
Handout for Pi Day at Science Central
by Professor Adam Coffman, IPFW.

http://www.ipfw.edu/math/

3.141592653589793238462643383279502884197169399375105820974944592307816406286
208998628034825342117067982148086513282306647093844609550582231725359408128481
117450284102701938521105559644622948954930381964428810975665933446128475648233
. . .

Some links on the internet about π:

At the Math Forum: http://mathforum.org/library/topics/pi/

David H. Bailey’s page: http://crd.lbl.gov/˜dhbailey/pi/

David Blatner’s page: http://www.joyofpi.com/

St. Andrew’s History of Mathematics Archive: http://www-groups.dcs.st-and.ac.uk/˜history/

Did the Indiana state legislature really pass a law in 1897 declaring π to be equal to 3.2? No, it almost
did, but a Purdue math professor happened to be in the capitol at the time and stopped it:

http://www.agecon.purdue.edu/crd/Localgov/topics.htm
http://en.wikipedia.org/wiki/Indiana Pi Bill

Some links on the internet about Pi Day (March 14):

At the Math Forum: http://mathforum.org/t2t/faq/faq.pi.html

http://www.teachpi.org/

Some books at IPFW’s Helmke Library about π and other numbers:
P. Beckmann, A History of Pi. QA 484.B4 1971.
J. H. Conway and R. Guy, The Book of Numbers. QA 241.C6897 1996.
D. Wells, Curious and Interesting Numbers. QA 241.W36 1997.
E. Zebrowski, A History of the Circle. Q 176.Z42 1999.
(these two are at a more advanced level:)
I. Niven, Irrational Numbers. QA 247.5.N57.
S. Lang, Introduction to Transcendental Numbers. QA 247.5.L3.

How do we know π is an irrational number? The fact that π is irrational can be proved so we call it a
Theorem. The first proof was given by J. H. Lambert in 1768. The proof on the next page is based on one
by I. Niven from 1947. It uses only single-variable calculus.

Definition. A real number x is a “rational” number if there are integers p and q, with q �= 0, so that x = p/q.
If a real number x is not rational, then x is called “irrational.”
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Theorem. π is irrational.

Proof. In fact, we will show something even better: π2 is irrational. Then π itself can’t be rational, since if
it were, π = p/q would imply π2 = p2/q2 is rational, which is about to be proved wrong.

First, for an integer n (which we’ll pick later and leave unknown for now), define the function f(x) =
xn(1 − x)n/n!. For all x, f(x) = f(1 − x), and on the interval 0 ≤ x ≤ 1, the function values satisfy
0 ≤ f(x) ≤ 1

n! . Expanding f(x) as a polynomial,

f(x) =
1
n!

(c0x
n + c1x

n+1 + c2x
n+2 + · · · + cnx2n),

where the coefficients c0, . . . , cn are integers. For any non-negative integer j, the jth derivative of f , denoted(
d
dx

)j
f = f (j), has the property that f (j)(0) is an integer: for j < n or j > 2n, f (j) is a polynomial with

constant term 0, so f (j)(0) = 0; for n ≤ j ≤ 2n, applying the Power Rule j times to xj gives the constant j!,
and it follows that f (j)(0) = j!cj−n/n!, which is an integer since all the factors cancel from the denominator.
Since

(
d
dx

)j
(f(x)) =

(
d
dx

)j
(f(1 − x)) = (−1)jf (j)(1 − x) by the Chain Rule, f (j)(1) = (−1)jf (j)(1 − 1) =

(−1)jf (j)(0) is also an integer for any j.
Now, assume that π2 is a rational number, so π2 = a/b, where a and b are integers. We’ll see that making

this assumption leads to a contradiction, so π2 must be irrational. Define another polynomial function

F (x) = bn
n∑

k=0

(−1)kπ2n−2kf (2k)(x)

= bn ·
(
π2nf(x) − π2n−2f (2)(x) + π2n−4f (4)(x) − · · · + (−1)nπ0f (2n)(x)

)
.

The coefficients bnπ2(n−k) = bn(a/b)n−k = an−kbk are all integers, and we showed earlier that f (j)(0) and
f (j)(1) are also integers, so F (0) and F (1) are integers.

The first step of this calculation is taking the derivative using the Product Rule and Chain Rule, the
second step is a cancellation of all but one term from the sum formula for F :

d

dx
(F ′(x) sin(πx) − πF (x) cos(πx)) =

(
F ′′(x) + π2F (x)

)
sin(πx)

= bnπ2n+2f(x) sin(πx) = π2anf(x) sin(πx).

By the Fundamental Theorem of Calculus,

πan

∫ 1

0

f(x) sin(πx)dx =
[

1
π

F ′(x) sin(πx) − F (x) cos(πx)
]1

0

= F (1) + F (0),

which is an integer. Since 0 < f(x) sin(πx) < 1
n! sin(πx) for 0 < x < 1, we also get the estimate

0 < πan

∫ 1

0

f(x) sin(πx)dx < πan

∫ 1

0

1
n!

sin(πx)dx = πan · 1
n!

· 2
π

=
2an

n!
.

We can now pick n big enough so that n > a and n > 2aa+1

a! . Then 2an

n! = a
n · a

n−1 · · · a
a+1 · 2aa

a! ≤ 1
n · 2aa+1

a! < 1
(the middle fractions a

n−1 · · · a
a+1 are each < 1). However, this results in the inequality

0 < F (0) + F (1) = πan

∫ 1

0

f(x) sin(πx)dx < 1,

which contradicts the previous observation that F (0) + F (1) is an integer.
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What’s the connection between rational numbers and decimal expansions? It turns out that ratio-
nal numbers have repeating decimal expansions, and irrational numbers have non-repeating decimal ex-
pansions. I’ll use a bar notation for repeating decimal blocks, so if the block 246 repeats, we can write
0.246246246246246 . . . = 0.246. To be precise about the connection between fractions and decimals, there are
some more theorems.

