An example for Green's Theorem with discontinuous partial derivatives

Adam Coffman

Joint work with Yuan Zhang

Indiana University - Purdue University Fort Wayne

MAA MathFest in Washington, DC

August 2015

On an open subset $\Omega \subseteq \mathbb{R}^2$, let $\vec{F} : \Omega \to \mathbb{R}^2$ be a vector field with components $\vec{F}(x, y) = (P(x, y), Q(x, y))$.

Then, for any closed rectangle R contained in Ω ,

$$\int_{\partial R} \vec{F} = \int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right).$$

Proof.

For $R = [a, b] \times [c, d]$,

$$\int_{x=a}^{x=b} P(x,c)dx + \int_{y=c}^{y=d} Q(b,y)dy$$
$$-\int_{x=a}^{x=b} P(x,d)dx - \int_{y=c}^{y=d} Q(a,y)dy$$
$$= \int_{y=c}^{y=d} \left(\int_{x=a}^{x=b} \frac{\partial Q}{\partial x}dx\right)dy - \int_{x=a}^{x=b} \left(\int_{y=c}^{y=d} \frac{\partial P}{\partial y}dy\right)dx.$$

Proof.

For $R = [a, b] \times [c, d]$,

$$\int_{x=a}^{x=b} P(x,c)dx + \int_{y=c}^{y=d} Q(b,y)dy$$
$$-\int_{x=a}^{x=b} P(x,d)dx - \int_{y=c}^{y=d} Q(a,y)dy$$
$$= \int_{y=c}^{y=d} \left(\int_{x=a}^{x=b} \frac{\partial Q}{\partial x}dx\right)dy - \int_{x=a}^{x=b} \left(\int_{y=c}^{y=d} \frac{\partial P}{\partial y}dy\right)dx.$$

Remark

Proof.

For $R = [a, b] \times [c, d]$,

$$\int_{x=a}^{x=b} P(x,c)dx + \int_{y=c}^{y=d} Q(b,y)dy$$
$$-\int_{x=a}^{x=b} P(x,d)dx - \int_{y=c}^{y=d} Q(a,y)dy$$
$$= \int_{y=c}^{y=d} \left(\int_{x=a}^{x=b} \frac{\partial Q}{\partial x}dx\right)dy - \int_{x=a}^{x=b} \left(\int_{y=c}^{y=d} \frac{\partial P}{\partial y}dy\right)dx.$$

Remark

Nope.

Proof.

For $R = [a, b] \times [c, d]$,

$$\int_{x=a}^{x=b} P(x,c)dx + \int_{y=c}^{y=d} Q(b,y)dy$$
$$-\int_{x=a}^{x=b} P(x,d)dx - \int_{y=c}^{y=d} Q(a,y)dy$$
$$= \int_{y=c}^{y=d} \left(\int_{x=a}^{x=b} \frac{\partial Q}{\partial x}dx\right)dy - \int_{x=a}^{x=b} \left(\int_{y=c}^{y=d} \frac{\partial P}{\partial y}dy\right)dx.$$

Remark

Nope. Something's wrong.

Adam Coffman (IPFW)

Proof.

For $R = [a, b] \times [c, d]$,

$$\int_{x=a}^{x=b} P(x,c)dx + \int_{y=c}^{y=d} Q(b,y)dy$$
$$-\int_{x=a}^{x=b} P(x,d)dx - \int_{y=c}^{y=d} Q(a,y)dy$$
$$= \int_{y=c}^{y=d} \left(\int_{x=a}^{x=b} \frac{\partial Q}{\partial x}dx\right)dy - \int_{x=a}^{x=b} \left(\int_{y=c}^{y=d} \frac{\partial P}{\partial y}dy\right)dx.$$

Remark

Nope. Something's wrong. Let's go back to the statement of the Theorem.

On an open subset $\Omega \subseteq \mathbb{R}^2$, let $\vec{F} : \Omega \to \mathbb{R}^2$ be a vector field with components $\vec{F}(x, y) = (P(x, y), Q(x, y))$.

