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1 Real autonomous ODE

The following Lemma gives conditions for the existence of a solution of a
differential equation which is bounded on the domain R.

Lemma 1.1. Given real numbers a < b, if f : (a, b) → R is a continuous,
nonvanishing function, and there are some constants C1 > 0, C2 > 0, δ1 ∈
(0, b − a), δ2 ∈ (0, b − a) so that |f(t)| ≤ C1(t − a) for a < t < a + δ1
and |f(t)| ≤ C2(b − t) for b − δ2 < t < b, then there exists a one-to-one,
onto function g : R → (a, b) so that y = g(t) is a solution of the equation
dy
dt

= f(y).

Proof. 1
f(x)

is continuous on (a, b), so the function

G(t) =

∫ t

a+b
2

1

f(x)
dx (1)

is differentiable on (a, b) with a nonvanishing, nonzero derivative, d
dt
G(t) =

1
f(t)

. Because f and 1
f
have constant sign, G(t) is monotone on (a, b). Suppose

f(t) > 0, so G is increasing; the f(t) < 0 case is similar.
For t ∈ (b− δ2, b),

G(t) =

∫ b−δ2

a+b
2

1

f(x)
dx+

∫ t

b−δ2

1

f(x)
dx ≥

∫ b−δ2

a+b
2

1

f(x)
dx+

∫ t

b−δ2

1

C2(b− x)
dx,
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which is unbounded. Similarly, G is also unbounded at the other endpoint,
so G : (a, b) → R is onto and invertible. Let T be any constant, and define

g(t) = G−1(t+ T ), (2)

so g : R → (a, b) is onto and increasing, and (by the Inverse Function Theo-
rem, [C]), y = g(t) is differentiable with

dy

dt
=

1

G′(G−1(t+ T ))
=

1
1

f(y)

= f(y).

Such solutions with domain R are unique up to translation.

Lemma 1.2. Given an open (possibly infinite) interval I, if f : I → R is
a continuous, nonvanishing function, and g1 : R → I and g2 : R → I are
solutions of the equation dy

dt
= f(y), then there exists a constant T so that

g2(t) = g1(t + T ).

Proof. Because g′1(x) = f(g1(x)) is continuous and nonzero, the Inverse Func-
tion Theorem applies. For t ∈ R,

d

dt

(
g−1
1 (g2(t))− t

)
=

1

g′1(g
−1
1 (g2(t)))

g′2(t)− 1 (3)

=
1

f(g1(g
−1
1 (g2(t))))

f(g2(t))− 1 ≡ 0.
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There is also a local uniqueness theorem for solutions on an interval, with
one initial condition.

Lemma 1.3. Given open (possibly infinite) intervals I0, I1, I2, if f : I0 → R

is a continuous, nonvanishing function, and g1 : I1 → I0 and g2 : I2 → I0
are solutions of the equation dy

dt
= f(y), and there is a point c ∈ I1 ∩ I2

such that g1(c) = g2(c), then there exists δ > 0 so that g1(t) = g2(t) for all
t ∈ (c− δ, c + δ).

Proof. Because g′1(x) = f(g1(x)) is continuous and nonzero, the Inverse Func-
tion Theorem applies: there exists some δ1 > 0 so that g1 is one-to-one on
(c − δ1, c + δ1). Suppose f > 0, so g1 is increasing; the f < 0 case is sim-
ilar. Let ε = min{g1(c + 1

2
δ1) − g1(c), g1(c) − g1(c − 1

2
δ1)} > 0. Because

g2 is continuous, there is some δ2 > 0 corresponding to ε, so that for all
t ∈ (c−δ2, c+δ2), |g2(t)−g2(c)| = |g2(t)−g1(c)| < ε. Let δ = min{δ1, δ2} > 0,
then (c− δ, c+ δ) ⊆ I1 ∩ I2, where both g1 and g2 are defined. Also, for any
t ∈ (c− δ, c + δ),

g1(c− 1

2
δ1) ≤ g1(c)− ε < g2(t) < g1(c) + ε ≤ g1(c+

1

2
δ1),

and by the Intermediate Value Theorem, there is some x ∈ (c− 1
2
δ1, c+

1
2
δ1)

so that g1(x) = g2(t); this shows that x = g−1
1 (g2(t)), so g2(t) is in the domain

