Dy — Hom(TM, TM) is C".

Initially, M has some C" structure, s <r—1,1 < p <r,andt <r—1. Let
o1 : U, — R?" be a coordinate chart on M, where J has matrix representation
Jr : Uy — Hom(R?",R*"), so Jy o ¢, is C*. The map u restricts to u :
u™H(Uy) — Uy, so that ¢pou : u=(Uy) — R?*" is C*. The local coordinate
representation of J o u : u~!(Uy) — Hom(R?*,R?") is (Jy 0 ¢, ') o (¢p o u) =
Ji o u, which is C, ¢ > min{p, s}.

Let U! be the neighborhood of u(D;) from Theorem 6.1, and let ¢ : U' —
D; x R?"=2 be the C” chart with ¢ ou = p. As in Example 3.3, the matrix
representation of JJ on this chart is Jp : Dy xR**~% — Hom(R?*", R?"), defined
by (32) for # € Dy x R?"~2 by picking any k such that ¢=1(Z) € U N Uy;
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then
Jp(Z) = Da(dro¢™ ")+ Je(¢~ (X)) - Da(dp 0 ™)

does not depend on k. Jp has regularity ™™= on D; x R?>*~2, but for
Z of the form (z,y,0),

Ip(,y,0) = Jp(0p(z,y)) = Jp(¢(u(z,y)))
= (D5 (dro o)) Tk(ulz,y)) - D45 (0n 0 o),

which has regularity ¢™in{t»—1},

Now we use the J-holomorphic property of u. It follows from general
principles that its local representation ¢ou = p is pseudoholomorphic, but it
is worth checking the specifics in this case. To check 6p is pseudoholomorphic

with respect to Jyq on Dy and Jp = dgo Jod(¢d 1),

Jpodip = dpoJod(focoT)odlp=dpoJod(focoTolp)
dpoJodu=dpoduoJyg=d(pou)o Jys=dbp o Jgq.

In the (21, Y1, T2, Y2, - - -, Tn, Yn) coordinate system of D; x R*"~2 the differ-
ential of fp is given by

10
0 1
dop=1| 0 0 (50)

0

2nx2
The above equation then becomes
0 -1
1 0
Jpodfp =dbpo Jua= 0 0

0

2nx2

One can conclude that for points on the disk, ¥ = (z,9,0,...0) = 0p(z,y),
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the matrix representation of Jp(7) is

0 —1 =« *

1 0 * ... % ; B
Jo(x,y,0,...,00=1 0 0 = ... = :( Std J2). (51)

0 0 =«

2nXx2n

The lower right (2n — 2) x (2n — 2) block J; is a CSO on the tangent space
to the fiber R*"~2 = p;'(z,y) at . Both Bay(a,-9) and J, are functions of
(z,y). On the whole space D; x R?*~2 J(¥) has regularity C™{sr~1} and
may not have the above block form; however, the restriction Jp(z,y, 6) and
the blocks B(z,y) and J(z,y) may have some higher order of smoothness,
C! for t > min{s, p — 1}.

We now want to find matrices G so that G - Jp - G~! = Jq4, at all points
(x,y,ﬁ) on the disk. There are two methods; Method 1 gives a canonical
formula, which only applies under a certain condition, while Method 2 works
for any Jp but involves making some arbitrary choices.

Method 1. If Jp (2, y,0) has the property that Jo(z,y,0) + Jyq is invert-
ible, then from (6) in Example 1.9, there exists G(x,y) such that:

Id —3B(z,y)- Jo(z,y)
Glzy) = ( 0 (td+ gt ) (52)
Alz,y) = (L2, y) + Jaa) ™ - (Jaa — S, y)),

. . - Jog 0
Jp(x,y,0) — G(z,y) - Jp(z,y,0) - G(z,y) 12( Otd{]td)sttd‘ (53)

G(z,y) has the same C' regularity as Jp(z,y,0).

The invertibility of Jo(z,y, 6) + Jstq on the whole disk D, is a significant
assumption. Jp can be normalized to Jg4 at one point by a linear transfor-
mation of R?", as in Section 3.2, and then Jp ~ Jy4 near that point, but the
formula (52) may still not be applicable globally.

