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1 Real autonomous ODE

The following Lemma gives conditions for the existence of a solution of a
differential equation which is bounded on the domain R.

Lemma 1.1. Given real numbers a < b, if f : (a,b) — R is a continuous,
nonvanishing function, and there are some constants C; > 0, Cy > 0, 0, €
(0,06 —a), 92 € (0,b —a) so that |f(t)] < Ci(t —a) fora <t < a+ 0,
and |f(t)] < Co(b—1t) for b — oy < t < b, then there exists a one-to-one,
3nt0 function g : R — (a,b) so that y = g(t) is a solution of the equation
@ = Iy

Proof. ﬁ is continuous on (a, b), so the function

bl
G(t) = /i e (1)

is differentiable on (a,b) with a nonvanishing, nonzero derivative, £G(t) =
ﬁ. Because f and % have constant sign, G(t) is monotone on (a,b). Suppose

f(t) > 0, so G is increasing; the f(¢) < 0 case is similar.
For t € (b— 02,b),

b—d2

1 | b=d2 4 ¢ 1
G(t) = /a_—H) mdilf + /b_52 mdﬂf 2 /a_—H) mdilf + s 702([) — l‘) dl’,
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which is unbounded. Similarly, G is also unbounded at the other endpoint,
so G : (a,b) — R is onto and invertible. Let T" be any constant, and define

g(t) =Gt +T), (2)

so g : R — (a,b) is onto and increasing, and (by the Inverse Function Theo-
rem, [C]), y = g(¢) is differentiable with

dt - GG(t+T) !

dy 1 1
1

Such solutions with domain R are unique up to translation.

Lemma 1.2. Given an open (possibly infinite) interval I, if f : I — R is
a continuous, nonvanishing function, and g1 : R — I and go : R — I are
solutions of the equation % = (y), then there ezists a constant T' so that

galt) = ga(t + 7). )

Proof. Because g(z) = f(g1(z)) is continuous and nonzero, the Inverse Func-
tion Theorem applies. For t € R,

: 71 - = ; / .
dt (91 (92(1)) t) gi(gfl(gg(t)))%(w 1 @)
! _
B ﬂm@f@xm»ﬂ”@»—lzo



There is also a local uniqueness theorem for solutions on an interval, with
one initial condition.

Lemma 1.3. Given open (possibly infinite) intervals Iy, I, I, if f : Iy - R
s a continuous, nonvanishing function, and g1 : Iy — Iy and go : I, — I
are solutions of the equation % = f(y), and there is a point ¢ € I N Iy
such that gi(c) = g2(c), then there exists 6 > 0 so that gi(t) = go(t) for all

te(c—6,c+9).

Proof. Because ¢1(x) = f(g1(z)) is continuous and nonzero, the Inverse Func-
tion Theorem applies: there exists some d; > 0 so that g; is one-to-one on
(¢ — d1,¢+ 61). Suppose f > 0, so g; is increasing; the f < 0 case is sim-
ilar. Let ¢ = min{gi(c + 361) — g1(c), g1(¢c) — g1(c — £61)} > 0. Because
g2 is continuous, there is some d; > 0 corresponding to e, so that for all
t € (c—da,c+02), |g2(t) —g2(c)| = |g2(t)—g1(c)| < €. Let 6 = min{dy, 2} > 0,
then (¢ —d,c+0) C I; N I3, where both g; and g, are defined. Also, for any
te(c—0d,c+9),

1 1
gile = 501) < gi(c) —e < g(t) < gi(c) +e = qilc+ 50),

and by the Intermediate Value Theorem, there is some = € (¢ — %(51, c+ %(51)
so that g1 (z) = ga(t); this shows that z = g7 ' (g2(t)), s0 g2(¢) is in the domain
of g;*. Asin (3), forc— 0 <t <c+4,

L gt =1 = g7 (ga(0) = 4+ T

dt
for some constant 7. Evaluating go(t) = g1(t + 1) at t = ¢ gives ga(c) =
gi(c+T), and go(c) = g1(c) by hypothesis, so ¢ + T = ¢ because g; is one-
to-one. It follows that T =0 and g;(t) = go(t) for all t € (¢ — ,c+ ). N



Lemma 1.4. If f : R — R is a continuous, nonvanishing function, then
there exist some open interval I and a one-to-one, onto function g : I — R

so that y = g(t) is a solution of the equation % = f(y)-

Proof. o) is continuous on R, so the function

f(liE
alt) = /0 ﬁdx

is differentiable on R with a nonvanishing, nonzero derivative

7 %G(t) - ﬁ'
Because f and + have constant sign, G(t) is monotone on R. Its image is
some open interval I, so G : R — [ is invertible.

