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Statement of Green’s Theorem

Theorem (G. Green, ≈ 1828)

On an open subset Ω ⊆ R
2, let �F : Ω → R

2 be a vector field with
components �F (x , y) = (P(x , y),Q(x , y)).

Then, for any closed rectangle R contained in Ω,

∫
∂R

�F =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
.
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Proof of Green’s Theorem

Proof.

For R = [a, b]× [c , d ],

∫ x=b

x=a
P(x , c)dx +

∫ y=d

y=c
Q(b, y)dy

−
∫ x=b

x=a
P(x , d)dx −

∫ y=d

y=c
Q(a, y)dy

=

∫ y=d

y=c

(∫ x=b

x=a

∂Q

∂x
dx

)
dy −

∫ x=b

x=a

(∫ y=d

y=c

∂P

∂y
dy

)
dx .
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Proof of Green’s Theorem

Proof.

For R = [a, b]× [c , d ],

∫ x=b

x=a
P(x , c)dx +

∫ y=d

y=c
Q(b, y)dy

−
∫ x=b

x=a
P(x , d)dx −

∫ y=d

y=c
Q(a, y)dy

=

∫ y=d

y=c

(∫ x=b

x=a

∂Q

∂x
dx

)
dy −

∫ x=b

x=a

(∫ y=d

y=c

∂P

∂y
dy

)
dx .

Remark
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Proof of Green’s Theorem

Proof.

For R = [a, b]× [c , d ],

∫ x=b

x=a
P(x , c)dx +

∫ y=d

y=c
Q(b, y)dy

−
∫ x=b

x=a
P(x , d)dx −

∫ y=d

y=c
Q(a, y)dy

=

∫ y=d

y=c

(∫ x=b

x=a

∂Q

∂x
dx

)
dy −

∫ x=b

x=a

(∫ y=d

y=c

∂P

∂y
dy

)
dx .

Remark

Nope.
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Proof of Green’s Theorem

Proof.

For R = [a, b]× [c , d ],

∫ x=b

x=a
P(x , c)dx +

∫ y=d

y=c
Q(b, y)dy

−
∫ x=b

x=a
P(x , d)dx −

∫ y=d

y=c
Q(a, y)dy

=

∫ y=d

y=c

(∫ x=b

x=a

∂Q

∂x
dx

)
dy −

∫ x=b

x=a

(∫ y=d

y=c

∂P

∂y
dy

)
dx .

Remark

Nope. Something’s wrong.
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Proof of Green’s Theorem

Proof.

For R = [a, b]× [c , d ],

∫ x=b

x=a
P(x , c)dx +

∫ y=d

y=c
Q(b, y)dy

−
∫ x=b

x=a
P(x , d)dx −

∫ y=d

y=c
Q(a, y)dy

=

∫ y=d

y=c

(∫ x=b

x=a

∂Q

∂x
dx

)
dy −

∫ x=b

x=a

(∫ y=d

y=c

∂P

∂y
dy

)
dx .

Remark

Nope. Something’s wrong. Let’s go back to the statement of the Theorem.
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Statement of Green’s Theorem

Theorem (G. Green, ≈ 1828)

On an open subset Ω ⊆ R
2, let �F : Ω → R

2 be a vector field with
components �F (x , y) = (P(x , y),Q(x , y)).

Then, for any closed rectangle R contained in Ω,

∫
∂R

�F =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
.

Remark

False!
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Statement of Green’s Theorem

Theorem (G. Green, ≈ 1828)

On an open subset Ω ⊆ R
2, let �F : Ω → R

2 be a vector field with
components �F (x , y) = (P(x , y),Q(x , y)).

Then, for any closed rectangle R contained in Ω,

∫
∂R

�F =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
.

Remark

False! What’s missing?