Method 2. The Proof of Lemma 1.11 can be modified to construct G(z, y),
depending on Jp(z,y,0). At each point (z,y,0) € D; x R¥~2 we want to

find a basis of T, , 5/(D1 x R**7?) = R*". In particular, we will construct

vector fields @, : (Dy x {0}) — R?". Let #(z,y,0) = &, the constant vector
in the z; direction; then Jp(z,y,0) - v} (z,y,0) = €, is also a constant vector
field (by the form of (51)). Let Uy(z,y,0) = €3 be a third constant vector
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field; then JD(x,y,ﬁ) - €3 is a C! vector expression, using entries of B and
Jy from (51), and the list <€1, &y, €3, Jp(x,y, 6) . 53) is independent at every

point by Lemma 1.10. If n = 2, we have a basis of R*. For n > 2, that
list gives four independent sections of the trivial bundle D; x R?"* — Dy,
spanning a C' sub-bundle. There exists a C' complementary sub-bundle ([H]
Theorem 4.2.2. — we can think of it as the normal bundle), which is trivial
([H] Cor. 4.2.5.), so there exists a non-vanishing C* section #s(z, y,0), such
that the five element list (¢, ..., 3) is independent at every point. (By an
approximation, 73 can be chosen to be a C*® section of D; x R?", but this
is not a significant improvement.) Then Jp(z,y,0) - ¥53(z,y,0), a C* vector
field, so that the six element list <171, - U3(z,y,0), Jp(x, y,0) - Ts(z, v, 6)) is
independent at every point by Lemma 1.10. This can be repeated — choosing
another independent vector field v}, and then adding Jp - U, until there are

2n vector fields forming a basis at every point. The construction of Lemma
1.11 still works: let

G(x,y) = [01, J(T1), T, J(T2), - - ., Opty J(Tpr), T, J(T,)]

Then G(z,y) has a block form as in (52) with C* entries, and satisfies (53).
Using G(x,y) defined by either Method 1 or Method 2, define:

Zy
n
H:D xR™?2 3R : 2= | : | = Gz,uy)- 7, (54)
‘/I/‘TL
Yn

a C' mapping which, by the form (52) of G(z,y), fixes Dy X {6} pointwise.
If t > 1 (a significant new assumption), then the Jacobian of H is DzH =

Lo G000y - S0y, O Sy - POy, Gy
aG 9G2.0n Ple 9Ga.2n
0 + e + -+ dif Yn 1 + y213 ) + 4 072412 Yn Ggg e
: Gss...
0 + aGQn 31‘ + -+ QG;::{% Yn e G2n,2n
In particular, D, , 5H = G(z1,y1), which is invertible, so Theorem 6.2

applies: there is an open neighborhood U? of D; x {0} such that H|y> :
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U? — H(U?) C R* is invertible with a C' inverse. If B = 0, H is a vector
bundle isomorphism of D; x R?"72 so U? can be taken to be D; x R?"~2,
instead of using Theorem 6.2.

As in Example 3.1, the almost complex structure Jp restricts to U?, and
induces an almost complex structure dH o Jp o d(H™') on H(U?), with reg-
ularity C™n{s»=1t=1} By construction, the matrix representation at points
(ZE,y,@) is G(ZL‘,y) ) JD(ZE,y,6) ’ (G(xvy))il = Jstd-

Let U = ¢~1(U?), a neighborhood of u(D;) in U*. The composite H o ¢ :
U — R?" has local coordinate representation H o ¢ o ¢, !, which is C™in{et},
The matrix representation of J in the H o ¢ chart is as in Example 3.3,
formula (32) for # € H(U?) C R*™:

J'(#) = (De(prod™ o H )™ Jp((Ho¢) (7)) Da(gppog o H ')
= Dy@H - Dy-1z)(dpoo™ )" Ju(o” ' (H (D)) (55)
Dur@(deo¢™!) - DurzmH)™
= Dy H - Jp(H'(Z)) - D1z H) ™,

and (55) is a C™n{sP=Lt=1} expression.
For a point on the image u(D,), © = H(¢(u(z,y))) = H(0p(z,y)) =
(x7 y7 6)7

J’(f,y, 6) - D(x,yﬁ)H ) (D(x,yﬁ) bk © ¢_1))_1 ’ Jk(gzﬁ_l((x,y, 6)))

= G(x,y) ’ JD(x,y,ﬁ) ) (G(xvy))_l = Jstd-

7 Normal coordinates in 4 dimensions

The goal of this Section is to find a coordinate chart where the matrix repre-
sentation has a normal form at every point, not just on the disk. In general,
this can only be achieved locally. The notion of “normal coordinates” is con-
sidered by [S], [STy], [T] — we work out some of the linear algebra details,
but do not prove the main analytical step (Proposition 7.1).
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7.1 The construction

We continue with the construction from Section 6, but in the special case
where n = dim M = 4 and everything is smooth: r = s =t = p = o0.
There is a J-holomorphic curve u : D; — M with an open neighborhood
u(D;) C U, and a coordinate chart H o ¢ : U — R* so that Hopou =0p :
(x,y) — (z,9,0,0). The matrix representation J’ of J in this chart satisfies,
for (z,y) € Dy,

0 -1 0 0
, {100 0
0 0 1 0

Let u(zy) € M be any point on the given J-holomorphic curve. Without loss
of generality (by re-parameterizing u), we can assume zq is the center 0 of
the disk D;.