Let T be any constant, and define g(t) = G~'(t + T) on the interval
I-T={xe€R:z+Tel}, s0g:1—T— Risinvertible, and therefore

not bounded. ¢ is a solution of the ODE as in Lemma 1.1. i

Lemma 1.5. Givenb € R, if f : (—00,b) — R is a continuous, nonvanishing
function, and there are some constants C3 > 0, d3 € (0,1) so that |f(t)] <
C3(b—t) for b— 63 <t < b, then there exist an open interval I and a one-
to-one, onto function g : I — (—00,b) so that y = g(t) is a solution of the
equation & = f(y).

Proof. ﬁ is continuous on (—o0,b), so the function
G(t) Ll d
= ——dx
b1 [ ()

is differentiable on (—oco, b) with a nonvanishing, nonzero derivative, 2G(t) =
ﬁ. Because f and % have constant sign, G(t) is monotone on (—oo,b).

Suppose f(t) > 0, so G is increasing; the f(¢) < 0 case is similar.
For t € (b — 03,b),

b—0d3 1 t 1 b—d3 1 t 1
G(t) = —d —d —d —d
) /bl f(x) v /bég f(x) ve /bl f(z) v /ba3 C3(b— ) "

which is unbounded. So, the image of G is either I = (L,00) or I = R.

Let T be any constant, and define g(t) = G~'(t + T) on the interval
I-T={zxeR:ax+Te€l},sog:1—-T — (—o0,b) is invertible, and
therefore not bounded. ¢ is a solution of the ODE as in Lemma 1.1. i
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Theorem 1.6. Let f: R — R be a real analytic function. The following are
equivalent:

1. there exists a non-constant, bounded, real analytic function g : R — R

. . . d
so that y = g(t) is a solution of the equation 5§ = f(y);

2. there are at least two distinct points ag, by where f(ag) = f(by) = 0.

Proof. At any zero of f, say c¢g, the real analyticity implies there is some
constant Cy so that |f(t)| < Colx — ¢o| for x near co.

To show 2. = 1., the property that f is real analytic on R implies that
ap is an isolated zero, and because ag is not the only zero of f, there is some
open interval (a,b) with either a = ag or b = ay, satisfying the hypotheses
of Lemma 1.1. The conclusion is that there exists a non-constant solution
g : R = (a,b), which by construction, (1) and (2), is real analytic.

To show 1. = 2., suppose, toward a contradiction, that there exists a
solution ¢; as claimed, and that f has fewer than two zeros.

Case 1. If f is nonvanishing on R then Lemma 1.4 applies and there is
some nonempty open interval / and some onto function g, : I — R which is a
solution of % = f(y). By the construction of Lemma 1.4, g5 is real analytic.
On the interval I, go — g; is continuous, and because g; is bounded and g
is onto, go — g1 attains some negative value and some positive value, so by
the Intermediate Value Theorem, there is some ¢ so that gi(c) = g2(c). By
Lemma 1.3, g1(t) = go(t) on some interval (¢ — §,c¢ + §), and because both
functions are real analytic, g;(t) = g2(t) on I. The contradiction is that go
is unbounded on [ while g; is bounded.

Case 2. If f has exactly one zero, b € R, then Lemma 1.5 applies to
f on (—o0,b): there is some interval I and some one-to-one, onto solution
g2 : Iy = (—00,b). By an analogous existence result for f on (b, 00), there
is some interval I3 and some one-to-one, onto solution gz : I3 — (b, 00).
Because ¢; is non-constant, there is some xy where g(zq) # b.

If g1(zg) < b, then there is some T' € I, with ¢g2(T) = ¢1(xo), and the
function g4(t) = g2(t + T — z0) is, by construction, a real analytic solution of
% — f(y) on an open interval I, — (T — ) satisfying ga(zo) = g1(xo). As in
Case 1., the uniqueness from Lemma 1.3 shows that g, = ¢g; on I — (T — xy),
contradicting the boundedness of g;.