Adam Coffman (IPFW) An Example for Green’s Theorem 4 / 23



Statement of Green’s Theorem

Theorem (G. Green, ≈ 1828)

On an open subset Ω ⊆ R
2, let �F : Ω → R

2 be a vector field with
components �F (x , y) = (P(x , y),Q(x , y)).
If �F ∈ C1(Ω) (meaning that the partial derivatives ∂P

∂x ,
∂P
∂y ,

∂Q
∂x ,

∂Q
∂y are

continuous on Ω),
then, for any closed rectangle R contained in Ω,

∫
∂R

�F =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
.

Remark
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Statement of Green’s Theorem

Theorem (G. Green, ≈ 1828)

On an open subset Ω ⊆ R
2, let �F : Ω → R

2 be a vector field with
components �F (x , y) = (P(x , y),Q(x , y)).
If �F ∈ C1(Ω) (meaning that the partial derivatives ∂P

∂x ,
∂P
∂y ,

∂Q
∂x ,

∂Q
∂y are

continuous on Ω),
then, for any closed rectangle R contained in Ω,

∫
∂R

�F =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
.

Remark

This is the usual calculus textbook statement of Green’s Theorem.
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Statement of Green’s Theorem

Theorem (G. Green, ≈ 1828; P. Cohen, U. Chicago Thesis, ≈ 1958)

On an open subset Ω ⊆ R
2, let �F : Ω → R

2 be a vector field with
components �F (x , y) = (P(x , y),Q(x , y)).
If P and Q are continuous on Ω, and the partial derivatives ∂P

∂x ,
∂P
∂y ,

∂Q
∂x ,

∂Q
∂y all exist at every point in Ω except for countably many, and
∂Q
∂x − ∂P

∂y ∈ L1loc(Ω),
then, for any closed rectangle R contained in Ω,

∫
∂R

�F =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
.

Adam Coffman (IPFW) An Example for Green’s Theorem 6 / 23



Statement of Green’s Theorem

Theorem (G. Green, ≈ 1828; P. Cohen, U. Chicago Thesis, ≈ 1958)

On an open subset Ω ⊆ R
2, let �F : Ω → R

2 be a vector field with
components �F (x , y) = (P(x , y),Q(x , y)).
If P and Q are continuous on Ω, and the partial derivatives ∂P

∂x ,
∂P
∂y ,

∂Q
∂x ,

∂Q
∂y all exist at every point in Ω except for countably many, and
∂Q
∂x − ∂P

∂y ∈ L1loc(Ω),
then, for any closed rectangle R contained in Ω,

∫
∂R

�F =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
.

Proof.

Difficult — comparable to the Looman-Menchoff Theorem in complex
analysis.
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Statement of Green’s Theorem

Theorem ( Green’s Theorem, in Bruna and Cuf́ı, Complex Analysis)

On an open subset Ω ⊆ R
2, let �F : Ω → R

2 be a vector field with
components �F (x , y) = (P(x , y),Q(x , y)).
If P and Q are differentiable on Ω, and ∂Q

∂x − ∂P
∂y is continuous on Ω,

then, for any closed rectangle R contained in Ω,

∫
∂R

�F =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
.
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Statement of Green’s Theorem

Theorem ( Green’s Theorem, in Bruna and Cuf́ı, Complex Analysis)

On an open subset Ω ⊆ R
2, let �F : Ω → R

2 be a vector field with
components �F (x , y) = (P(x , y),Q(x , y)).
If P and Q are differentiable on Ω, and ∂Q

∂x − ∂P
∂y is continuous on Ω,

then, for any closed rectangle R contained in Ω,

∫
∂R

�F =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
.

Proof.

Not as difficult — comparable to the Cauchy-Goursat Theorem in complex
analysis.
Differentiable means: can be locally approximated by a linear function.
=⇒ all partial derivatives exist, but not conversely.
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How about an example?

Is there some �F = (P ,Q) so that P and Q are differentiable, and ∂Q
∂x − ∂P

∂y

is continuous, but at least one of the partial derivatives ∂P
∂x ,

∂P
∂y ,

∂Q
∂x ,

∂Q
∂y is

discontinuous?
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How about an example?