of g−1
1 . As in (3), for c− δ < t < c+ δ,

d

dt
(g−1

1 (g2(t))) ≡ 1 =⇒ g−1
1 (g2(t)) = t + T

for some constant T . Evaluating g2(t) = g1(t + T ) at t = c gives g2(c) =
g1(c + T ), and g2(c) = g1(c) by hypothesis, so c + T = c because g1 is one-
to-one. It follows that T = 0 and g1(t) = g2(t) for all t ∈ (c− δ, c + δ).
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Lemma 1.4. If f : R → R is a continuous, nonvanishing function, then
there exist some open interval I and a one-to-one, onto function g : I → R

so that y = g(t) is a solution of the equation dy
dt

= f(y).

Proof. 1
f(x)

is continuous on R, so the function

G(t) =

∫ t

0

1

f(x)
dx

is differentiable on R with a nonvanishing, nonzero derivative, d
dt
G(t) = 1

f(t)
.

Because f and 1
f
have constant sign, G(t) is monotone on R. Its image is

some open interval I, so G : R → I is invertible.
Let T be any constant, and define g(t) = G−1(t + T ) on the interval

I − T = {x ∈ R : x + T ∈ I}, so g : I − T → R is invertible, and therefore
not bounded. g is a solution of the ODE as in Lemma 1.1.

Lemma 1.5. Given b ∈ R, if f : (−∞, b) → R is a continuous, nonvanishing
function, and there are some constants C3 > 0, δ3 ∈ (0, 1) so that |f(t)| ≤
C3(b − t) for b − δ3 < t < b, then there exist an open interval I and a one-
to-one, onto function g : I → (−∞, b) so that y = g(t) is a solution of the
equation dy

dt
= f(y).

Proof. 1
f(x)

is continuous on (−∞, b), so the function

G(t) =

∫ t

b−1

1

f(x)
dx

is differentiable on (−∞, b) with a nonvanishing, nonzero derivative, d
dt
G(t) =

1
f(t)

. Because f and 1
f
have constant sign, G(t) is monotone on (−∞, b).

Suppose f(t) > 0, so G is increasing; the f(t) < 0 case is similar.
For t ∈ (b− δ3, b),

G(t) =

∫ b−δ3

b−1

1

f(x)
dx+

∫ t

b−δ3

1

f(x)
dx ≥

∫ b−δ3

b−1

1

f(x)
dx+

∫ t

b−δ3

1

C3(b− x)
dx,

which is unbounded. So, the image of G is either I = (L,∞) or I = R.
Let T be any constant, and define g(t) = G−1(t + T ) on the interval

I − T = {x ∈ R : x + T ∈ I}, so g : I − T → (−∞, b) is invertible, and
therefore not bounded. g is a solution of the ODE as in Lemma 1.1.
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Theorem 1.6. Let f : R → R be a real analytic function. The following are
equivalent:

1. there exists a non-constant, bounded, real analytic function g : R → R

so that y = g(t) is a solution of the equation dy
dt

= f(y);

2. there are at least two distinct points a0, b0 where f(a0) = f(b0) = 0.

Proof. At any zero of f , say c0, the real analyticity implies there is some
constant C0 so that |f(t)| ≤ C0|x− c0| for x near c0.

To show 2 . =⇒ 1 ., the property that f is real analytic on R implies that
a0 is an isolated zero, and because a0 is not the only zero of f , there is some
open interval (a, b) with either a = a0 or b = a0, satisfying the hypotheses
of Lemma 1.1. The conclusion is that there exists a non-constant solution
g : R → (a, b), which by construction, (1) and (2), is real analytic.

To show 1 . =⇒ 2 ., suppose, toward a contradiction, that there exists a
solution g1 as claimed, and that f has fewer than two zeros.

Case 1. If f is nonvanishing on R then Lemma 1.4 applies and there is
some nonempty open interval I and some onto function g2 : I → R which is a
solution of dy

dt
= f(y). By the construction of Lemma 1.4, g2 is real analytic.

On the interval I, g2 − g1 is continuous, and because g1 is bounded and g2
is onto, g2 − g1 attains some negative value and some positive value, so by
the Intermediate Value Theorem, there is some c so that g1(c) = g2(c). By
Lemma 1.3, g1(t) ≡ g2(t) on some interval (c − δ, c + δ), and because both
functions are real analytic, g1(t) ≡ g2(t) on I. The contradiction is that g2
is unbounded on I while g1 is bounded.