The g1(x¢) > b case is similar, using gs. i



2 Ordinary differential inequalities

2.1 Linear differential inequalities

Lemma 2.1. Ifu(t) is continuous on [a,b] and u(a) > 0, then either u(t) > 0
for all t € [a,b], or there is some t; € (a,b] so that u(t) > 0 on [a,t1) and

Proof. Consider the set S = {x € [a,b] : u(t) > Oforallt € [a,x)}; it is
non-empty (by continuity of u and u(a) > 0), and bounded above, so it has
a least upper bound ¢; € (a,b]. If there were some t, with a < ty < t; and
u(tp) < 0, then there would be no = € S with > t,, and t, would be an
upper bound, contradicting the least property of ¢;. So, u(t) > 0 for all
t € la,t1). Case 1: If u(ty) = 0, then u > 0 on [a,t;) as claimed. Case 2: If
u(t1) < 0 then by continuity, there is some ¢, with a < t5 < t; and u(ty) < 0,
contradicting the above property that u(¢) > 0 for all ¢t € [a,t;). Case 3:
If t;, = b and u(t;) > 0, then u > 0 on [a,b] as claimed. Case 4: If t; < b
and wu(t;) > 0, then by continuity, u(¢) would be positive on some interval
la,t; + ), contradicting the property that ¢; is an upper bound for S. Only
Cases 1 and 3 do not lead to a contradiction. i

Lemma 2.2. Suppose a(t) is a real function on [0,1) such that a(t) > 0

and a is bounded on every subinterval [0,x] C [0,1). If y is continuous on

0, 1] with y(0) > 0, lim y'(t) >0, and " (t) > a(t)y(t) for 0 <t < 1, then
t—0

y(t) >0 for all0 <t <1 and y'(t) >0 for all0 <t < 1.

Proof. Case 1: y(0) > 0 and 1im+ y'(t) > 0. In this case, we can show that
t—0

y > 0on [0,1] and ¥/ > 0 on (0,1). By Lemma 2.1 applied to y on [0, 1],
either y > 0 on [0, 1], or there is some t; € (0,1] so that y(t) > 0 for all
t € [0,t;) and y(t1) = 0. In the latter case, y attains some positive maximum
value on [0,#]. If y(0) is the maximum, then by the Mean Value Theorem,
for any 0 < § < ¢y, there is some t5 with 0 < t5 < § and y/(t5) = M <0,
which contradicts tlir(% y'(t) > 0. If the maximum is at an interior point ¢3

with 0 < t3 < t1, then y/(¢3) = 0. From lim y'(t) > 0, there is some t, with
t—0
0 <ty < tz and y/(t4) > 0. Applying the Mean Value Theorem to y’ on

t4,ts], there is some t5 with £, < t5 < t3 and y"(t5) = L&V ) o Thijg
[t4, 3], Y =

contradicts y"(t5) > a(ts)y(ts) > 0. We can conclude that y(¢;) must be the



maximum value, and y(¢;) > 0, which contradicts y(¢;) = 0. This shows
y(t) > 0 for all ¢ € [0, 1].

For any t; € (0,1), there is some tg with 0 < ¢35 < t; and y/(tg) >
By the Mean Value Theorem, there is some tg with yltr)—v'(ts) 9)
a(te)y(ty) > 0. It follows that y/'(t7) > v/'(ts) > 0.

Case 1 did not use the boundedness of a, just a > 0.

Case 2: y(0) > 0 and lim y'(t) > 0. Suppose, toward a contradiction,
t—0
that there is some ty with 0 < ¢y < 1 and y(ty) < 0. For 0 < t < t,
there is a bound A > 0 with 0 < a(t) < A. For t € [0,1y], define u(t) =
y(t) — %y(to)eﬂ(t_to). Then, by construction, u(0) > 0 and wu(tg) < 0. For
0 <t<ty,

0
tr—1s ( Z

W) = 9(0) — Syl A

t—0+ t—0+

— lim W/(t) = (hm y'(t)) — %y(to)\/z >0,

1
u"(t) _ y”(t) i §y(to)Aex/Z(t—to)

= (t)y()—ly( to)a(t)eVAt=to)

L ytaJa(t)eV A1) — Ly 1) AeV At
= a(t)u(t) + ; (to)(a(t) _A)e\/z(tfto)
> a(t)u(t).