Is there some �F = (P ,Q) so that P and Q are differentiable, and ∂Q
∂x − ∂P

∂y

is continuous, but at least one of the partial derivatives ∂P
∂x ,

∂P
∂y ,

∂Q
∂x ,

∂Q
∂y is

discontinuous?

So the Bruna-Cuf́ı version of Green’s Theorem applies, but the usual
calculus textbook version does not.
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How about an example?

Is there some �F = (P ,Q) so that P and Q are differentiable, and ∂Q
∂x − ∂P

∂y

is continuous, but at least one of the partial derivatives ∂P
∂x ,

∂P
∂y ,

∂Q
∂x ,

∂Q
∂y is

discontinuous?

So the Bruna-Cuf́ı version of Green’s Theorem applies, but the usual
calculus textbook version does not.

1-dimensional analogue: f (x) = x2 sin(1/x2) is differentiable with
f (0) = f ′(0) = 0, but lim

x→0
f ′(x) does not exist: f ′ is not locally bounded.
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Example 1

Let Ω = unit disk in R
2. �F (x , y) = (P(x , y),Q(x , y)).

�F (0, 0) = (0, 0), so the following example is continuous:
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Example 1

Let Ω = unit disk in R
2. �F (x , y) = (P(x , y),Q(x , y)).

�F (0, 0) = (0, 0), so the following example is continuous:

P = y
√

− ln(x2 + y2)

Q = x
√

− ln(x2 + y2)

∂P

∂y
=

√
− ln(x2 + y2) +

y2

x2 + y2
· −1√

− ln(x2 + y2)

∂Q

∂x
=

√
− ln(x2 + y2) +

x2

x2 + y2
· −1√

− ln(x2 + y2)
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Example 1

Let Ω = unit disk in R
2. �F (x , y) = (P(x , y),Q(x , y)).

�F (0, 0) = (0, 0), so the following example is continuous:

P = y
√

− ln(x2 + y2)

Q = x
√

− ln(x2 + y2)

∂P

∂y
=

√
− ln(x2 + y2) +

y2

x2 + y2
· −1√

− ln(x2 + y2)

∂Q

∂x
=

√
− ln(x2 + y2) +

x2

x2 + y2
· −1√

− ln(x2 + y2)

∂Q

∂x
− ∂P

∂y
=

y2 − x2

x2 + y2
· 1√

− ln(x2 + y2)
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Example 1

Let Ω = unit disk in R
2. �F (x , y) = (P(x , y),Q(x , y)).

�F (0, 0) = (0, 0), so the following example is continuous:

P = y
√

− ln(x2 + y2)

Q = x
√

− ln(x2 + y2)

∂P

∂y
=

√
− ln(x2 + y2) +

y2

x2 + y2
· −1√

− ln(x2 + y2)

∂Q

∂x
=

√
− ln(x2 + y2) +

x2

x2 + y2
· −1√

− ln(x2 + y2)

Remark

Close!
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Example 1

Let Ω = unit disk in R
2. �F (x , y) = (P(x , y),Q(x , y)).

�F (0, 0) = (0, 0), so the following example is continuous:

P = y
√

− ln(x2 + y2)

Q = x
√

− ln(x2 + y2)

∂P

∂y
=

√
− ln(x2 + y2) +

y2

x2 + y2
· −1√

− ln(x2 + y2)

∂Q

∂x
=

√
− ln(x2 + y2) +

x2

x2 + y2
· −1√

− ln(x2 + y2)

Remark

Close! Cohen’s version of Green’s Theorem applies. But ∂P
∂y and ∂Q

∂x DNE

at (0, 0).
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Example 1

Let Ω = unit disk in R
2. �F (x , y) = (P(x , y),Q(x , y)).

