J-holomorphic curves in rough almost complex structures

Adam Coffman

based on joint work with Yifei Pan and Yuan Zhang

Indiana University - Purdue University Fort Wayne

MAA MathFest in Chicago

http://ipfw.edu/math http://google.com/+AdamCoffman

July 2017

$$\mathbb{C} = (\mathbb{R}^2, i)$$
 has coordinates $z = x + iy$, $\overline{z} = x - iy$.

Let f be a continuous function on a connected open set $\Omega \subseteq \mathbb{C}$, $f : \Omega \to \mathbb{C}$, with real/imaginary parts:

$$f(z) = u(x, y) + iv(x, y)$$

Notation for (classical, pointwise) partial derivatives:

$$\frac{\partial f}{\partial z} = f_z = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right), \qquad \frac{\partial f}{\partial \bar{z}} = f_{\bar{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)$$

$$\mathbb{C} = (\mathbb{R}^2, i)$$
 has coordinates $z = x + iy$, $\overline{z} = x - iy$.

Let f be a continuous function on a connected open set $\Omega \subseteq \mathbb{C}$, $f : \Omega \to \mathbb{C}$, with real/imaginary parts:

$$f(z) = u(x, y) + iv(x, y)$$

Notation for (classical, pointwise) partial derivatives:

$$\frac{\partial f}{\partial z} = f_z = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right), \qquad \frac{\partial f}{\partial \bar{z}} = f_{\bar{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)$$

f is holomorphic means it satisfies the Cauchy-Riemann Equations:

$$\begin{bmatrix} u_{x} & u_{y} \\ v_{x} & v_{y} \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} u_{x} & u_{y} \\ v_{x} & v_{y} \end{bmatrix} \qquad \Longleftrightarrow \qquad \frac{\partial f}{\partial \bar{z}} \equiv 0.$$

Nice properties of a holomorphic function: $\frac{\partial f}{\partial \overline{z}} \equiv 0 \implies$:

• $\underline{C^{\infty}}$: f is smooth (all partial derivatives exist)

- $\underline{C^{\infty}}$: f is smooth (all partial derivatives exist)
- $\underline{C^{\omega}}$: f is complex analytic (locally = convergent power series in z)

- $\underline{C^{\infty}}$: f is smooth (all partial derivatives exist)
- $\underline{C^{\omega}}$: f is complex analytic (locally = convergent power series in z)
- $f \not\equiv 0$ has isolated zeros

- $\underline{C^{\infty}}$: f is smooth (all partial derivatives exist)
- $\underline{C^{\omega}}$: f is complex analytic (locally = convergent power series in z)
- $f \not\equiv 0$ has isolated zeros
- <u>WUCP</u>: The Weak Unique Continuation Property: If two solutions f and g satisfy f ≡ g on some open set, then f ≡ g

Nice properties of a holomorphic function: $\frac{\partial f}{\partial \bar{z}} \equiv 0 \implies$:

- $\underline{C^{\infty}}$: f is smooth (all partial derivatives exist)
- $\underline{C^{\omega}}$: f is complex analytic (locally = convergent power series in z)
- $f \not\equiv 0$ has isolated zeros
- <u>WUCP</u>: The Weak Unique Continuation Property: If two solutions f and g satisfy f ≡ g on some open set, then f ≡ g
- <u>SUCP</u>: *f* has the Strong Unique Continuation Property: If all the derivatives vanish at some point *p*: for all *a*, *b*, *c*,

$$\frac{\partial^a f}{\partial z^a}\Big|_p = 0 \quad \Longleftrightarrow \quad \frac{\partial^{b+c} f}{\partial x^b \partial y^c}\Big|_p = 0,$$

then $f \equiv 0$.