Case 2. If f has exactly one zero, b ∈ R, then Lemma 1.5 applies to
f on (−∞, b): there is some interval I2 and some one-to-one, onto solution
g2 : I2 → (−∞, b). By an analogous existence result for f on (b,∞), there
is some interval I3 and some one-to-one, onto solution g3 : I3 → (b,∞).
Because g1 is non-constant, there is some x0 where g(x0) �= b.

If g1(x0) < b, then there is some T ∈ I2 with g2(T ) = g1(x0), and the
function g4(t) = g2(t+T −x0) is, by construction, a real analytic solution of
dy
dt

= f(y) on an open interval I2− (T − x0) satisfying g4(x0) = g1(x0). As in
Case 1., the uniqueness from Lemma 1.3 shows that g4 = g1 on I − (T −x0),
contradicting the boundedness of g1.

The g1(x0) > b case is similar, using g3.
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2 Ordinary differential inequalities

2.1 Linear differential inequalities

Lemma 2.1. If u(t) is continuous on [a, b] and u(a) > 0, then either u(t) > 0
for all t ∈ [a, b], or there is some t1 ∈ (a, b] so that u(t) > 0 on [a, t1) and
u(t1) = 0.

Proof. Consider the set S = {x ∈ [a, b] : u(t) > 0 for all t ∈ [a, x)}; it is
non-empty (by continuity of u and u(a) > 0), and bounded above, so it has
a least upper bound t1 ∈ (a, b]. If there were some t0 with a < t0 < t1 and
u(t0) ≤ 0, then there would be no x ∈ S with x > t0, and t0 would be an
upper bound, contradicting the least property of t1. So, u(t) > 0 for all
t ∈ [a, t1). Case 1: If u(t1) = 0, then u > 0 on [a, t1) as claimed. Case 2: If
u(t1) < 0 then by continuity, there is some t2 with a < t2 < t1 and u(t2) < 0,
contradicting the above property that u(t) > 0 for all t ∈ [a, t1). Case 3:
If t1 = b and u(t1) > 0, then u > 0 on [a, b] as claimed. Case 4: If t1 < b
and u(t1) > 0, then by continuity, u(t) would be positive on some interval
[a, t1 + δ), contradicting the property that t1 is an upper bound for S. Only
Cases 1 and 3 do not lead to a contradiction.

Lemma 2.2. Suppose a(t) is a real function on [0, 1) such that a(t) ≥ 0
and a is bounded on every subinterval [0, x] ⊆ [0, 1). If y is continuous on
[0, 1] with y(0) ≥ 0, lim

t→0+
y′(t) ≥ 0, and y′′(t) ≥ a(t)y(t) for 0 < t < 1, then

y(t) ≥ 0 for all 0 ≤ t ≤ 1 and y′(t) ≥ 0 for all 0 < t < 1.

Proof. Case 1: y(0) > 0 and lim
t→0+

y′(t) > 0. In this case, we can show that

y > 0 on [0, 1] and y′ > 0 on (0, 1). By Lemma 2.1 applied to y on [0, 1],
either y > 0 on [0, 1], or there is some t1 ∈ (0, 1] so that y(t) > 0 for all
t ∈ [0, t1) and y(t1) = 0. In the latter case, y attains some positive maximum
value on [0, t1]. If y(0) is the maximum, then by the Mean Value Theorem,

for any 0 < δ < t1, there is some t2 with 0 < t2 < δ and y′(t2) =
y(δ)−y(0)

δ
≤ 0,

which contradicts lim
t→0+

y′(t) > 0. If the maximum is at an interior point t3

with 0 < t3 < t1, then y′(t3) = 0. From lim
t→0+

y′(t) > 0, there is some t4 with

0 < t4 < t3 and y′(t4) > 0. Applying the Mean Value Theorem to y′ on
[t4, t3], there is some t5 with t4 < t5 < t3 and y′′(t5) =

y′(t3)−y′(t4)
t3−t4

< 0. This
contradicts y′′(t5) ≥ a(t5)y(t5) ≥ 0. We can conclude that y(t1) must be the
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maximum value, and y(t1) > 0, which contradicts y(t1) = 0. This shows
y(t) > 0 for all t ∈ [0, 1].