The idea is that given a J-holomorphic curve, an implicit function the-
orem argument, similar to the local existence results in Section 5, shows
that there exists a (complex) one-parameter family of nearby curves. The
curves and the parameter can be used to define a chart with two complex
coordinates ¢ and w. For ¢ € D,, denote

6.:D,— D,xD,:(~— (C,c).
The following Proposition is adapted from Lemmas 5.4 and 5.5 of [T].

Proposition 7.1. Given J' on a neighborhood 0f5 in R* as above, there
exists some p > 0 and a diffeomorphism © : D, x D, — R* of the form

(¢ w) = (¢, w+7(¢, w))
such that:
* 0:(¢,0) =~ (¢,0);
e O:(0,w)— (0,w);
e for each constant w = ¢, the composite
©ob.:(— ((,c+7(¢0)) (56)

is pseudoholomorphic with respect to Jgq on D, and J'.
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For (o, wo) € D, X D,, the Jacobian of © is

I 0
D(Co,wo)@ - { T I+T }

for 2 x 2 blocks including the identity matrix I and 7} and 75 depending on
7. The Jacobian of 6. is as in (50), so writing J'(©({p,¢)) in terms of 2 x 2
blocks, the J'-holomorphic property from (56) gives

Dgo(@ 9] QC) . Jstd = J/ . DCO(@ 090)

I . J . Jstd+Bl B2 . [
T std Bs Jea + By T

[ Jstd } _ [ Jsta + B1 4+ By - T }

Ty - Jua Bs+ Jua Ty + By - Th (57)

The matrix representation of J’ using ©~! as a chart, as in Example 3.3,
formula (32), is the following CSO at (¢y,c) € D, x D,:

Jo(Co,¢) = (Do)t T (0, ) - (D ©)
B l] 0 }_1'[Jstd+31 B, }[I 0 ]
T I+T, Bs Jota + Ba T I+1T5
I 0
pri—
[ Jsta+ B1+ By - Th By (I +1Ty) ]

Bs+ Jga-Th+ By Ty (Jsta+ Ba) - (I + 1)

- l_([Jrj{Q)—l.Tl (I+(3Fz)_l]

Jsta By (I + 1)
. [ Ty Jstg (Jsta+ Ba) - (I +1T3) ] (58)
_ Jstd B2(I+T2)
B [0 U+nr%um+&—n.&»0+nﬂ (59)

where step (58) used (57). Expression (59) is also the matrix representation
of the original CSO J, using the chart ©~'o H o¢ on some small neighborhood
of u(zp). When ¢ =0, J'(©({y,0)) = Jgq and all the By blocks are 0, so

Jst 0
Jo (o, 0) = { od (I + o)~ Jaa - (I 4 Ta) ] ‘
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From ©(0,w) = w, Ty = 0 at ({y, wo) = (0,0), so Jo(0,0) = Jsa.
Formula (59) can be re-written

Jstd BS :| (60)

JO(Caw) = |: 0 Jstd+B6

where B;(¢,0) = 0 and Bg(0,0) = 0.

Remark 7.2. A alternative normalization as in [S], [STs] §4, using similar
methods, results in a block normal form

Jstd+B7 0
0 Jstd+BS 4><4’

where B7(¢,0) = 0 and Bg(0,0) = 0.

7.2 Entries in the matrix representation

Formula (60) can be written in terms of real entries, (depending on ¢, w):

0 —1 aq (05}
| Jsta Bs |10 as a4
oG w) = [ 0 Jua+ By ] “lo 0 b —1+b
0 0 1+b3 by
The property J? = —Idps constrains the entries:
(b2 — 1)&3 = &16162 — @26% - a1b1 — ag
ay = aiby —agby —ay
(1 —by)by = b+ by
b4 == _bl'

For (¢, w) near the origin, Jy is close to Jgq4, so the fractions in the following
expression are well-defined, with |be| < 1.

0 —1 aq a2
a1bibo—asb?—ai1bi—a
1 0 10102—a2b7—a1b1—a2 a1b2_a2b1_a1
_ bo—1
0 0 1 bt —b



This real matrix acts by matrix multiplication on column vectors; consider-
ing column vectors in C*, the eigenvalues are #i, and the —i eigenspace is
spanned by:

1 0 0 1
7 0 by — by 0 a; +i(arby — ashy —ay) | —i
o | 1| 25| 1| w21t 0
0 i —1 0

The +i eigenspace is spanned by the complex conjugates of these vectors.
The above set of —i eigenvectors can be re-written with complex coefficients

ﬁla BQ:

o 0 0 0
01 _ Y 2 — —_
T Spanc{8§’8w+618w+628g} (62)
 by—iby
as + i(albg — &le — &1)

Conversely, given complex coefficients 1, f2 in an expression of the form
(62) with |B;| < 1, the real entries ay, ag, b1, bs in a CSO of the form (61)

are uniquely determined by:

: - 2i(8152 + f2)

ay +1ay = —ﬁ1ﬁ__1— N

bl + ZbQ = M
BB —1

In terms of By, fs, the matrix (61) for Jo(¢, w) is:

1 2(Im(B2)Re(B1)—Im(B1)Re(B2)—Im(B2)) 2(Im(B2)Im(B1)+Re(B2)Re(B1)+Re(B2))

0 [B1]2—1 |B1]2—1
1 0 = 2(Im(B2)Im(B1)+Re(B2)Re(B1)—Re(B2))  2(Im(B2)Re(B1)—Im(B1)Re(B2)+Im(B2))
e S Re(ar))
m(5q 1 e(P1
- (1) o otnly)
1|7 —he(p1 m(pP1
0 L [ BiP-1

As in Section 5.2, the eigenvectors of the matrix Jy can be used to find
the nonlinear Cauchy-Riemann equations satisfied by J-holomorphic curves.
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The following calculations are analogous to (44)—(47). The diagonalizing
matrix of eigenvectors, its inverse, and the diagonalization of J; are:

1 1 B Ba
p — T —1 —262 2'62_
0 0 148 1+p |
0 0 i—1if —i+if
1 B2(1=p1)  iB2(1+51)
B1p1—1 B1B1—1
111 B2(1-B1)  —iB2(1+P1)
pl = = B1B1—1 B1B1-1 ’
210 0 Bﬁl 1 i(14+51)
T
1 —1
0 0 B1p1—-1 B1A1—1
- 0 0 0
0 2 0 0
b= 0 0 — 0
0 0 0 =

If f: Dy —RY f(z,y) = (fY, f% 3, f), is the coordinate representation as
in (40) of a J-holomorphic curve in a neighborhood of 0 € R* where Jy has
the form (61), (62), then from

df df df
— = Jo(f(2,y))— = PDP™'—,
this equality of vectors follows:
rorl T 1
T y
2 2
P-D.p! z = Y
4 7]
z y
— 0 0 0 % y;
O 1 O O 1 1
) P X = P Y
0 0 —2 0 ;’ 5’
0O 0 0 =1 i f4 ] ;
it B ] i B
- el 2 B2(1=P1) £3 | B2(14P1) r4 1 22 B2(1-P1) r3 ﬁz 1+p81)
ife = fat1 616131 f:g Bt fo I B—i_lﬂlﬂi; T f1+5 Bif 1
1 1 . 1
51/51 1]; f_l}_%l*l“}:x ﬁlﬂl 1f3 51&15*1]0?1
1 o 1
5151 lf 5151—1f¢r i 5151 1f 25151—1fy
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The first and second entries on either side are complex conjugate, and the
third and fourth entries are also conjugate, so for |51| # 1, the above vector
equality is equivalent to a system of two complex equations (63), (64). In
analogy with (46), setting the fourth entries equal and multiplying by |3]* —
1:

(=)o +A+80)f = (B—1f)—i(1+6)f, (63)
0 0
— (i) = Bf(wy) 5 (f +if*).
Setting the second entries equal and multiplying by |£;|* — 1:

(/31/?1 ~1(ify = f2) — iﬁz(_gl —1)f2+ 81+ @1)]0;3
= (BB = V(f, +if)) = Ba(Br = 1) f, — ifa(1 + Bl)f; (64)

0 1 . 2 o 1 - 0 3 4 9 3 , £4
— i) = o (BB i)+ g (i
0 :
= Baf(z,)) - - (F* +if%).
z
Equation (64) looks more complicated than (46) or (63), but there is a sig-
nificant simplification using (63) in the last step.

If a local parametric equation for a pseudoholomorphic curve is written
in complex form as

(Cw) = (u'(2),u*(2)) = (f' +if? 2 +if?),
then u? satisfies a Beltrami equation
ui = Biu(2), u?(2))u,

and u! satisfies a nonlinear inhomogeneous Cauchy-Riemann equation

uz = Ba(u’ (2),u*(2))ul.

Example 7.3. By construction, (¢,w) = (u'(z), ¢) is J-holomorphic for any
holomorphic u! and constant c.
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Example 7.4. In the special case 8; = 0, the matrix (61) for Jo({, w) is:

0 —1 ay asg 0 -1 QII’H(BQ) —QRQ(BQ)

{1 0 a —a; | |1 0 —2Re(f) —2Im(5,)
hGwl=149 0 o 1 =0 o 0 —1
00 1 0 0 0 1 0

The projection (¢,w) — w is a pseudoholomorphic map D, x D, — D,; the
fibers are the J-holomorphic curves (z, ¢) — ([ST;] §3) calls this the “pseudo-
holomorphically fibered” case. A curve of the form (¢, w) = (u'(2),u?(z)) is
J-holomorphic if u? is holomorphic, and ul = By(u'(2),u?(2))u2. In partic-
ular, a curve in the form of a graph over the w-axis, (¢,w) = (u'(z), 2), is
J-holomorphic if ul = By(u'(2), 2).