Two ways to generalize the Cauchy-Riemann equations for $f: \Omega \to \mathbb{C}$:

Two ways to generalize the Cauchy-Riemann equations for $f: \Omega \to \mathbb{C}$:

small changes to the "coefficients" of the differential equations;

Two ways to generalize the Cauchy-Riemann equations for $f: \Omega \to \mathbb{C}$:

small changes to the "coefficients" of the differential equations;

2 increase the target dimension to get vector valued $f: \Omega \to \mathbb{C}^n$

To generalize the Cauchy-Riemann Equation: $\frac{\partial f}{\partial \bar{z}} \equiv 0$, by perturbing the coefficients:

To generalize the Cauchy-Riemann Equation: $\frac{\partial f}{\partial \bar{z}} \equiv 0$, by perturbing the coefficients:

instead consider functions f where the z̄ derivative is just small compared to the z derivative:

To generalize the Cauchy-Riemann Equation: $\frac{\partial f}{\partial \overline{z}} \equiv 0$, by perturbing the coefficients:

 instead consider functions f where the z̄ derivative is just small compared to the z derivative:

$$\frac{\partial f}{\partial \bar{z}} = \mu(z) \cdot \frac{\overline{\partial f}}{\partial z}$$

for some complex valued function $\mu(z)$ with sup $|\mu(z)| < 1$.

To generalize the Cauchy-Riemann Equation: $\frac{\partial f}{\partial \bar{z}} \equiv 0$, by perturbing the coefficients:

 instead consider functions f where the z̄ derivative is just small compared to the z derivative:

$$\frac{\partial f}{\partial \bar{z}} = \mu(z) \cdot \frac{\partial f}{\partial z}$$

for some complex valued function $\mu(z)$ with sup $|\mu(z)| < 1$. • Matrix version of generalized C-R equation:

$$\left[\begin{array}{cc} u_{x} & u_{y} \\ v_{x} & v_{y} \end{array}\right] \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right] = J(f(z)) \cdot \left[\begin{array}{cc} u_{x} & u_{y} \\ v_{x} & v_{y} \end{array}\right]$$

for a 2×2 real matrix J with:

- $J \cdot J = -Id$,
- entries depending continuously on the coordinates in the target space

•
$$J(x,y) \approx J_{std} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Nice properties of solutions of $\frac{\partial f}{\partial \bar{z}} = \mu(z) \cdot \frac{\overline{\partial f}}{\partial z}$ (under mild hypotheses on μ : measurable, $\|\mu\|_{\infty} < 1$; and on $f: W_{loc}^{1,2}$) Nice properties of solutions of $\frac{\partial f}{\partial \overline{z}} = \mu(z) \cdot \frac{\overline{\partial f}}{\partial z}$ (under mild hypotheses on μ : measurable, $\|\mu\|_{\infty} < 1$; and on f: $W_{loc}^{1,2}$)

• $f \neq 0$ has isolated zeros, with a notion of "finite order of vanishing"

Nice properties of solutions of $\frac{\partial f}{\partial \overline{z}} = \mu(z) \cdot \frac{\overline{\partial f}}{\partial z}$ (under mild hypotheses on μ : measurable, $\|\mu\|_{\infty} < 1$; and on f: $W_{loc}^{1,2}$)

• $f \neq 0$ has isolated zeros, with a notion of "finite order of vanishing"

• <u>SUCP</u>: Assuming the derivatives exist, all derivatives = 0 at a point $\implies f \equiv 0$.

Nice properties of solutions of $\frac{\partial f}{\partial \overline{z}} = \mu(z) \cdot \frac{\overline{\partial f}}{\partial z}$ (under mild hypotheses on μ : measurable, $\|\mu\|_{\infty} < 1$; and on f: $W_{loc}^{1,2}$)

• $f \neq 0$ has isolated zeros, with a notion of "finite order of vanishing"

- <u>SUCP</u>: Assuming the derivatives exist, all derivatives = 0 at a point $\implies f \equiv 0.$
- SUCP \implies WUCP (again assuming derivatives exist).

A holomorphic curve is a map $\Omega \to \mathbb{C}^n$,

$$\vec{f}(z) = \left[f_1(z), \ldots, f_n(z)\right],$$

where all the components are holomorphic: $\frac{\partial f_k}{\partial \overline{z}} \equiv 0$

A holomorphic curve is a map $\Omega \to \mathbb{C}^n$,

$$\vec{f}(z) = \left[f_1(z), \ldots, f_n(z)\right],$$

where all the components are holomorphic: $\frac{\partial f_k}{\partial \bar{z}} \equiv 0 \iff$

$$\left[d\vec{f}(x,y) \right]_{2n\times 2} \cdot \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right] = \left[\begin{array}{ccc} 0 & -1 \\ 1 & 0 \\ & \ddots \\ & & 0 & -1 \\ & & & 1 & 0 \end{array} \right]_{2n\times 2n} \cdot \left[d\vec{f}(x,y) \right]_{2n} \cdot$$