�F (0, 0) = (0, 0), so the following example is continuous:

P = y
√

− ln(x2 + y2)

Q = x
√

− ln(x2 + y2)

∂P

∂y
=

√
− ln(x2 + y2) +

y2

x2 + y2
· −1√

− ln(x2 + y2)

∂Q

∂x
=

√
− ln(x2 + y2) +

x2

x2 + y2
· −1√

− ln(x2 + y2)

Remark

Close! Cohen’s version of Green’s Theorem applies. But ∂P
∂y and ∂Q

∂x DNE

at (0, 0). ∂Q
∂x − ∂P

∂y has a removable discontinuity.
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Graphics by Maple 18

Plotting �F as a vector field:

Figure: fieldplot([P, Q], x = -.7 .. .7, y = -.7 .. .7);
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Graphics by Maple 18

Plotting the magnitude ‖�F‖ as a scalar:

Figure: plot3d(sqrt(P^2+Q^ 2), x = -.7 .. .7, y = -.7 .. .7);
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Graphics by Maple 18

Plotting the partial derivatives as scalars:

Figure: plot3d(diff(P,y), x = -.7 .. .7, y = -.7 .. .7);

plot3d(diff(Q,x), x = -.7 .. .7, y = -.7 .. .7);
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Graphics by Maple 18

Plotting ∂Q
∂x − ∂P

∂y as a scalar:

Figure: plot3d(diff(Q,x)-(diff(P,y)),x=-.1 .. .1,y=-.1 .. .1);
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Example 2

We want to modify Example 1 to get differentiable P and Q, so ∂P
∂y and

∂Q
∂x exist everywhere, but are discontinuous, while ∂Q

∂x − ∂P
∂y is continuous.
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Example 2

We want to modify Example 1 to get differentiable P and Q, so ∂P
∂y and

∂Q
∂x exist everywhere, but are discontinuous, while ∂Q

∂x − ∂P
∂y is continuous.

STEP 1: Introduce a parameter 0 < t < 1
2 :

�Ft(x , y) = (Pt(x , y),Qt(x , y)).
�Ft(0, 0) = (0, 0),
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Example 2

We want to modify Example 1 to get differentiable P and Q, so ∂P
∂y and

∂Q
∂x exist everywhere, but are discontinuous, while ∂Q

∂x − ∂P
∂y is continuous.

STEP 1: Introduce a parameter 0 < t < 1
2 :

�Ft(x , y) = (Pt(x , y),Qt(x , y)).
�Ft(0, 0) = (0, 0),

Pt = y
√

− ln(x2 + y2) · (x2 + y2)t

Qt = x
√

− ln(x2 + y2) · (x2 + y2)t

so Example 1 is the t → 0+ limit.
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Example 2

Pt and Qt are C1 ( =⇒ differentiable) with ∂Pt
∂y

]
(0,0)

= ∂Qt
∂x

]
(0,0)

= 0,

and:

Pt = y
√
− ln(x2 + y2) · (x2 + y2)t

Qt = x
√

− ln(x2 + y2) · (x2 + y2)t

∂Pt

∂y
=

√
− ln(x2 + y2)(x2 + y2)t − y2(1 + 2t ln(x2 + y2))

(x2 + y2)1−t ·
√

− ln(x2 + y2)

∂Qt

∂x
=

√
− ln(x2 + y2)(x2 + y2)t − x2(1 + 2t ln(x2 + y2))

(x2 + y2)1−t
√

− ln(x2 + y2)
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Example 2

Pt and Qt are C1 ( =⇒ differentiable) with ∂Pt
∂y

]
(0,0)

= ∂Qt
∂x

]
(0,0)

= 0,

and:

Pt = y
√
− ln(x2 + y2) · (x2 + y2)t

Qt = x
√

− ln(x2 + y2) · (x2 + y2)t

∂Pt

∂y
=

√
− ln(x2 + y2)(x2 + y2)t − y2(1 + 2t ln(x2 + y2))

(x2 + y2)1−t ·
√

− ln(x2 + y2)

∂Qt

∂x
=

√
− ln(x2 + y2)(x2 + y2)t − x2(1 + 2t ln(x2 + y2))

(x2 + y2)1−t
√

− ln(x2 + y2)

Let r2 = x2 + y2.
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Example 2

Pt and Qt are C1 ( =⇒ differentiable) with ∂Pt
∂y

]
(0,0)

= ∂Qt
∂x

]
(0,0)

= 0,

and:

Pt = y
√
− ln(x2 + y2) · (x2 + y2)t

Qt = x
√

− ln(x2 + y2) · (x2 + y2)t

∂Pt

∂y
=

√
− ln(x2 + y2)(x2 + y2)t − y2(1 + 2t ln(x2 + y2))

(x2 + y2)1−t ·
√

− ln(x2 + y2)

∂Qt

∂x
=

√
− ln(x2 + y2)(x2 + y2)t − x2(1 + 2t ln(x2 + y2))

(x2 + y2)1−t
√

− ln(x2 + y2)

Let r2 = x2 + y2. Max. Value of f (r) =
√− ln(r2)r2t is f (e

−1
4t ) = 1√

2et
.
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Example 2

STEP 2: Multiply by a smooth “cutoff.” Define κ : (0,∞) → [0, 1] to be
a weakly decreasing, C∞ function:

κ(r) =

{
1 for 0 < r < 0.5
0 for r > 0.6
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Example 2

STEP 2: Multiply by a smooth “cutoff.” Define κ : (0,∞) → [0, 1] to be
a weakly decreasing, C∞ function:

κ(r) =

{
1 for 0 < r < 0.5
0 for r > 0.6

�Ft(x , y) = (Pt(x , y),Qt(x , y)), now with domain R
2

�Ft(0, 0) = (0, 0),

Pt = y
√
− ln(x2 + y2) · (x2 + y2)t · κ(

√
x2 + y2)

Qt = x
√

− ln(x2 + y2) · (x2 + y2)t · κ(
√

x2 + y2)

Still C1, with large ∂Pt
∂y , ∂Qt

∂x just off-center for small t.
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Graphics by Maple 18

Figure: Plotting the vector field and its magnitude
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Graphics by Corel Paint Shop Pro Photo X2 version 12.00

STEP 3: Pick any sequence of disjoint disks in Quadrant I, with center
(Rk ,Rk) and radius 0 < rk < Rk√

2
, so that Rk → 0+ as k → ∞

Figure: non-overlapping disks approaching the origin in R
2
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Graphics by Maple 18

STEP 4: Re-scale x , y , z directions in the graph of �Ft by the same
factor, rk , by the formula: rk �Ft(

x
rk
, y
rk
)
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Graphics by Maple 18

STEP 4: Re-scale x , y , z directions in the graph of �Ft by the same
factor, rk , by the formula: rk �Ft(

x
rk
, y
rk
)

	→
Figure: shrinking the domain and the height

The same large ∂Pt
∂y , ∂Qt

∂x just off-center for small t.
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Example 2

STEP 5: Last step! For each k = 1, 2, 3, . . ., re-center a shrunken �Ft onto
disk #k with center Rk , with t = 2−4k → 0+.
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Example 2

STEP 5: Last step! For each k = 1, 2, 3, . . ., re-center a shrunken �Ft onto
disk #k with center Rk , with t = 2−4k → 0+.
Also shrink the height again by a factor of 2−k , so that ∂P

∂y ,
∂Q
∂x have max.

value 2−k 1√
2et

= 2k√
2e

→ ∞:

�F(x , y) =
∞∑
k=1

2−k rk �F2−4k

(
x − Rk

rk
,
y − Rk

rk

)
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Example 2

STEP 5: Last step! For each k = 1, 2, 3, . . ., re-center a shrunken �Ft onto
disk #k with center Rk , with t = 2−4k → 0+.
Also shrink the height again by a factor of 2−k , so that ∂P

∂y ,
∂Q
∂x have max.

value 2−k 1√
2et

= 2k√
2e

→ ∞:

�F(x , y) =
∞∑
k=1

2−k rk �F2−4k

(
x − Rk

rk
,
y − Rk

rk

)

Exercise

Still need to check:
�F = (P,Q) is differentiable everywhere, including the origin.
∂Q
∂x − ∂P

∂y is continuous everywhere, including the origin.
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Graphics by Maple 18

Figure: Easy to check partial derivatives exist at origin because �F ≡ 0 along axes!
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