8 Pointwise properties and relation to CR
singularities

Given a C?, p > 1, map f : D; — B as in Section 5.1, but not necessarily .J-
holomorphic, we consider just the differential of f at the origin. The Jacobian
matrix df (0) is a real 2n x 2 matrix representation of a real linear map from
ToD1 — T5B; both these tangent spaces have the standard CSOs Jyyq.

Lemma 8.1. If df(0) is c-linear and f is singular at 0, then df(0) is the
zero matriz.

Proof. The definition of “f singular at 0”7 is that df(0) has rank < 2, so
Lemma 1.7 applies. i

Definition 8.2. Given an almost complex C" manifold M, r > 1, with
arbitrary (C°) almost complex structure J, and an embedded two-dimensional
submanifold S C M containing p € S (so that the tangent plane 7,5 is well-
defined), the point p € S is a “CR singular” point if the tangent plane 7,5
is a J(p)-invariant subspace of T,,M.

Lemma 8.3. If df(0) is c-linear and f is not singular at 0, then there is a
neighborhood U of 0 in Dy so that the image f(U) is an embedded real surface
in B with a CR singularity at 0.
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Proof. The definition of “not singular at 0” is that df (0) has maximum rank,
2, so there is some neighborhood U of 0 in the domain so that the restriction
f : U — B is an embedding. The image of df(0) is a two-dimensional
subspace of 155, equal to the tangent space of the image of the embedding at
0. If df (0) is c-linear, then the image subspace is invariant under Jy4 in T5B:
for df (0) : @ +— ¥ in the image of df (0), Jgq U = Jaq-df (0)- @ = df (0) - Jgq- @
is also in the image of df(0). |

The product space Dy x B has an almost complex structure. The tangent

-

space at (z, ¥) is a direct sum 7, D, &7z B, and the map (a,b) : (Jsq-d, Jp(Z)-
b) is a CSO. In matrix form, the product CSO is a (2 + 2n) x (24 2n) block
matrix, where Jgq and Jp(¥) are the upper left and lower right blocks. At
(0,0), the CSO is exactly the (24 2n) x (2 + 2n) standard CSO Jyq.

The following Lemma applies to both singular and non-singular maps f.

Lemma 8.4. If df(0) is c-linear, then the “graph” map
g:D1— Dy x B:zw—(z f(2))

has the property that its image g(D1) is an embedded real surface with a CR
singularity at (0, 6)

Proof. The map g has the property that dg(0) = Id @ df(0), that is, it is a
(24 2n) x 2 matrix with a 2 x 2 identity block stacked on top of a 2n x 2
df (0) block. It has rank 2 (from the Id block), and is c-linear with respect to
the 2 x 2 and (2 4+ 2n) x (2+ 2n) standard CSOs, so Lemma 8.3 applies. 1§

So, g is an embedding of the whole disk D;, not just a neighborhood near
0.

There is nothing special about the single point 0 in the above Lemmas.
If f is J-holomorphic (so that df is c-linear at every point), then the rank of
df will be 0 at every singular point of f, and centered at every non-singular
point, there is a small disk whose image under f is an embedded surface
which is CR singular at every point, so it could be called an embedded J-
holomorphic disk. The image of a graph g of a J-holomorphic map f is an
embedded J-holomorphic disk ¢g(D;) in Dy x B, even if f is singular.

Returning to the general case of Lemma 8.3, where f is not necessarily
J-holomorphic, but at the single point 0, the differential df(0) is c-linear
and f is non-singular at 0, we can put f into a “standard position” by a
linear coordinate change. In fact, corresponding to any Jggs-invariant real
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2-dimensional subspace S of T5B, there is some c-linear transformation H
such that H maps S to the subspace

Sl = {(Il,yl, 0, RN O)T} - R2”‘

In the case where S is the image of the c-linear map df (0), the composite map
H o f has the property that d(H o f) = H - df, and the image of d(H o f)(0)
is the subspace S;. If B is a ball centered at 0, then H can be chosen to be
unitary, so the target space does not change: H(B) = B. H can even be
chosen so that d(H o f) : & — ﬁ‘ll.

Putting a non-singular map f with c-linear differential df(0) into stan-
dard position by a c-linear transformation H can also be thought of as just
choosing a different coordinate chart for the target M. Returning to the
global set-up (40), where f = ¢;ouo wj’,l, let ¢, = H o ¢;. This will be a
coordinate chart for M in which the local representation ¢ owu o wj’,l of the
map v is in standard position, since Ho f = H o (¢, ouog/)j_,l) = ¢y ouoﬂ)j_,l.
The local representation of the almost complex structure transforms from the
j chart to the k chart by (30), J, = H - J;- H*, where H = ¢, 0 ¢;1. Since
H is c-linear, the almost complex structure still satisfies the normalization
conditions: at the origin, H-Jg(0)- H™' = H - Juq- H™' = Jgq, and at every
point, H-Jg - H ' + Jyq = H - (Jg + Jaa) - H! is invertible.