Then, for any closed rectangle R contained in Ω ,

$$\int_{\partial R} \vec{F} = \int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right).$$

Remark

False!

On an open subset $\Omega \subseteq \mathbb{R}^2$, let $\vec{F} : \Omega \to \mathbb{R}^2$ be a vector field with components $\vec{F}(x, y) = (P(x, y), Q(x, y))$.

Then, for any closed rectangle R contained in Ω ,

$$\int_{\partial R} \vec{F} = \int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right).$$

Remark

False! What's missing?

On an open subset $\Omega \subseteq \mathbb{R}^2$, let $\vec{F} : \Omega \to \mathbb{R}^2$ be a vector field with components $\vec{F}(x,y) = (P(x,y), Q(x,y))$. If $\vec{F} \in C^1(\Omega)$ (meaning that the partial derivatives $\frac{\partial P}{\partial x}$, $\frac{\partial P}{\partial y}$, $\frac{\partial Q}{\partial x}$, $\frac{\partial Q}{\partial y}$ are continuous on Ω),

then, for any closed rectangle R contained in Ω ,

$$\int_{\partial R} \vec{F} = \int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right).$$

Remark

On an open subset $\Omega \subseteq \mathbb{R}^2$, let $\vec{F} : \Omega \to \mathbb{R}^2$ be a vector field with components $\vec{F}(x,y) = (P(x,y), Q(x,y))$. If $\vec{F} \in C^1(\Omega)$ (meaning that the partial derivatives $\frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}, \frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial y}$ are continuous on Ω),

then, for any closed rectangle R contained in Ω ,

$$\int_{\partial R} \vec{F} = \int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right).$$

Remark

This is the usual calculus textbook statement of Green's Theorem.

Theorem (G. Green, \approx 1828; P. Cohen, U. Chicago Thesis, \approx 1958)

On an open subset $\Omega \subseteq \mathbb{R}^2$, let $\vec{F} : \Omega \to \mathbb{R}^2$ be a vector field with components $\vec{F}(x, y) = (P(x, y), Q(x, y))$. If P and Q are continuous on Ω , and the partial derivatives $\frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}, \frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial y}$ all **exist** at every point in Ω except for countably many, and $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \in L^1_{loc}(\Omega),$ then, for any closed rectangle R contained in Ω ,

$$\int_{\partial R} \vec{F} = \int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right)$$

Theorem (G. Green, \approx 1828; P. Cohen, U. Chicago Thesis, \approx 1958)

On an open subset $\Omega \subseteq \mathbb{R}^2$, let $\vec{F} : \Omega \to \mathbb{R}^2$ be a vector field with components $\vec{F}(x, y) = (P(x, y), Q(x, y))$. If P and Q are continuous on Ω , and the partial derivatives $\frac{\partial P}{\partial x}$, $\frac{\partial P}{\partial y}$, $\frac{\partial Q}{\partial x}$, $\frac{\partial Q}{\partial y}$ all **exist** at every point in Ω except for countably many, and $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \in L^1_{loc}(\Omega)$, then, for any closed rectangle R contained in Ω ,

$$\int_{\partial R} \vec{F} = \int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right)$$

Proof.

Difficult — comparable to the Looman-Menchoff Theorem in complex analysis.

Theorem (Green's Theorem, in Bruna and Cufí, Complex Analysis)

On an open subset $\Omega \subseteq \mathbb{R}^2$, let $\vec{F} : \Omega \to \mathbb{R}^2$ be a vector field with components $\vec{F}(x, y) = (P(x, y), Q(x, y))$. If P and Q are differentiable on Ω , and $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$ is continuous on Ω , then, for any closed rectangle R contained in Ω ,

$$\int_{\partial R} \vec{F} = \int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right).$$

Theorem (Green's Theorem, in Bruna and Cufí, Complex Analysis)

On an open subset $\Omega \subseteq \mathbb{R}^2$, let $\vec{F} : \Omega \to \mathbb{R}^2$ be a vector field with components $\vec{F}(x, y) = (P(x, y), Q(x, y))$. If P and Q are differentiable on Ω , and $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$ is continuous on Ω , then, for any closed rectangle R contained in Ω ,

$$\int_{\partial R} \vec{F} = \int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right).$$

Proof.