Let w(t) = u(tot), just horizontally re-scaling u to the domain [0, 1] so that
w(0) > 0, w(l) <0, lim w'(t) >0, and w”(t) > tia(tot)w(t), so Case 1
t—0

applies to w, contradicting w(1) < 0. The conclusion is that y(¢f) > 0 on
[0,1), and on [0, 1] by continuity.
To establish the inequality vy > 0, for any t; with 0 < #; < 1 and any

e > 0, from lim y/(¢) > 0, there is some ty with 0 < t5 < t; and y'(t2) >
t—0t

—e. By the Mean Value Theorem, there is some t3 with t5 < t3 < t; and
VA=) — (1) > a(ts)y(ts) > 0. It follows that y/(t1) > /() > —c. B

t1—1to



Here’s a higher order generalization, using only the Mean Value Theorem,
not the maximum value.

Lemma 2.3. Let k > 2 be an integer. Suppose a(t) is a real function on [0, 1)

such that a(t) > 0 and a is bounded on every subinterval [0,z] C [0,1). Ify

is continuous on [0, 1] with y(0) > 0, and lim+ y 9D >0 forj=1,... . k—1,
t—0

and y®) (1) > a(t)y(t) for 0 <t < 1, then y(t) > 0 for all0 < t < 1 and
y D) >0 forall0<t<1,j=1,... k.

Proof. Case 1: y(0) > 0 and lim yY(t) > 0. In this case, we can show that
t—0

y>0on[0,1] and y¥) >0o0n (0,1) forj=1,....k— 1.

By Lemma 2.1 applied to y on [0, 1], either y > 0 on [0, 1], or there is
some t; € (0, 1] so that y(¢) > 0 for all ¢t € [0,%;) and y(t;) = 0.

In the latter case, y(t1) = 0 < y(0), so by the Mean Value Theorem for y
on [0,t], there is some ty with 0 < t5 < ¢; and y/(t2) < 0. Then, the MVT
applies to y' on [ts, to] for some t3 > 0 where y/(t3) > 0, using tlilgi y'(t) > 0,

_ y(t2)=y'(t3)
to—t3

this MVT argument to y¥) until j = k, gives some ty with 0 < ty < ti,
y ) (ty) < 0, contradicting y* (t5) > a(ty)y(ty) > 0.

So, the only case not leading to a contradiction is that y(¢) > 0 on [0, 1].

The above MVT argument also shows that all /) are positive on (0,1)
for j =1,...,k— 1, since any point ¢, with 0 < t, < t; = 1 and y")(¢,) <0
leads to another point t,, with 0 < t,, < t, and yU*Y(¢,,) < 0, eventually
contradicting y® (tyx) > a(ty)y(tx) > 0.

Case 1 did not use the boundedness of a, just a > 0.

Case 2: y(0) > 0 and tl_i)r(l)l y9) >0, j =1,...,k — 1. Suppose, toward

so there is some t; > 0 where y"(t4) < 0. Repeatedly applying

a contradiction, that there is some to with 0 < ¢y < 1 and y(to) < 0. For
0 <t < tgy, there is a bound A > 0 with 0 < a(t) < A. For t € (0,1,
define u(t) = y(t) — %y(to)eAl/k(t*tO). Then, by construction, u(0) > 0 and



u(tg) <0. For0 <t <ty, 1 <j<k-—1,
u(j)(t) — y(j)(t) — %y(tO)Aj/keAl/k(tto)
t—0t

— Jm ) = (i y00) - gy >0

1 k(s
uM(t) = y(k)(t)—iy(to)AeA (=)

> a(t)y(t) — %y(to)a(t)e,ql/k(t—to)
+gult)a(t)et” ) — Sy ) At

= altyult) + ylto)(a(r) — A"

> a(t)u(t).