For any t7 ∈ (0, 1), there is some t8 with 0 < t8 < t7 and y′(t8) > 0.

By the Mean Value Theorem, there is some t9 with y′(t7)−y′(t8)
t7−t8

= y′′(t9) ≥
a(t9)y(t9) ≥ 0. It follows that y′(t7) ≥ y′(t8) > 0.

Case 1 did not use the boundedness of a, just a ≥ 0.
Case 2: y(0) ≥ 0 and lim

t→0+
y′(t) ≥ 0. Suppose, toward a contradiction,

that there is some t0 with 0 < t0 < 1 and y(t0) < 0. For 0 ≤ t ≤ t0,
there is a bound A > 0 with 0 ≤ a(t) ≤ A. For t ∈ [0, t0], define u(t) =

y(t) − 1
2
y(t0)e

√
A(t−t0). Then, by construction, u(0) > 0 and u(t0) < 0. For

0 < t < t0,

u′(t) = y′(t)− 1

2
y(t0)

√
Ae

√
A(t−t0)

=⇒ lim
t→0+

u′(t) =

(
lim
t→0+

y′(t)
)
− 1

2
y(t0)

√
A > 0,

u′′(t) = y′′(t)− 1

2
y(t0)Ae

√
A(t−t0)

≥ a(t)y(t)− 1

2
y(t0)a(t)e

√
A(t−t0)

+
1

2
y(t0)a(t)e

√
A(t−t0) − 1

2
y(t0)Ae

√
A(t−t0)

= a(t)u(t) +
1

2
y(t0)(a(t)− A)e

√
A(t−t0)

≥ a(t)u(t).

Let w(t) = u(t0t), just horizontally re-scaling u to the domain [0, 1] so that
w(0) > 0, w(1) < 0, lim

t→0+
w′(t) > 0, and w′′(t) ≥ t20a(t0t)w(t), so Case 1

applies to w, contradicting w(1) < 0. The conclusion is that y(t) ≥ 0 on
[0, 1), and on [0, 1] by continuity.

To establish the inequality y′ ≥ 0, for any t1 with 0 < t1 < 1 and any
ε > 0, from lim

t→0+
y′(t) ≥ 0, there is some t2 with 0 < t2 < t1 and y′(t2) >

−ε. By the Mean Value Theorem, there is some t3 with t2 < t3 < t1 and
y′(t1)−y′(t2)

t1−t2
= y′′(t3) ≥ a(t3)y(t3) ≥ 0. It follows that y′(t1) ≥ y′(t2) > −ε.
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Here’s a higher order generalization, using only the Mean Value Theorem,
not the maximum value.

Lemma 2.3. Let k ≥ 2 be an integer. Suppose a(t) is a real function on [0, 1)
such that a(t) ≥ 0 and a is bounded on every subinterval [0, x] ⊆ [0, 1). If y
is continuous on [0, 1] with y(0) ≥ 0, and lim

t→0+
y(j) ≥ 0 for j = 1, . . . , k − 1,

and y(k)(t) ≥ a(t)y(t) for 0 < t < 1, then y(t) ≥ 0 for all 0 ≤ t ≤ 1 and
y(j)(t) ≥ 0 for all 0 < t < 1, j = 1, . . . , k.

Proof. Case 1: y(0) > 0 and lim
t→0+

y(j)(t) > 0. In this case, we can show that

y > 0 on [0, 1] and y(j) > 0 on (0, 1) for j = 1, . . . , k − 1.
By Lemma 2.1 applied to y on [0, 1], either y > 0 on [0, 1], or there is

some t1 ∈ (0, 1] so that y(t) > 0 for all t ∈ [0, t1) and y(t1) = 0.
In the latter case, y(t1) = 0 < y(0), so by the Mean Value Theorem for y

on [0, t1], there is some t2 with 0 < t2 < t1 and y′(t2) < 0. Then, the MVT
applies to y′ on [t3, t2] for some t3 > 0 where y′(t3) > 0, using lim

t→0+
y′(t) > 0,

so there is some t4 > 0 where y′′(t4) =
y′(t2)−y′(t3)

t2−t3
< 0. Repeatedly applying

this MVT argument to y(j) until j = k, gives some tN with 0 < tN < t1,
y(k)(tN ) < 0, contradicting y(k)(tN) ≥ a(tN)y(tN) ≥ 0.