Not as difficult — comparable to the Cauchy-Goursat Theorem in complex analysis.

Differentiable means: can be locally approximated by a linear function.

 \implies all partial derivatives exist, but not conversely.

Is there some $\vec{F} = (P, Q)$ so that P and Q are differentiable, and $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$ is continuous, but at least one of the partial derivatives $\frac{\partial P}{\partial x}$, $\frac{\partial Q}{\partial y}$, $\frac{\partial Q}{\partial x}$, $\frac{\partial Q}{\partial y}$ is discontinuous?

Is there some $\vec{F} = (P, Q)$ so that P and Q are differentiable, and $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$ is continuous, but at least one of the partial derivatives $\frac{\partial P}{\partial x}$, $\frac{\partial P}{\partial y}$, $\frac{\partial Q}{\partial x}$, $\frac{\partial Q}{\partial y}$ is discontinuous?

So the Bruna-Cufí version of Green's Theorem applies, but the usual calculus textbook version does not.

Is there some $\vec{F} = (P, Q)$ so that P and Q are differentiable, and $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$ is continuous, but at least one of the partial derivatives $\frac{\partial P}{\partial x}$, $\frac{\partial P}{\partial y}$, $\frac{\partial Q}{\partial x}$, $\frac{\partial Q}{\partial y}$ is discontinuous?

So the Bruna-Cufí version of Green's Theorem applies, but the usual calculus textbook version does not.

1-dimensional analogue: $f(x) = x^2 \sin(1/x^2)$ is differentiable with f(0) = f'(0) = 0, but $\lim_{x \to 0} f'(x)$ does not exist: f' is not locally bounded.

Let Ω = unit disk in \mathbb{R}^2 . $\vec{F}(x, y) = (P(x, y), Q(x, y))$. $\vec{F}(0, 0) = (0, 0)$, so the following example is continuous:

Let Ω = unit disk in \mathbb{R}^2 . $\vec{F}(x, y) = (P(x, y), Q(x, y))$. $\vec{F}(0, 0) = (0, 0)$, so the following example is continuous:

$$P = y\sqrt{-\ln(x^{2} + y^{2})}$$

$$Q = x\sqrt{-\ln(x^{2} + y^{2})}$$

$$\frac{\partial P}{\partial y} = \sqrt{-\ln(x^{2} + y^{2})} + \frac{y^{2}}{x^{2} + y^{2}} \cdot \frac{-1}{\sqrt{-\ln(x^{2} + y^{2})}}$$

$$\frac{\partial Q}{\partial x} = \sqrt{-\ln(x^{2} + y^{2})} + \frac{x^{2}}{x^{2} + y^{2}} \cdot \frac{-1}{\sqrt{-\ln(x^{2} + y^{2})}}$$

Let Ω = unit disk in \mathbb{R}^2 . $\vec{F}(x, y) = (P(x, y), Q(x, y))$. $\vec{F}(0, 0) = (0, 0)$, so the following example is continuous:

$$P = y\sqrt{-\ln(x^2 + y^2)}$$

$$Q = x\sqrt{-\ln(x^2 + y^2)}$$

$$\frac{\partial P}{\partial y} = \sqrt{-\ln(x^2 + y^2)} + \frac{y^2}{x^2 + y^2} \cdot \frac{-1}{\sqrt{-\ln(x^2 + y^2)}}$$

$$\frac{\partial Q}{\partial x} = \sqrt{-\ln(x^2 + y^2)} + \frac{x^2}{x^2 + y^2} \cdot \frac{-1}{\sqrt{-\ln(x^2 + y^2)}}$$

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial x} + \frac{y^2}{x^2 - y^2} = \frac{1}{x^2 + y^2}$$

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = \frac{y^2 - x^2}{x^2 + y^2} \cdot \frac{1}{\sqrt{-\ln(x^2 + y^2)}}$$