Let w(t) = u(tot), just horizontally re-scaling u to the domain [0, 1] so that
w(0) > 0, w(l) < 0, lim wW(t) > 0, and w®(t) > tha(tyt)w(t), so Case 1
t—0

applies to w, contradicting w(1) < 0. The conclusion is that y(tf) > 0 on
[0,1), and on [0, 1] by continuity.
To establish the inequalities y¥) > 0, start with j = k — 1. Then, for

any t; with 0 < ¢; < 1 and any € > 0, from tlirgi y(k_l)(t) > 0, there is some

to with 0 < ¢y < ¢; and y/'(t3) > —e. By the MVT, there is some t3 with
ty <ty <ty and LV (9(4) > a(ty)y(ts) > 0. It follows that

t1—1to
y*E=(t) > y* =V (ty) > —e. A similar argument applies for j decreasing
from k — 1 to 1. i
Lemma 2.4. If the left-side limit lirgl f(t) = —o0, then there is no interval
t—b—

(b —0,b) on which f'(t) is bounded below.
Proof. (See [C].) |



Lemma 2.5. Suppose a(t) is a real function on [0,1) such that a is bounded
above on every subinterval [0,x] C [0,1) and bounded below on every subin-
terval [x1,25] € (0,1). If y is continuous on [0,1] with y(0) > 0 and
y'(t) > a(t)y(t) for0 <t <1, then y(t) >0 for all0 <t < 1.

Proof. Case 1: y(0) > 0.

By Lemma 2.1 applied to y on [0, 1], either y > 0 on [0, 1], or there is
some t; € (0,1] so that y(¢t) > 0 for all ¢t € [0,¢;) and y(t,) = 0. If t; = 1,
then y > 0 as claimed.

So, suppose toward a contradiction that #; < 1. On the interval [5t1,¢1],
a is bounded below: there is some K < 0 so that K < a(t). Define the
function f(¢) = In(y(t)) for ¢ in the interval (3t1,¢1). f has left-side limit
lim f(t) = —oo. Forall tin (1ty, 1), the derivative is bounded below: f/(t) =

t—t
ﬁy/(t) > ﬁa(t}y(t) = a(t) > K, but this contradicts Lemma 2.4.

Case 2: y(0) = 0.

Suppose toward a contradiction that there is some p € [0, 1] with y(p) < 0.
p # 0 by assumption, and if p = 1, then by continuity of y, there is some
nearby point p — 6;/2 with y(p — d1/2) < 0. So by re-labeling if necessary,
we can assume 0 < p < 1. On the interval [0, p|, a is bounded above: there
is some A > 0 so that a(t) < A.

Define g(t) = —y(p—pt) on the domain 0 < t < 1, so that g(0) = —y(p) >
0, g(1) = —y(0) = 0, and ¢ is continuous on [0, 1]. The derivative satisfies

g'(t) = py'(p —pt) > pa(p — pt)y(p — pt) = —pa(p — pt)g(t),

and the coefficient —pa(p — pt) is bounded below by —pA. Case 1 applies to

g,50 g(t) >0on [0,1) and g(1) = 0. Define the function f(¢) = In(g(t)) for ¢

in the interval (0, 1). f has left-side limit lim f(¢) = —oco. For all ¢ in (0, 1),
t—1-

the derivative is bounded below: f'(t) = ﬁg’(t) > ﬁ(—pa(p —pt))g(t)

—pa(p — pt) > —pA, but this contradicts Lemma 2.4. [
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Lemma 2.6. Suppose a(t) is a bounded real function on [0, X]|. Then there

is some § with 0 < 6 < X, with the property that if y is continuous on [0, X]

with y(0) > 0, lim y'(t) >0, and y'(t) > a(t)y(t) for 0 < t < X, then
t—0

y(t) >0 for all0 <t <9.

Proof. Step 1. Pick any z in (0, X, so that by hypothesis, there are some A >
0and K < 0sothat K <a(t) < Afort € [0, z]. Let 6 = min{z, ﬁ, ﬁ} >
0. (Remark: depending on a, it may be possible to choose = that optimizes
d.) To show that this is a ¢ as claimed by the Lemma, suppose toward a
contradiction that there is some ¢ with 0 < ¢ < § and y(c) < 0. ¢ > 0 by
hypothesis.

Step 2. Let y(b) be the minimum value of y on [0, ¢], so y(b) < y(c) <0
and 0 < b < ¢ < §. The MVT applies to y on [0,b]: there is some t, with
0 <ty < band y(ty) = Mg(o). The MVT applies to 3 (extended to

bh—
y'(0) = lim y(t) > 0) on [0, o]: there is some t; with 0 < t; < to and
t—0

b)—
i) = V) —y(©) R - y(0)
to —0 to ‘

By hypothesis,

y(b) —y(0) — by'(0)
bto

a(ty)y(ty) < y'(t) = < yb(tl:)) < 0.