So, the only case not leading to a contradiction is that y(t) > 0 on [0, 1].
The above MVT argument also shows that all y(j) are positive on (0, 1)

for j = 1, . . . , k − 1, since any point tn with 0 < tn < t1 = 1 and y(j)(tn) ≤ 0
leads to another point tm with 0 < tm < tn and y(j+1)(tm) < 0, eventually
contradicting y(k)(tN) ≥ a(tN )y(tN) ≥ 0.

Case 1 did not use the boundedness of a, just a ≥ 0.
Case 2: y(0) ≥ 0 and lim

t→0+
y(j) ≥ 0, j = 1, . . . , k − 1. Suppose, toward

a contradiction, that there is some t0 with 0 < t0 < 1 and y(t0) < 0. For
0 ≤ t ≤ t0, there is a bound A > 0 with 0 ≤ a(t) ≤ A. For t ∈ [0, t0],

define u(t) = y(t) − 1
2
y(t0)e

A1/k(t−t0). Then, by construction, u(0) > 0 and
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u(t0) < 0. For 0 < t < t0, 1 ≤ j ≤ k − 1,

u(j)(t) = y(j)(t)− 1

2
y(t0)A

j/keA
1/k(t−t0)

=⇒ lim
t→0+

u(j)(t) =

(
lim
t→0+

y(j)(t)

)
− 1

2
y(t0)A

j/k > 0,

u(k)(t) = y(k)(t)− 1

2
y(t0)Ae

A1/k(t−t0)

≥ a(t)y(t)− 1

2
y(t0)a(t)e

A1/k(t−t0)

+
1

2
y(t0)a(t)e

A1/k(t−t0) − 1

2
y(t0)Ae

A1/k(t−t0)

= a(t)u(t) +
1

2
y(t0)(a(t)−A)eA

1/k(t−t0)

≥ a(t)u(t).

Let w(t) = u(t0t), just horizontally re-scaling u to the domain [0, 1] so that
w(0) > 0, w(1) < 0, lim

t→0+
w(j)(t) > 0, and w(k)(t) ≥ tk0a(t0t)w(t), so Case 1

applies to w, contradicting w(1) < 0. The conclusion is that y(t) ≥ 0 on
[0, 1), and on [0, 1] by continuity.

To establish the inequalities y(j) ≥ 0, start with j = k − 1. Then, for
any t1 with 0 < t1 < 1 and any ε > 0, from lim

t→0+
y(k−1)(t) ≥ 0, there is some

t2 with 0 < t2 < t1 and y′(t2) > −ε. By the MVT, there is some t3 with

t2 < t3 < t1 and y(k−1)(t1)−y(k−1)(t2)
t1−t2

= y(k)(t3) ≥ a(t3)y(t3) ≥ 0. It follows that

y(k−1)(t1) ≥ y(k−1)(t2) > −ε. A similar argument applies for j decreasing
from k − 1 to 1.

Lemma 2.4. If the left-side limit lim
t→b−

f(t) = −∞, then there is no interval

(b− δ, b) on which f ′(t) is bounded below.

Proof. (See [C].)
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Lemma 2.5. Suppose a(t) is a real function on [0, 1) such that a is bounded
above on every subinterval [0, x] ⊆ [0, 1) and bounded below on every subin-
terval [x1, x2] ⊆ (0, 1). If y is continuous on [0, 1] with y(0) ≥ 0 and
y′(t) ≥ a(t)y(t) for 0 < t < 1, then y(t) ≥ 0 for all 0 ≤ t ≤ 1.

Proof. Case 1: y(0) > 0.
By Lemma 2.1 applied to y on [0, 1], either y > 0 on [0, 1], or there is

some t1 ∈ (0, 1] so that y(t) > 0 for all t ∈ [0, t1) and y(t1) = 0. If t1 = 1,
then y ≥ 0 as claimed.

So, suppose toward a contradiction that t1 < 1. On the interval [1
2
t1, t1],

a is bounded below: there is some K < 0 so that K ≤ a(t). Define the
function f(t) = ln(y(t)) for t in the interval (1

2
t1, t1). f has left-side limit

lim
t→t−1

f(t) = −∞. For all t in (1
2
t1, t1), the derivative is bounded below: f ′(t) =

1
y(t)

y′(t) ≥ 1
y(t)

a(t)y(t) = a(t) ≥ K, but this contradicts Lemma 2.4.