Let Ω = unit disk in \mathbb{R}^2 . $\vec{F}(x, y) = (P(x, y), Q(x, y))$. $\vec{F}(0, 0) = (0, 0)$, so the following example is continuous:

$$P = y\sqrt{-\ln(x^{2} + y^{2})}$$

$$Q = x\sqrt{-\ln(x^{2} + y^{2})}$$

$$\frac{\partial P}{\partial y} = \sqrt{-\ln(x^{2} + y^{2})} + \frac{y^{2}}{x^{2} + y^{2}} \cdot \frac{-1}{\sqrt{-\ln(x^{2} + y^{2})}}$$

$$\frac{\partial Q}{\partial x} = \sqrt{-\ln(x^{2} + y^{2})} + \frac{x^{2}}{x^{2} + y^{2}} \cdot \frac{-1}{\sqrt{-\ln(x^{2} + y^{2})}}$$

Remark

Close!

Let Ω = unit disk in \mathbb{R}^2 . $\vec{F}(x, y) = (P(x, y), Q(x, y))$. $\vec{F}(0, 0) = (0, 0)$, so the following example is continuous:

$$P = y\sqrt{-\ln(x^{2} + y^{2})}$$

$$Q = x\sqrt{-\ln(x^{2} + y^{2})}$$

$$\frac{\partial P}{\partial y} = \sqrt{-\ln(x^{2} + y^{2})} + \frac{y^{2}}{x^{2} + y^{2}} \cdot \frac{-1}{\sqrt{-\ln(x^{2} + y^{2})}}$$

$$\frac{\partial Q}{\partial x} = \sqrt{-\ln(x^{2} + y^{2})} + \frac{x^{2}}{x^{2} + y^{2}} \cdot \frac{-1}{\sqrt{-\ln(x^{2} + y^{2})}}$$

Remark

Close! Cohen's version of Green's Theorem applies. But $\frac{\partial P}{\partial y}$ and $\frac{\partial Q}{\partial x}$ DNE at (0,0).

Let Ω = unit disk in \mathbb{R}^2 . $\vec{F}(x, y) = (P(x, y), Q(x, y))$. $\vec{F}(0, 0) = (0, 0)$, so the following example is continuous:

$$P = y\sqrt{-\ln(x^{2} + y^{2})}$$

$$Q = x\sqrt{-\ln(x^{2} + y^{2})}$$

$$\frac{\partial P}{\partial y} = \sqrt{-\ln(x^{2} + y^{2})} + \frac{y^{2}}{x^{2} + y^{2}} \cdot \frac{-1}{\sqrt{-\ln(x^{2} + y^{2})}}$$

$$\frac{\partial Q}{\partial x} = \sqrt{-\ln(x^{2} + y^{2})} + \frac{x^{2}}{x^{2} + y^{2}} \cdot \frac{-1}{\sqrt{-\ln(x^{2} + y^{2})}}$$

Remark

Close! Cohen's version of Green's Theorem applies. But $\frac{\partial P}{\partial y}$ and $\frac{\partial Q}{\partial x}$ DNE at (0,0). $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$ has a removable discontinuity.

Plotting \vec{F} as a vector field:

Figure: fieldplot([P, Q], x = -.7 .. .7, y = -.7 .. .7);

Plotting the magnitude $\|\vec{F}\|$ as a scalar:

Figure: $plot3d(sqrt(P^2+Q^2), x = -.77, y = -.77);$

Plotting the partial derivatives as scalars:

Figure: plot3d(diff(P,y), x = -.7 .. .7, y = -.7 .. .7);plot3d(diff(Q,x), x = -.7 .. .7, y = -.7 .. .7);

Plotting $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$ as a scalar:

Figure: plot3d(diff(Q,x)-(diff(P,y)),x=-.1 .. .1,y=-.1 .. .1);

We want to modify Example 1 to get differentiable *P* and *Q*, so $\frac{\partial P}{\partial y}$ and $\frac{\partial Q}{\partial x}$ exist everywhere, but are discontinuous, while $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$ is continuous.

We want to modify Example 1 to get differentiable P and Q, so $\frac{\partial P}{\partial y}$ and $\frac{\partial Q}{\partial x}$ exist everywhere, but are discontinuous, while $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$ is continuous.