If a(t;) > 0 and y(t;) < 0, then y(t1) < #21) < % < y(b), contradicting
the minimum property of y(b). So, a(t;) < 0 and y(t1) > 0.

Step 3. Lemma 2.1 applies to y on the interval [t1, b], so there is some t3
with ¢, <t3 <b, y(t;) =0, and y(¢t) > 0 for all t € [t;,t3). A left-side version
of Lemma 2.1 applies to y on the interval [0, ¢;]; there are two cases:

Case 1. There is some to with 0 < t5 < t1, y(t2) = 0, and y(¢) > 0 for all
t € (ta, 1]

Case 2. y(t) > 0 for all ¢ € [0,1]. In this case denote t; = 0.

In either case, there is some interval [to, 3] where 0 <ty < t; < t3 < b,
y(ts) = 0, y(ta) > 0, and y(t) > 0 for all ¢ € (ty,t3). Let y(t4) be the
maximum value of y on [ty,#3]. In Case 1, to < t4 < t3, so the maximum
occurs at an interior point and y'(t4) = 0. In Case 2, t, is either an interior
point of [tg, t3], or the maximum occurs at the endpoint ¢4, = to = 0, where
there is a right-side derivative y'(0) > 0 as in Step 2. In either case, y/(t4) > 0.

11



Step 4. The MVT applies to y on [ty, t3]: there is some t5 with ¢, < t5 < t3
and y'(t5) = % The MVT applies to y’ on [ty,t5]: there is some tg
with ¢4 < te < s and

(ta)—y(ta)
y”(t ) _ y,(t5> - y/(t4) _ £ is*i/zx = - y/(t4) < _y(t4>
6 ts — 1y ts — 1y 2

Using the lower bound for a and the property y(ts) > 0,

—y(t
Ky(ts) < alte)y(ts) < y"(ts) < yb(2 )
—y(ts) _ —y(ts)
> >
g y(t6) > RK = 52K — y(t4)7
contradicting the maximum property of y(¢4). i

Theorem 2.7. Suppose a(t) and b(t) are real functions on [0, 1), and there is
a point X such that 0 < X < 1 and a, b, and b’ are bounded on (0, X]. Then
there is some § with 0 < § < X, with the property that if y is continuous
on [0,1) with y(0) > 0, Tim y/(6) > 0, and 4"(1) > a(t)y(t) + HO)(1) for

0<t<X, theny(t) >0 for all0 <t <.

Proof. By hypothesis, there are some A > 0 and K < 0so that K < a(t) < A
for t € [0, X], and there are some B > 0 and L < 0 so that L < b(t) < B for
t €10, X]. Let z = min{ X, ﬁ, 51> 0.

Recall the elementary calculus fact that if b is continuous and bounded
on (0,z), then b is (Riemann) integrable on [0,z]. Let p(t) = f(f —3b(x)dz,
so p is continuous on [0,z] and for 0 < ¢ < z, p/(t) = —3b(t).

Let

F(#) = e [y(t) — Ky(0)t* —y(0)] ,

so f is continuous on [0, z] and f(0) = 0. For 0 < ¢ < x,

f'(t) = e y(t) — 2Ky(0)]
+eO(=2(0) [o(0) — Ky(O)F* — y(0)],

and using lim (y(¢) —y(0)) = 0 and the boundedness of b, the limit exists:

t—0t+

lim f'(¢t) = lim y'(¢) > 0.

t—0t t—0t
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For 0 <t < x,

£ = @O ()~ 2Ky ()] + O Sb(0) (1) — 2Ky 0)]
+eP(=Sb(1))? [y(t) — Ky(0)£ — y(0)]

V(1)) [y(t) — Ky(0)t* — y(0)]

b(t)) [v'(t) — 2Ky(0)¢]

t) +b(t)y' (t) — 2Ky (0)] — e"Vb(t) [y (1) — 2Ky (0)1]

b(t))? [y(t) — Ky(0)t* — y(0)]

V(1) [y(t) — Ky(0)t* — y(0)]

= o [ylo) - Ky - )] (ol + J0OP - 00)
+e?Dy(0) (K (a(t)t? + 2b(t)t — 2) + a(t)) . (5)