Case 2: y(0) = 0.
Suppose toward a contradiction that there is some p ∈ [0, 1] with y(p) < 0.

p �= 0 by assumption, and if p = 1, then by continuity of y, there is some
nearby point p − δ1/2 with y(p − δ1/2) < 0. So by re-labeling if necessary,
we can assume 0 < p < 1. On the interval [0, p], a is bounded above: there
is some A > 0 so that a(t) ≤ A.

Define g(t) = −y(p−pt) on the domain 0 ≤ t ≤ 1, so that g(0) = −y(p) >
0, g(1) = −y(0) = 0, and g is continuous on [0, 1]. The derivative satisfies

g′(t) = py′(p− pt) ≥ pa(p− pt)y(p− pt) = −pa(p− pt)g(t),

and the coefficient −pa(p− pt) is bounded below by −pA. Case 1 applies to
g, so g(t) > 0 on [0, 1) and g(1) = 0. Define the function f(t) = ln(g(t)) for t
in the interval (0, 1). f has left-side limit lim

t→1−
f(t) = −∞. For all t in (0, 1),

the derivative is bounded below: f ′(t) = 1
g(t)

g′(t) ≥ 1
g(t)

(−pa(p − pt))g(t) =

−pa(p− pt) ≥ −pA, but this contradicts Lemma 2.4.
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Lemma 2.6. Suppose a(t) is a bounded real function on [0, X ]. Then there
is some δ with 0 < δ ≤ X, with the property that if y is continuous on [0, X ]
with y(0) ≥ 0, lim

t→0+
y′(t) ≥ 0, and y′′(t) ≥ a(t)y(t) for 0 < t < X, then

y(t) ≥ 0 for all 0 ≤ t ≤ δ.

Proof. Step 1. Pick any x in (0, X ], so that by hypothesis, there are some A >
0 and K < 0 so that K ≤ a(t) ≤ A for t ∈ [0, x]. Let δ = min{x, 1√

A
, 1√−K

} >

0. (Remark: depending on a, it may be possible to choose x that optimizes
δ.) To show that this is a δ as claimed by the Lemma, suppose toward a
contradiction that there is some c with 0 ≤ c ≤ δ and y(c) < 0. c > 0 by
hypothesis.

Step 2. Let y(b) be the minimum value of y on [0, c], so y(b) ≤ y(c) < 0
and 0 < b ≤ c ≤ δ. The MVT applies to y on [0, b]: there is some t0 with

0 < t0 < b and y′(t0) = y(b)−y(0)
b−0

. The MVT applies to y′ (extended to
y′(0) = lim

t→0+
y(t) ≥ 0) on [0, t0]: there is some t1 with 0 < t1 < t0 and

y′′(t1) =
y′(t0)− y′(0)

t0 − 0
=

y(b)−y(0)
b

− y′(0)
t0

.

By hypothesis,

a(t1)y(t1) ≤ y′′(t1) =
y(b)− y(0)− by′(0)

bt0
≤ y(b)

bt0
< 0.

If a(t1) > 0 and y(t1) < 0, then y(t1) ≤ y(b)
bt0a(t1)

< y(b)
δ2A

≤ y(b), contradicting

the minimum property of y(b). So, a(t1) < 0 and y(t1) > 0.
Step 3. Lemma 2.1 applies to y on the interval [t1, b], so there is some t3

with t1 < t3 < b, y(t3) = 0, and y(t) > 0 for all t ∈ [t1, t3). A left-side version
of Lemma 2.1 applies to y on the interval [0, t1]; there are two cases:

Case 1. There is some t2 with 0 ≤ t2 < t1, y(t2) = 0, and y(t) > 0 for all
t ∈ (t2, t1].