A holomorphic curve is a map $\Omega \to \mathbb{C}^n$,

$$\vec{f}(z) = \left[f_1(z), \ldots, f_n(z)\right],$$

where all the components are holomorphic: $\frac{\partial f_k}{\partial \bar{z}} \equiv 0 \iff$

$$\left[d\vec{f}(x,y) \right]_{2n\times 2} \cdot \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right] = \left[\begin{array}{ccc} 0 & -1 \\ 1 & 0 \\ & \ddots \\ & & 0 & -1 \\ & & & 1 & 0 \end{array} \right]_{2n\times 2n} \cdot \left[d\vec{f}(x,y) \right]_{2n} \cdot \left[$$

Holomorphic curves have the same nice properties as holomorphic functions.

Pseudoholomorphic curves — or *J*-holomorphic curves

Modify the $2n \times 2n$ coefficient matrix to get an "Almost Complex Structure" ... $J_{2n \times 2n}$ with real entries depending continuously on the coordinates in \mathbb{C}^n , satisfying $J \cdot J = -Id$.

Pseudoholomorphic curves — or *J*-holomorphic curves

Modify the $2n \times 2n$ coefficient matrix to get an "Almost Complex Structure" ... $J_{2n\times 2n}$ with real entries depending continuously on the coordinates in \mathbb{C}^n , satisfying $J \cdot J = -Id$.

A *J*-holomorphic curve $\vec{f}(z) = [f_1(z), \dots, f_n(z)]$ is a differentiable map $\Omega \to \mathbb{C}^n = \mathbb{R}^{2n}$ satisfying:

$$d\vec{f}(x,y) \cdot J_{std} = J(\vec{f}(x,y)) \cdot d\vec{f}(x,y).$$

Pseudoholomorphic curves — or *J*-holomorphic curves

Modify the $2n \times 2n$ coefficient matrix to get an "Almost Complex Structure" ... $J_{2n\times 2n}$ with real entries depending continuously on the coordinates in \mathbb{C}^n , satisfying $J \cdot J = -Id$.

A *J*-holomorphic curve $\vec{f}(z) = [f_1(z), \ldots, f_n(z)]$ is a differentiable map $\Omega \to \mathbb{C}^n = \mathbb{R}^{2n}$ satisfying:

$$d\vec{f}(x,y) \cdot J_{std} = J(\vec{f}(x,y)) \cdot d\vec{f}(x,y).$$

For J close to J_{std} , some linear algebra \implies

$$\begin{bmatrix} \frac{\partial f_1}{\partial \overline{z}} \\ \vdots \\ \frac{\partial f_n}{\partial \overline{z}} \end{bmatrix} = [\mathbf{Q}(f(z))]_{n \times n} \cdot \begin{bmatrix} \frac{\overline{\partial f_1}}{\partial z} \\ \vdots \\ \frac{\overline{\partial f_n}}{\partial z} \end{bmatrix}$$

for some matrix **Q** with complex entries, derived from J with the same "regularity", **Q** = **0** when $J = J_{std}$.

Adam Coffman (IPFW)

• Local Regularity: If J is $C^{k,\alpha}$, k = 0, 1, 2, ..., then curves \vec{f} are $C^{k+1,\alpha}$.

- Local Regularity: If J is $C^{k,\alpha}$, k = 0, 1, 2, ..., then curves \vec{f} are $C^{k+1,\alpha}$.
- Uniqueness: If J is Lipschitz, then curves $\vec{f} \neq \vec{0}$ have isolated zeros, satisfy SUCP, WUCP

- Local Regularity: If J is $C^{k,\alpha}$, k = 0, 1, 2, ..., then curves \vec{f} are $C^{k+1,\alpha}$.
- Uniqueness: If J is Lipschitz, then curves $\vec{f} \neq \vec{0}$ have isolated zeros, satisfy SUCP, WUCP
- Global: If an almost complex manifold has C^{1,α} operator J, then the Kobayashi-Royden pseudo-norm is upper semicontinuous.