+6P(t) (_

+
a
=
S
=
—
|
N RN DN -

v

e’ [a(t)y
—f-@p(t) (_

—~

N~ DN~

+ep(t) (_

In the last step, the 3’ terms cancel by construction. Term (4) is equal to
a(t)f(t), where a(t) = (a(t) + 1(b(t))* — $/(t)) is bounded by hypothesis.
The upper bounds a(t) < A and b(t) < B and the initial choice of = imply,
for0 <t <ux,

a(t)t? +2b(t)t —2 < At* 4+ 2Bt —2

1 1
Al = )+2B(—=)-2=-1
(a1) - (an)

= K(a(t)t® +2b(t)t —2)+a(t) > —K+a(t) >0,

IN

so the entire term (5) is non-negative, and for 0 < t < x, f’(t) > a(t) f(t).
Lemma 2.6 applies to f, so there is some ¢; depending on a, b, ¥, X, but not
on y, with f > 0on [0, d;]. The factor [y(t) — Ky(0)t* — y(0)] is non-negative
on the same interval, where

y(t) — Ky(0)t* —y(0) > 0 = y(t) > y(0)(1 + Kt*),
so y(t) > 0 for 0 <t < 6 = min{dy, ﬁ}
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2.2 A nonlinear differential inequality

Theorem 2.8. Given a function f that satisfies f"f — (f)?> > 0 on (a,b),
at every critical point ¢ with f(c) # 0, there is either a positive local min. or
a negative local mazx.

Proof. Suppose c is a critical point, meaning f’(¢) = 0. Suppose also that
f(c) # 0, so that the function g(x) = f'(x)/f(x) is defined on a neighborhood
N = (c—46,c+0) C (a,b). By the quotient rule,

fa)f"(x) = (f'(x))*
(f(x))?

which is > 0 on N by hypothesis. It follows that g(z) is weakly increasing on
N. Forec<x<c+9, fl(x)/f(z) = g(z) > g(c) =0, and for c — 0 < = < ¢,
f(@)/f(@) =g(z) < g(c) = 0.

If f(¢) >0, then f(z) > 0on N so f'(x) > 0 on the right and f'(z) <0
on the left. f(c) is a local min. by the first derivative test.

If f(c) <0, then f(z) <0on N so f'(z) <0 on the right and f'(z) >0
on the left. f(c) is a local max. |

g'(z) =

Note that C? is not used, just the existence of f”. Constant functions
trivially satisfy both the hypotheses and conclusions.

Lemma 2.9. If p(z) satisfies p”(x) > 0 on (a,b) then for any ¢ € (a,b), p
satisfies p(x) > p(c) +p'(c)(x — ¢) for all z € (a,b).

Proof. (See [C].) |

Theorem 2.10. Given a function f that satisfies f"f — (f)> >0 on (a,b),
if there is a point ¢ in (a,b) with f(c) > 0, then f satisfies

f'(e)

f(l') > f(C) ’ eXp( f(C)

(z —¢))

for all x € (a,b).

Proof. By continuity, there is some neighborhood (s,t) C (a,b) so that s <
¢ <tand f(x) > 0 on (s,t). Suppose f(z) = 0 for some z € (¢,b). Then,
the set {t : f(x) > 0 on (¢,t)} is non-empty and has sup =T < z < b. By
construction and using continuity again, f(7') = 0 and f(z) > 0 on (s,T).
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Consider h(z) = In(f(x)), which is well-defined on (s,T). b’ = f'/f =g,
from Theorem 2.8, so b’ = ¢’ > 0 on (s,T). By Lemma 2.9, h(z) > h(c) +
h'(c)-(x—c)on (s,T):

f'(c)
(o)
f'(¢)
f(c)
for all x in (s,7). This implies lir% f(z) = f(T) > 0, which contradicts the

In(f(z)) > In(f(c))+

(z—c)
flx) = fle)-exp(Fr~ -

construction of 7. We can conclude that f is never zero on (¢, b), and always
positive there, so the inequality holds on (s,b). The inequality on the other
side of ¢ follows from an analogous inf argument. i

It follows that if ¢ is a critical point with f(c) > 0, then f(c) is a global
minimum. It further follows that either f is constant or there is at most one
point ¢ where f'(c) =0 and f(c) > 0.
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