Continuing to consider a non-singular map f with c-linear differential
df(0), Lemma 8.3 applies, and we further may suppose f is in standard
position, so that the image of some small disk in the domain is an embedded
real surface whose tangent plane at 0 is the Jyg-invariant subspace S;. So,
there is some even smaller neighborhood of 0 in B, in which this surface
patch can be described as the graph of 2n — 2 real functions of class C” over
the tangent space. If R?" has coordinates 1, yi, T2, 42, - . ., Tn, Yn, then the
equations of the surface are, for xy, y; near (0,0):

ry = Hi(z1,y1)

Yn = H2n72(x17 yl)a

where at the origin, the H, functions have value 0 and first derivatives 0.

If f is not just c-linear and non-singular at 0 but also J-holomorphic in
a neighborhood of 0, then there is a non-linear change of coordinates ([MS;]
Lemma 2.2.2) so that the image is just the zj-axis; in the above notation,
the graphing functions H, are all identically zero.
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In the case where df (0) is the zero matrix, the graph map g(z) = (z, f(2))
is already in standard position since it is non-singular and dg(0) has image
equal to TyD; inside TyD; @ T5B. In terms of the above construction, the
defining equations of the image of g are exactly the components of f:

Ty = fl(xay)

Yn = f n (ZL‘ ) y),
and again at the origin, the f, functions have value 0 and first derivatives 0.

Example 8.5. Consider a target space C3, which is R with the standard
almost complex structure Jyg. Let f: D; — C? be given by

f(2) = (2, 2%, 22)T,
or in terms of the real coordinates,

f(z,y) = (z,y,2° — 2, —2zy, 2% + y*,0)".

Then
1 0
0 1
20 —2y
df = -2y —2x |’
20 2y
0 0

so df(x,y) is c-linear only at the origin. The map f is an embedding in
standard position, and the image is totally real except for the CR singular
point at 0 where the surface is tangent to the zj-axis. This surface, the
algebraic normal form for non-degenerate CR singular surfaces in C? as in
[C4], already happens to be given in the form of a graph and could be written
in terms of the target coordinates (21, 29, z3) only: {zo = 2%, 23 = 217, }.

Example 8.6. The map f : D; — C? given by f(z) = (2%, 22) is singular at
the origin, where its differential is the 4 x 2 zero matrix, and non-singular and
not c-linear at every other point. The map is two-to-one, branched at the
origin, since f(z) = f(—z). The image of f(z,y) = (z* —y?, —2zy, 2> +14?%0)
in the (21,91, T2, y2) coordinate system is exactly the circular cone {22 +y? =
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x3, 29 > 0} in the three-dimensional subspace {y = 0}, so the vertex of the
cone is the image of the singular point, and the smooth points of the cone are
totally real. The image of the graph g(z) = (z, f(z)) is exactly the embedded
surface with an isolated CR singularity in C?® from the previous Example.
Example 8.7. For f(z) = (2%, 22) as in Example 8.6, consider the composite
F(z) = f(2%), so the map F : D; — C? given by F(z ) (21, 222%) is singular
at the origin, where its differential is the 4 x 2 zero matrix, and non-singular
and not c-linear at every other point. The map is four-to-one, branched at
the origin, since F(z) = F(—z) = F(iz) = F(—iz). The image of F(x,y) =
(22 —y?)? —4z*y?, —dzy(2?—y?), (22 +y*)?,0) in the (21, y1, T2, y2) coordinate
system is exactly the same circular cone {x? + 3 = 23,29 > 0,y = 0} as
the image of f. The image of the graph G(z) = (z, F(z)) is the embedded
surface with an isolated CR singularity:

{(21722,23) 29 = 21723 = 2121}

which has a higher order of contact with its complex tangent plane in C3
than the surface from Example 8.5.

The following result generalizes Lemma 8.1.

Lemma 8.8. Given a C® almost complex structure Jg on B and a C*T* map
f Dy — B, if there is an integer k < s+ 1 such that

Asf = o(l=")
and, for all ¢ such that 0 < { <k,

(ﬁjaﬂmzd

then, for all (j,m) such that j +m <k,

() (3) 00

Proof. From the definition (38) of d; and the calculation of (41), the first
hypothesis implies
Orf =df +Jp - df - Jua = of|z"™")
— Jp-df = df - Jaa+o(|]2")
df

— —-(2) = Js(f(z) - —=(2) +o(l7).
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The proof of the claim is by induction on m. The m = 0 case is exactly the
second hypothesis.
For the inductive step establishing the claim for m > 0, assume

(&) () o=

for all (j,¢) such that £ < m and j + ¢ < k. Then, for any j such that
J+m<k,

-
= () () (mren - Lvogepy)

The derivative of the second term is o(1), and the derivative of the first term,
when evaluated at 0, is 0 by the rules for derivatives, the existence of k — 1
derivatives of Jpg, and the inductive hypothesis. [

Example 8.9. Consider, for £ > 1, the smooth map

flz,y) = (F 2y v, 0).