- Local Regularity: If J is $C^{k,\alpha}$, k = 0, 1, 2, ..., then curves \vec{f} are $C^{k+1,\alpha}$.
- Uniqueness: If J is Lipschitz, then curves $\vec{f} \neq \vec{0}$ have isolated zeros, satisfy SUCP, WUCP
- Global: If an almost complex manifold has C^{1,α} operator J, then the Kobayashi-Royden pseudo-norm is upper semicontinuous. (KR measures the size of J-holomorphic disks)

- Local Regularity: If J is $C^{k,\alpha}$, k = 0, 1, 2, ..., then curves \vec{f} are $C^{k+1,\alpha}$.
- Uniqueness: If J is Lipschitz, then curves $\vec{f} \neq \vec{0}$ have isolated zeros, satisfy SUCP, WUCP
- Global: If an almost complex manifold has C^{1,α} operator J, then the Kobayashi-Royden pseudo-norm is upper semicontinuous. (KR measures the size of J-holomorphic disks)

Reference: [Ivashkovich-Shevchishin₂₀₁₁]

For $0 < \alpha < 1$, an almost complex structure on $\mathbb{C}^2 = \mathbb{R}^4$:

$$J(z_1, z_2) = \left[egin{array}{cccc} 0 & -1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & -2|z_2|^lpha & 0 & -1 \ -2|z_2|^lpha & 0 & 1 & 0 \end{array}
ight]$$

.

For 0 < α < 1, an almost complex structure on $\mathbb{C}^2 = \mathbb{R}^4$:

$$J(z_1,z_2) = \left[egin{array}{cccc} 0 & -1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & -2|z_2|^lpha & 0 & -1 \ -2|z_2|^lpha & 0 & 1 & 0 \end{array}
ight]$$

 \mathcal{C}^1 maps $\mathbb{R}^2 \to \mathbb{R}^4$:

$$\vec{f}(x,y) = [x,y,0,0]$$

 $\vec{g}(x,y) = [x,y,u(x),0]$

 $ec{f}$ is J-holomorphic, and if $rac{du}{dx}=2|u|^lpha$, then $ec{g}$ is J-holomorphic.

For $0 < \alpha < 1$, an almost complex structure on $\mathbb{C}^2 = \mathbb{R}^4$:

$$J(z_1,z_2) = \left[egin{array}{cccc} 0 & -1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & -2|z_2|^lpha & 0 & -1 \ -2|z_2|^lpha & 0 & 1 & 0 \end{array}
ight]$$

 \mathcal{C}^1 maps $\mathbb{R}^2 \to \mathbb{R}^4$:

$$\vec{f}(x,y) = [x,y,0,0]$$

 $\vec{g}(x,y) = [x,y,u(x),0]$

 \vec{f} is *J*-holomorphic, and if $\frac{du}{dx} = 2|u|^{\alpha}$, then \vec{g} is *J*-holomorphic. This ODE doesn't have unique solutions for initial conditions u(0) = u'(0) = 0:

$$u(x) = \left\{ egin{array}{cc} 0 & x \leq c \ ((2-2lpha)(x-c))^{1/(1-lpha)} & x > c \end{array}
ight.$$

so for (non-Lipschitz) J with Hölder continuity $C^{0,\alpha}$, the Weak Unique Continuation Property need not hold.

so for (non-Lipschitz) J with Hölder continuity $C^{0,\alpha}$, the Weak Unique Continuation Property need not hold.

For $0 < \alpha \leq \frac{2}{3}$, this phenomenon was used by [Ivashkovich-Pinchuk-Rosay₂₀₀₅] to construct an example of an almost complex manifold where J is $C^{0,\alpha}$ and the Kobayashi-Royden pseudo-norm is not upper semicontinuous.

so for (non-Lipschitz) J with Hölder continuity $C^{0,\alpha}$, the Weak Unique Continuation Property need not hold.

For $0 < \alpha \leq \frac{2}{3}$, this phenomenon was used by [Ivashkovich-Pinchuk-Rosay₂₀₀₅] to construct an example of an almost complex manifold where J is $\mathcal{C}^{0,\alpha}$ and the Kobayashi-Royden pseudo-norm is not upper semicontinuous.

Such an example exists for any $0 < \alpha < 1$: [C—Pan₂₀₁₁].

so for (non-Lipschitz) J with Hölder continuity $C^{0,\alpha}$, the Weak Unique Continuation Property need not hold.

For $0 < \alpha \leq \frac{2}{3}$, this phenomenon was used by [Ivashkovich-Pinchuk-Rosay₂₀₀₅] to construct an example of an almost complex manifold where J is $\mathcal{C}^{0,\alpha}$ and the Kobayashi-Royden pseudo-norm is not upper semicontinuous.