STEP 1: Introduce a parameter $0 < t < \frac{1}{2}$: $\vec{F}_t(x, y) = (P_t(x, y), Q_t(x, y)).$ $\vec{F}_t(0, 0) = (0, 0),$ We want to modify Example 1 to get differentiable P and Q, so $\frac{\partial P}{\partial y}$ and $\frac{\partial Q}{\partial x}$ exist everywhere, but are discontinuous, while $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$ is continuous.

STEP 1: Introduce a parameter $0 < t < \frac{1}{2}$: $\vec{F}_t(x, y) = (P_t(x, y), Q_t(x, y)).$ $\vec{F}_t(0, 0) = (0, 0),$

$$P_t = y\sqrt{-\ln(x^2 + y^2)} \cdot (x^2 + y^2)^t$$
$$Q_t = x\sqrt{-\ln(x^2 + y^2)} \cdot (x^2 + y^2)^t$$

so Example 1 is the $t \rightarrow 0^+$ limit.

 P_t and Q_t are C^1 (\implies differentiable) with $\frac{\partial P_t}{\partial y}\Big]_{(0,0)} = \frac{\partial Q_t}{\partial x}\Big]_{(0,0)} = 0$, and:

$$P_t = y\sqrt{-\ln(x^2+y^2)} \cdot (x^2+y^2)^t$$

$$Q_t = x\sqrt{-\ln(x^2+y^2)} \cdot (x^2+y^2)^t$$

$$\frac{\partial P_t}{\partial y} = \sqrt{-\ln(x^2+y^2)}(x^2+y^2)^t - \frac{y^2(1+2t\ln(x^2+y^2))}{(x^2+y^2)^{1-t} \cdot \sqrt{-\ln(x^2+y^2)}}$$

$$\frac{\partial Q_t}{\partial x} = \sqrt{-\ln(x^2+y^2)}(x^2+y^2)^t - \frac{x^2(1+2t\ln(x^2+y^2))}{(x^2+y^2)^{1-t} \sqrt{-\ln(x^2+y^2)}}$$

 P_t and Q_t are C^1 (\implies differentiable) with $\frac{\partial P_t}{\partial y}\Big]_{(0,0)} = \frac{\partial Q_t}{\partial x}\Big]_{(0,0)} = 0$, and:

$$P_t = y\sqrt{-\ln(x^2 + y^2)} \cdot (x^2 + y^2)^t$$

$$Q_t = x\sqrt{-\ln(x^2 + y^2)} \cdot (x^2 + y^2)^t$$

$$\frac{\partial P_t}{\partial y} = \sqrt{-\ln(x^2 + y^2)}(x^2 + y^2)^t - \frac{y^2(1 + 2t\ln(x^2 + y^2))}{(x^2 + y^2)^{1-t} \cdot \sqrt{-\ln(x^2 + y^2)}}$$

$$\frac{\partial Q_t}{\partial x} = \sqrt{-\ln(x^2 + y^2)}(x^2 + y^2)^t - \frac{x^2(1 + 2t\ln(x^2 + y^2))}{(x^2 + y^2)^{1-t}\sqrt{-\ln(x^2 + y^2)}}$$
Let $r^2 = x^2 + y^2$.

 P_t and Q_t are C^1 (\implies differentiable) with $\frac{\partial P_t}{\partial y}\Big]_{(0,0)} = \frac{\partial Q_t}{\partial x}\Big]_{(0,0)} = 0$, and:

$$P_{t} = y\sqrt{-\ln(x^{2}+y^{2})} \cdot (x^{2}+y^{2})^{t}$$

$$Q_{t} = x\sqrt{-\ln(x^{2}+y^{2})} \cdot (x^{2}+y^{2})^{t}$$

$$\frac{\partial P_{t}}{\partial y} = \sqrt{-\ln(x^{2}+y^{2})}(x^{2}+y^{2})^{t} - \frac{y^{2}(1+2t\ln(x^{2}+y^{2}))}{(x^{2}+y^{2})^{1-t}} \cdot \sqrt{-\ln(x^{2}+y^{2})}$$

$$\frac{\partial Q_{t}}{\partial x} = \sqrt{-\ln(x^{2}+y^{2})}(x^{2}+y^{2})^{t} - \frac{x^{2}(1+2t\ln(x^{2}+y^{2}))}{(x^{2}+y^{2})^{1-t}} \sqrt{-\ln(x^{2}+y^{2})}$$