Case 2. y(t) > 0 for all t ∈ [0, t1]. In this case denote t2 = 0.
In either case, there is some interval [t2, t3] where 0 ≤ t2 < t1 < t3 < b,

y(t3) = 0, y(t2) ≥ 0, and y(t) > 0 for all t ∈ (t2, t3). Let y(t4) be the
maximum value of y on [t2, t3]. In Case 1, t2 < t4 < t3, so the maximum
occurs at an interior point and y′(t4) = 0. In Case 2, t4 is either an interior
point of [t2, t3], or the maximum occurs at the endpoint t4 = t2 = 0, where
there is a right-side derivative y′(0) ≥ 0 as in Step 2. In either case, y′(t4) ≥ 0.
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Step 4. The MVT applies to y on [t4, t3]: there is some t5 with t4 < t5 < t3
and y′(t5) = y(t3)−y(t4)

t3−t4
. The MVT applies to y′ on [t4, t5]: there is some t6

with t4 < t6 < t5 and

y′′(t6) =
y′(t5)− y′(t4)

t5 − t4
=

y(t3)−y(t4)
t3−t4

− y′(t4)

t5 − t4
<

−y(t4)

b2
.

Using the lower bound for a and the property y(t6) > 0,

Ky(t6) ≤ a(t6)y(t6) ≤ y′′(t6) <
−y(t4)

b2

=⇒ y(t6) >
−y(t4)

b2K
≥ −y(t4)

δ2K
≥ y(t4),

contradicting the maximum property of y(t4).

Theorem 2.7. Suppose a(t) and b(t) are real functions on [0, 1), and there is
a point X such that 0 < X < 1 and a, b, and b′ are bounded on (0, X ]. Then
there is some δ with 0 < δ ≤ X, with the property that if y is continuous
on [0, 1) with y(0) ≥ 0, lim

t→0+
y′(t) ≥ 0, and y′′(t) ≥ a(t)y(t) + b(t)y′(t) for

0 < t < X, then y(t) ≥ 0 for all 0 ≤ t ≤ δ.

Proof. By hypothesis, there are some A > 0 andK < 0 so thatK ≤ a(t) ≤ A
for t ∈ [0, X ], and there are some B > 0 and L < 0 so that L ≤ b(t) ≤ B for
t ∈ [0, X ]. Let x = min{X, 1√

2A
, 1
4B

} > 0.
Recall the elementary calculus fact that if b is continuous and bounded

on (0, x), then b is (Riemann) integrable on [0, x]. Let p(t) =
∫ t

0
−1

2
b(x)dx,

so p is continuous on [0, x] and for 0 < t < x, p′(t) = −1
2
b(t).

Let
f(t) = ep(t)

[
y(t)−Ky(0)t2 − y(0)

]
,

so f is continuous on [0, x] and f(0) = 0. For 0 < t < x,

f ′(t) = ep(t) [y′(t)− 2Ky(0)t]

+ep(t)(−1

2
b(t))

[
y(t)−Ky(0)t2 − y(0)

]
,

and using lim
t→0+

(y(t)− y(0)) = 0 and the boundedness of b, the limit exists:

lim
t→0+

f ′(t) = lim
t→0+

y′(t) ≥ 0.
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For 0 < t < x,

f ′′(t) = ep(t) [y′′(t)− 2Ky(0)] + ep(t)(−1

2
b(t)) [y′(t)− 2Ky(0)t]

+ep(t)(−1

2
b(t))2

[
y(t)−Ky(0)t2 − y(0)

]

+ep(t)(−1

2
b′(t))

[
y(t)−Ky(0)t2 − y(0)

]

+ep(t)(−1

2
b(t)) [y′(t)− 2Ky(0)t]

≥ ep(t) [a(t)y(t) + b(t)y′(t)− 2Ky(0)]− ep(t)b(t) [y′(t)− 2Ky(0)t]

+ep(t)(−1

2
b(t))2

[
y(t)−Ky(0)t2 − y(0)

]

+ep(t)(−1

2
b′(t))

[
y(t)−Ky(0)t2 − y(0)

]

= ep(t)
[
y(t)−Ky(0)t2 − y(0)

](
a(t) +

1

4
(b(t))2 − 1

2
b′(t)

)
(4)

+ep(t)y(0)
(
K(a(t)t2 + 2b(t)t− 2) + a(t)

)
. (5)

In the last step, the y′ terms cancel by construction. Term (4) is equal to
ã(t)f(t), where ã(t) =

(
a(t) + 1

4
(b(t))2 − 1

2
b′(t)

)
is bounded by hypothesis.