Such an example exists for any $0 < \alpha < 1$: [C—Pan₂₀₁₁].

(still open for Lipschitz or C^1 cases)

Proposition

[Rosay₂₀₁₀] *There exist:*

- a complex 2×2 matrix $\mathbf{Q}(z)$ with continuous entries and $\mathbf{Q}(0) = [0]$,
- a non-constant, \mathcal{C}^{∞} smooth map $\vec{g} : \mathbb{C} \to \mathbb{C}^2$, such that:

$$\frac{\partial \vec{g}}{\partial \bar{z}} = \mathbf{Q}(z) \cdot \overline{\frac{\partial \vec{g}}{\partial z}},$$

and all derivatives of \vec{g} vanish at z = 0.

Proposition

[Rosay₂₀₁₀] *There exist:*

- a complex 2×2 matrix $\mathbf{Q}(z)$ with continuous entries and $\mathbf{Q}(0) = [0]$,
- a non-constant, \mathcal{C}^∞ smooth map $ec{g}:\mathbb{C}\to\mathbb{C}^2$, such that:

$$\frac{\partial \vec{g}}{\partial \bar{z}} = \mathbf{Q}(z) \cdot \overline{\frac{\partial \vec{g}}{\partial z}},$$

and all derivatives of \vec{g} vanish at z = 0.

 \vec{g} can have an isolated zero of ∞ order, or a convergent sequence of zeros.

Proposition

[Rosay₂₀₁₀] There exist:

- a complex 2×2 matrix $\mathbf{Q}(z)$ with continuous entries and $\mathbf{Q}(0) = [0]$,
- a non-constant, \mathcal{C}^∞ smooth map $ec{g}:\mathbb{C}\to\mathbb{C}^2$, such that:

$$\frac{\partial \vec{g}}{\partial \bar{z}} = \mathbf{Q}(z) \cdot \overline{\frac{\partial \vec{g}}{\partial z}},$$

and all derivatives of \vec{g} vanish at z = 0.

 \vec{g} can have an isolated zero of ∞ order, or a convergent sequence of zeros. [C—Pan₂₀₁₂]: There exists such a pair \vec{g} , **Q** where the **Q** entries also vanish to infinite order: $z^{-k}\mathbf{Q} \rightarrow [0]$ for all k. (but **Q** is not Lipschitz in any neighborhood of 0)

Proposition

 $[{\rm Rosay}_{2010}]$ There exist:

- a complex 2×2 matrix $\mathbf{Q}(z)$ with continuous entries and $\mathbf{Q}(0) = [0]$,
- a non-constant, \mathcal{C}^{∞} smooth map $\vec{g}:\mathbb{C}\to\mathbb{C}^2$, such that:

$$\frac{\partial \vec{g}}{\partial \bar{z}} = \mathbf{Q}(z) \cdot \overline{\frac{\partial \vec{g}}{\partial z}},$$

and all derivatives of \vec{g} vanish at z = 0.

 \vec{g} can have an isolated zero of ∞ order, or a convergent sequence of zeros. [C—Pan₂₀₁₂]: There exists such a pair \vec{g} , **Q** where the **Q** entries also vanish to infinite order: $z^{-k}\mathbf{Q} \rightarrow [0]$ for all k. (but **Q** is not Lipschitz in any neighborhood of 0)

This phenomenon can be used to construct a continuous J on \mathbb{C}^4 (with $J - J_{std}$ vanishing to infinite order) and \mathcal{C}^{∞} smooth J-holomorphic curves \vec{f} without the SUCP property.

[C—Pan-Zhang₂₀₁₇] There exists a (real) differentiable function $V : \mathbb{C} \to \mathbb{C}$ such that $\frac{\partial V}{\partial \overline{z}}$ is continuous and $\frac{\partial V}{\partial z}$ is discontinuous.

[C—Pan-Zhang₂₀₁₇] There exists a (real) differentiable function $V : \mathbb{C} \to \mathbb{C}$ such that $\frac{\partial V}{\partial \overline{z}}$ is continuous and $\frac{\partial V}{\partial z}$ is discontinuous.