Then f: Dy — B, where B C C? has the standard complex structure.

The image of f in the (xy,y1,x2,y2) coordinate system is contained in
(but not equal to) the parabolic cylinder {zy = x%,y, = 0} (not depending
on k).

Since f maps the real axis to the single point 0, (%)zf(O) = ( for all
¢ > 0, and the second hypothesis of Lemma 8.8 is satisfied for any k.

By construction, (%)’“f(O) +0 and (%)(%)kilf@) + 0. The conclusion
from Lemma 8.8 is that Of = o(|z|*~1) must be false.

The same conclusion can be drawn more directly, from expanding

o) ((z;ji)k+i (Z;2> C;)’“’ (zz—ii)%>,

k-1

so L f(z,Z) involves terms of the form z
The graph g with image in C3, g(z) = (z, f(2,2)) maps the real axis to
(x,0,0), so the image of g coincides with the z;-axis along a real line, which

is the CR singular locus of the image.
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The Example shows that df can vanish to arbitrarily high order, so f is
smooth but not holomorphic, f has high order of contact with a holomorphic
map, and f is constant on an entire segment in the domain, but f is not
constant.

The following result, used in [IR], generalizes Lemma 8.8.

Lemma 8.10. Given a C* almost complex structure Jg on B and C*T' maps
u,v : Dy — B, if there is an integer k < s + 1 such that

dgu=o(lz*""),  dsv=o(l2|*"")

and, for all ¢ such that 0 < { <k,

(%)Zum) _ (%)va),

then, for all (j,m) such that j +m < k,

(@) (@) o= () () o

Proof. As in the Proof of Lemma 8.8,

Du = oY) = D) = Jafu(z) - Gole) + ol ),
= ofzF) = Z—Z(z):JB(v(z))~§—Z(z)+o<!z\’“1)-

The proof of the claim is by induction on m. The m = 0 case is exactly the
second hypothesis.
For the inductive step establishing the claim for m > 0, assume

(i) (i) o= (2) (5) o

for all (j,¢) such that £ < m and j + ¢ < k. Then, for any j such that
J+m<k,

EYE - @@

- (Y (diy)m (atute) - 22+ oflhh)
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The derivative of the second term is o(1). The derivative of the first term is,
by the chain rule and the product rule, assuming the existence of k—1 deriva-
tives of Jp, a sum of (possibly repeated) terms of the form (Jp)gays(u(2)) -
Ugrrys =+ Ugmys, With o + 3 <k — 1, and few enough derivatives w,-,s, etc., to
satisfy the inductive hypothesis, so that when evaluated at 0, the derivative is
(‘]B)aco‘yﬁ (U(O)) *Ugvyd (0) c Ugnyd (0) = (‘]B)aco‘yﬁ (U(O)) “Ugvys (O) T Ugngo (0) l

Example 8.11. Consider, for £ > 1, the smooth maps

u(r,y) = (v + 9" y+ "L o+ y* ), v(,y) = (2,y,1,9).

Then u,v : D; — C? and v = v+ f where f is the smooth map from Example
8.9. The map v is just a holomorphic embedding of the disk into the line
21 = 29, v(z) = (2, 2), and w is a smooth but not holomorphic map, which is
an embedding near 0, satisfying the hypotheses of Lemma 8.10.

Note u(x,0) = v(z,0) for all z, so the maps coincide along the z-axis.

By construction, (%)zu(O) = (%)ZU(O) for all ¢, but (%)ku((]) £( =

() v(0) and (%)(é)k_lu((]) £0= () () '0(0). The conclusion from
Lemma 8.10 is that du = o(|z|*~1) must be false.

The same conclusion can be drawn more directly, from expanding

wen= =+ () + () () = (),

SO %u(z, Z) involves terms of the form z

k-1

9 Finding J so that a surface is J-holomorphic

For Jp as in Subsection 5.1, recall f : Dy — (B, Jp) is Jp-holomorphic if and
only if it satisfies Equation (43): 0f = Q(f(z)) - 0f, where @ is an a-linear
operator depending on the position Z € B: Q(%) = (J(Z) + Jsta) '+ (Jsta —
Jp(Z)).