Theorem. If the real number x has a repeating decimal expansion, then x is a rational number.

Proof. There are three cases. First, x could be a “terminating” decimal, which we count as repeating since
we could add repeating 0 digits at the end, like 3

8 = 0.375 = 0.375000000000 . . .. In the terminating case,
if x = N + 0.DIGITS000, so N is the integer part, then x = N + DIGITS

1000000 . Use as many 0 digits in the
denominator as there are digits in the terminating block.

If x is repeating a block of digits, of the form x = 0.BLOCK, then x = BLOCK
99999 . Use as many 9 digits in

the denominator as there are digits in the repeating block. (I am skipping the part of the proof that shows
this always works, but this is something you can try on your calculator!)

If x is a combination, so it is a finite list of digits followed by a repeating block, of the form x =
N + 0.DIGITSBLOCK, then we can write it as

x = N + 0.DIGITS +
1

1000000
· 0.BLOCK = N +

DIGITS

1000000
+

BLOCK

99999000000
.

Then we can add the fractions to get the rational number expression x = p/q.

For example, if x = 6.7154343434343, then x = 6 + 715
1000 + 43

99000 = 664828
99000 .

It also follows that π does not have a repeating decimal expansion, since a repeating decimal expansion
would imply that π is rational, contradicting our earlier Theorem.

Theorem. If x is a rational number, then x has a repeating decimal expansion.

Proof. The main part of the proof is the following statement about integers: if N is a non-negative integer
and D is a positive integer, then there are integers Q and R so that N = QD + R and 0 ≤ R < D. The idea
is that the fraction N

D can always be simplified into an integer quotient Q, with some integer remainder R,
so that N

D = Q + R
D , where 0 ≤ R

D < 1. Multiplying both sides by D gives the N = QD + R expression.
So, we start with x = p/q from the definition of rational, and simplify (as in the above division statement)

to get x = p/q = Q + r0
q , where Q is the integer part, and r0 is the integer remainder with 0 ≤ r0 < q.

What we want to find is the digit sequence for the fractional part: r0
q = 0.d1d2d3d4 . . . dn . . ., and we also

want to show that the decimal expansion is repeating.
Consider 10r0 and divide q into it to get a quotient and remainder, 10r0

q = d1 + r1
q , or equivalently,

10r0 = d1 ·q + r1, where d1 and r1 are integers so that 0 ≤ r1 < q and 0 ≤ d1 ≤ 10r0
q < 10. The single digit d1

is in fact the first decimal place we were looking for, since dividing both sides of 10r0
q = d1 + r1

q by 10 gives
r0
q = d1

10 + 1
10 · r1

q , where 0 ≤ 1
10 · r1

q < 1
10 .

We can repeat the above step with r1, so that 10r1
q = d2 + r2

q for some single digit d2 and remainder
0 ≤ r2 < q. Then r1

q = d2
10 + 1

10 · r2
q , and we can plug this into the above expression for r0

q to get

r0

q
=

d1

10
+

1
10

· r1

q
=

d1

10
+

1
10

·
(

d2

10
+

1
10

· r2

q

)
=

d1

10
+

d2

100
+

1
100

r2

q
.

This shows that d2 is the second digit.
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Continuing to repeat this process, we see that every time we get a remainder rk, we can divide 10rk by
q to get the next digit dk+1 and a new remainder rk+1, both of which depend only on rk and q. Since the
only possible rk remainder values we can get are integer values between 0 and q − 1, after q steps, the list
of remainders r0, r1, . . . , rq−1 is going to either contain a 0 (in which case the decimal expansion terminates)
or the list of q numbers between 1 and q − 1 will have at least one repeated value: rk = rn for some
0 ≤ k < n ≤ q − 1. Since rk and rn are equal, they determine the same digit dk+1 = dn+1 and the same
remainders rk+1 = rn+1. Since the digit sequence depends only on the remainders, the same outputs will
occur in a block of n−k digits: (dk+1dk+2 . . . dn) = (dn+1dn+2 . . . dn+n−k), and this is the block that repeats,
so

x =
p

q
= Q + 0.d1 . . . dk−1dkdk+1 . . . dn.

We see in the above proof that a rational number of the form p
q not only has a repeating decimal expansion,

but the block that repeats has size less than q. For example, we can try x = 2
7 , and it should have a repeating

block with length less than 7. The above procedure (essentially the “long division” algorithm) says starting
with r0 = 2, the first digit is the integer part of 20

7 , which is d1 = 2, with remainder r1 = 6. The next digit
is the integer part of 60

7 , which is 8 with remainder r2 = 4. The next digit is the integer part of 40
7 , which

is 5 with remainder r3 = 5. The next digit is the integer part of 50
7 , which is 7 with remainder r4 = 1. The

next digit is the integer part of 10
7 , which is 1 with remainder r5 = 3. The next digit is the integer part

of 30
7 , which is 4 with remainder r6 = 2. But that remainder, r6 = 2, is a repeat of the numerator r0 = 2

that started the process! The sequence of remainders was (2, 6, 4, 5, 1, 3, 2), and we got six out of the seven
possible remainders 0, 1, 2, 3, 4, 5, 6 before getting a repeated 2 that tells us that the decimal places also start
repeating. The conclusion is that 2

7 = 0.285714.
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