Let
$$\mathbf{Q}(z_1, z_2) = \begin{bmatrix} 0 & \frac{\partial V(z_2)}{\partial \overline{z}_2} \\ 0 & 0 \end{bmatrix}$$
. Then $\vec{f}(z) = \begin{bmatrix} f_1(z) \\ z \end{bmatrix}$ *J*-holomorphic
 $\implies \frac{\partial \vec{f}}{\partial \overline{z}} = \mathbf{Q}(\vec{f}(z)) \cdot \frac{\partial \vec{f}}{\partial z} \implies \frac{\partial f_1}{\partial \overline{z}} = \frac{\partial V(z)}{\partial \overline{z}} \implies f_1(z) = V(z) + C(z)$ for
some holomorphic *C*.

[C—Pan-Zhang₂₀₁₇] There exists a (real) differentiable function $V : \mathbb{C} \to \mathbb{C}$ such that $\frac{\partial V}{\partial \overline{z}}$ is continuous and $\frac{\partial V}{\partial z}$ is discontinuous.

Let
$$\mathbf{Q}(z_1, z_2) = \begin{bmatrix} 0 & \frac{\partial V(z_2)}{\partial \overline{z}_2} \\ 0 & 0 \end{bmatrix}$$
. Then $\vec{f}(z) = \begin{bmatrix} f_1(z) \\ z \end{bmatrix}$ *J*-holomorphic
 $\implies \frac{\partial \vec{f}}{\partial \overline{z}} = \mathbf{Q}(\vec{f}(z)) \cdot \frac{\partial \vec{f}}{\partial z} \implies \frac{\partial f_1}{\partial \overline{z}} = \frac{\partial V(z)}{\partial \overline{z}} \implies f_1(z) = V(z) + C(z)$ for
some holomorphic *C*.

So, J is a continuous almost complex structure (but not Hölder), admitting a J-holomorphic curve \vec{f} which is differentiable but not C^1 .

[C—Pan-Zhang₂₀₁₇] There exists a (real) differentiable function $V : \mathbb{C} \to \mathbb{C}$ such that $\frac{\partial V}{\partial \overline{z}}$ is continuous and $\frac{\partial V}{\partial z}$ is discontinuous.

Let
$$\mathbf{Q}(z_1, z_2) = \begin{bmatrix} 0 & \frac{\partial V(z_2)}{\partial \overline{z}_2} \\ 0 & 0 \end{bmatrix}$$
. Then $\vec{f}(z) = \begin{bmatrix} f_1(z) \\ z \end{bmatrix}$ *J*-holomorphic
 $\implies \frac{\partial \vec{f}}{\partial \overline{z}} = \mathbf{Q}(\vec{f}(z)) \cdot \frac{\partial \vec{f}}{\partial z} \implies \frac{\partial f_1}{\partial \overline{z}} = \frac{\partial V(z)}{\partial \overline{z}} \implies f_1(z) = V(z) + C(z)$ for
some holomorphic *C*.

So, J is a continuous almost complex structure (but not Hölder), admitting a J-holomorphic curve \vec{f} which is differentiable but not C^1 .

Thank you!

Yuan Zhang's research supported by National Science Foundation grant DMS-1265330.

References

- A. COFFMAN and Y. PAN, Some nonlinear differential inequalities and an application to Hölder continuous almost complex structures, Annales de l'Institut H. Poincaré - Analyse Non Linéaire (2) 28 (2011), 149–157.
- A. COFFMAN and Y. PAN, Smooth counterexamples to strong unique continuation for a Beltrami system in C², Communications in Partial Differential Equations (12) **37** (2012), 2228–2244.
- A. COFFMAN, Y. PAN, and Y. ZHANG, Continuous solutions of nonlinear Cauchy-Riemann equations and pseudoholomorphic curves in normal coordinates, Transactions of the AMS (7) **369** (2017), 4865–4887.
- S. IVASHKOVICH and V. SHEVCHISHIN, Local properties of J-complex curves in Lipschitz-continuous structures, Math. Z. (3–4) **268** (2011), 1159–1210.
- S. IVASHKOVICH, S. PINCHUK, and J.-P. ROSAY, Upper semi-continuity of the Kobayashi-Royden pseudo-norm, a counterexample for Hölderian almost complex structures, Ark. Mat. (2) **43** (2005), 395–401.
- J.-P. ROSAY, Uniqueness in rough almost complex structures, and differential inequalities. Ann. Inst. Fourier (6) **60** (2010), 2261–2273.