We consider the following problem: Consider u : D; — CV — is there
a continuous CSO J defined near 0 € CV so that u is J-holomorphic? A
necessary condition is that u satisfies du(z) = Q(z)ou for z € D, where
Q is some continuous function from D; to the space of a-linear operators on

CN, with Q(0) = 0.
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From the linear algebra in Section 1, the a-linearity of Q(z) is equivalent
to complex N x N matrix representations By (z) or Bs(z), where

Ou(z) = Bi(2)0u = By(z)ou.

It is convenient to assume u(0) = 0, and that u is continuous on the
closed disk D; and continuously differentiable on D;. It is key to the con-
struction to assume that u is one-to-one on D;. Then the image of u is the
compact, continuously embedded disk u(D;) € CV, and the inverse map
u~!:u(D;) — D is automatically continuous.

Given u, one (not necessarily unique) way to find an a-linear operator
Q(2) with du(z) = Q(2)du(z) is to construct the following N x N complex
matrix, Q(z):

1
Uz Uz N u
T I R e B O O
u]—V ’LLJ—V ’ui‘2+"'+‘u£]‘2 N
z Nx1 Z Nx1 Nx1
! wlal - ul
TP P N —
Uz Uz | Nxn ulf Nx1
= (Q(z) 0 C)du.
Multiplying by Q is c-linear; C' is the a-linear complex conjugation as in
Example 1.12, Section 1. We now make some more assumptions — that

u has the properties that du # 0 for z # 0, and that Q as defined above
extends continuously to Dy, including the origin, where Q( ) = 0. The
complex entries of QNX ~v (and also the real entries of the real 2N x 2N
representation) are all bounded by ||dul|/||0u||. For example, if u is Jgq-
holomorphic and non-constant, then Q = 0.

Using the assumption that u is one-to-one,

u = (Q(u'(u(z))) o C)ou
will match Equation (43) if, for ¥ = u(z),
Q' (@) 0 C = (Jp(F) + Joua) ™"+ (Jua = T(%))-

Using the inverse formula (2), if A = Q(u*(Z)) o C' is small enough so that
Id+ A is invertible (which holds for & = u(z) sufficiently close to 0, and which
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can be assumed to hold for all z € D; by re-scaling exactly as in Section 5.3),
then, for each Z, the real 2N x 2NN operator J(Z) is a CSO so that u and J
satisfy (43):

5@ = (144 Qu(#) 0 C) 0 Juao (1d + Qu (@) 0 C) .

As a function of # € u(D;), J is continuous, and J(0) = Jyq. By point-
set topology, the continuous function Q o u! extends from the closed set
u(D;) € CV to a continuous function CV — Hom,(CY,CY), and J(¥) also
extends from the closed set u(D;) C C¥ to a continuous almost complex
structure on all of CV. The conclusion is that u is J-holomorphic with
respect to this continuous extension.

Pointwise estimates for Q) and J are related to re-scaling as in Section 5.3.
However, any stronger estimate for .J, for example, of the form || J (%) = Jaal| <

C1]|Z]|*, for a > 0, would require an estimate of a similar form on Q ou™!,

1@ o u™H)(@)I| < CullZ|*, (65)
measured at points ¥ = u(z) € u(D;), or equivalently, as a function of 2:

1) = lIQu ()] < Collu(z)]*.

The composition with the inverse u=*

is a big loss in (65); even if u is smooth,
u~! is continuous but fast-growing, and not necessarily differentiable. The
continuous extension of the composite @ o u™! might extend to something
a-Holder continuous, or differentiable, at the origin, but would be hard to

estimate without an explicit formula for u.

Example 9.1. In the Example from [CP;], u is smooth and vanishing to
infinite order, and )(z) also vanishes to infinite order, where [|Q(2)|| is com-
parable to ||[Ou]|/||0ul|, but

Q) [l
[u) =~ TuC)] [ou]

is unbounded as z — 0, for any a > 0. (V\_7e did not find any other examples
of smooth functions u with bounded %.)

The Example (u'(z),u?(z)) from [CPy] is also not one-to-one C — C?,
but it is non-zero except at z = 0, so it can be modified to

u(z) = (u,u? z-ut, 2 - u?)
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to get a smooth, one-to-one map C — C*.

1

1,2 1 2 2
ou = (uy,u;,u + zu,, u” + zu;)

is still non-vanishing as a vector, and ||Ou| > |ul| > F(n)p(n)|z|P®™~! on
even annuli A,,.

Ou = (uz, uz, 2uz, 2u3)
satisfies [|0u]| = (1 + [2[*)/2]|0(u', u?)]|, so the estimates for ||Oul|/||Ou]| on

Dy are comparable to the estimates in [CP4], and the complex entries of Q44
are bounded by |[Ou||/||0u||. As described above, this u is J-holomorphic
with respect to a continuous almost complex structure on C*, and still has
the property of having an isolated zero of infinite order.
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