The upper bounds a(t) ≤ A and b(t) ≤ B and the initial choice of x imply,
for 0 < t < x,

a(t)t2 + 2b(t)t− 2 ≤ At2 + 2Bt− 2

≤ A

(
1

2A

)
+ 2B

(
1

4B

)
− 2 = −1

=⇒ K(a(t)t2 + 2b(t)t− 2) + a(t) ≥ −K + a(t) ≥ 0,

so the entire term (5) is non-negative, and for 0 < t < x, f ′′(t) ≥ ã(t)f(t).
Lemma 2.6 applies to f , so there is some δ1 depending on a, b, b′, X , but not
on y, with f ≥ 0 on [0, δ1]. The factor [y(t)−Ky(0)t2 − y(0)] is non-negative
on the same interval, where

y(t)−Ky(0)t2 − y(0) ≥ 0 =⇒ y(t) ≥ y(0)(1 +Kt2),

so y(t) ≥ 0 for 0 ≤ t ≤ δ = min{δ1, 1√−K
}.
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2.2 A nonlinear differential inequality

Theorem 2.8. Given a function f that satisfies f ′′f − (f ′)2 ≥ 0 on (a, b),
at every critical point c with f(c) �= 0, there is either a positive local min. or
a negative local max.

Proof. Suppose c is a critical point, meaning f ′(c) = 0. Suppose also that
f(c) �= 0, so that the function g(x) = f ′(x)/f(x) is defined on a neighborhood
N = (c− δ, c + δ) ⊆ (a, b). By the quotient rule,

g′(x) =
f(x)f ′′(x)− (f ′(x))2

(f(x))2

which is ≥ 0 on N by hypothesis. It follows that g(x) is weakly increasing on
N . For c < x < c + δ, f ′(x)/f(x) = g(x) ≥ g(c) = 0, and for c− δ < x < c,
f ′(x)/f(x) = g(x) ≤ g(c) = 0.

If f(c) > 0, then f(x) > 0 on N so f ′(x) ≥ 0 on the right and f ′(x) ≤ 0
on the left. f(c) is a local min. by the first derivative test.

If f(c) < 0, then f(x) < 0 on N so f ′(x) ≤ 0 on the right and f ′(x) ≥ 0
on the left. f(c) is a local max.

Note that C2 is not used, just the existence of f ′′. Constant functions
trivially satisfy both the hypotheses and conclusions.

Lemma 2.9. If p(x) satisfies p′′(x) ≥ 0 on (a, b) then for any c ∈ (a, b), p
satisfies p(x) ≥ p(c) + p′(c)(x− c) for all x ∈ (a, b).

Proof. (See [C].)

Theorem 2.10. Given a function f that satisfies f ′′f − (f ′)2 ≥ 0 on (a, b),
if there is a point c in (a, b) with f(c) > 0, then f satisfies

f(x) ≥ f(c) · exp(f
′(c)
f(c)

(x− c))

for all x ∈ (a, b).

Proof. By continuity, there is some neighborhood (s, t) ⊆ (a, b) so that s <
c < t and f(x) > 0 on (s, t). Suppose f(z) = 0 for some z ∈ (c, b). Then,
the set {t : f(x) > 0 on (c, t)} is non-empty and has sup = T ≤ z < b. By
construction and using continuity again, f(T ) = 0 and f(x) > 0 on (s, T ).
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Consider h(x) = ln(f(x)), which is well-defined on (s, T ). h′ = f ′/f = g,
from Theorem 2.8, so h′′ = g′ ≥ 0 on (s, T ). By Lemma 2.9, h(x) ≥ h(c) +
h′(c) · (x− c) on (s, T ):

ln(f(x)) ≥ ln(f(c)) +
f ′(c)
f(c)

· (x− c)

f(x) ≥ f(c) · exp(f
′(c)
f(c)

· (x− c))

for all x in (s, T ). This implies lim
x→T−

f(x) = f(T ) > 0, which contradicts the

construction of T . We can conclude that f is never zero on (c, b), and always
positive there, so the inequality holds on (s, b). The inequality on the other
side of c follows from an analogous inf argument.

It follows that if c is a critical point with f(c) > 0, then f(c) is a global
minimum. It further follows that either f is constant or there is at most one
point c where f ′(c) = 0 and f(c) > 0.
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