Let $r^2 = x^2 + y^2$. Max. Value of $f(r) = \sqrt{-\ln(r^2)}r^{2t}$ is $f(e^{\frac{-1}{4t}}) = \frac{1}{\sqrt{2et}}$.

STEP 2: Multiply by a smooth "cutoff." Define $\kappa : (0, \infty) \to [0, 1]$ to be a weakly decreasing, C^{∞} function:

$$\kappa(r) = \left\{ egin{array}{cc} 1 & {
m for} \; 0 < r < 0.5 \ 0 & {
m for} \; r > 0.6 \end{array}
ight.$$

STEP 2: Multiply by a smooth "cutoff." Define $\kappa : (0, \infty) \to [0, 1]$ to be a weakly decreasing, C^{∞} function:

$$\kappa(r) = \begin{cases} 1 & \text{for } 0 < r < 0.5 \\ 0 & \text{for } r > 0.6 \end{cases}$$

 $\vec{F}_t(x, y) = (P_t(x, y), Q_t(x, y))$, now with domain \mathbb{R}^2 $\vec{F}_t(0, 0) = (0, 0)$,

$$P_t = y\sqrt{-\ln(x^2 + y^2)} \cdot (x^2 + y^2)^t \cdot \kappa(\sqrt{x^2 + y^2})$$
$$Q_t = x\sqrt{-\ln(x^2 + y^2)} \cdot (x^2 + y^2)^t \cdot \kappa(\sqrt{x^2 + y^2})$$

Still C^1 , with large $\frac{\partial P_t}{\partial y}$, $\frac{\partial Q_t}{\partial x}$ just off-center for small t.

Figure: Plotting the vector field and its magnitude

Graphics by Corel Paint Shop Pro Photo X2 version 12.00

STEP 3: Pick any sequence of disjoint disks in Quadrant I, with center (R_k, R_k) and radius $0 < r_k < \frac{R_k}{\sqrt{2}}$, so that $R_k \to 0^+$ as $k \to \infty$

Figure: non-overlapping disks approaching the origin in \mathbb{R}^2

Adam Coffman (IPFW) An I

An Example for Green's Theorem

STEP 4: Re-scale x, y, z directions in the graph of \vec{F}_t by the same factor, r_k , by the formula: $r_k \vec{F}_t(\frac{x}{r_k}, \frac{y}{r_k})$

STEP 4: Re-scale x, y, z directions in the graph of \vec{F}_t by the same factor, r_k , by the formula: $r_k \vec{F}_t(\frac{x}{r_k}, \frac{y}{r_k})$

Figure: shrinking the domain and the height

The same large $\frac{\partial P_t}{\partial y}$, $\frac{\partial Q_t}{\partial x}$ just off-center for small t.

STEP 5: Last step! For each k = 1, 2, 3, ..., re-center a shrunken $\vec{F_t}$ onto disk #k with center R_k , with $t = 2^{-4k} \rightarrow 0^+$.

STEP 5: Last step! For each k = 1, 2, 3, ..., re-center a shrunken $\vec{F_t}$ onto disk #k with center R_k , with $t = 2^{-4k} \rightarrow 0^+$. Also shrink the height again by a factor of 2^{-k} , so that $\frac{\partial \mathbf{P}}{\partial y}$, $\frac{\partial \mathbf{Q}}{\partial x}$ have max. value $2^{-k} \frac{1}{\sqrt{2et}} = \frac{2^k}{\sqrt{2e}} \rightarrow \infty$: $\vec{r}_k = \sum_{k=1}^{\infty} 2^{-k} \vec{r}_k = \frac{(x - R_k, y - R_k)}{\sqrt{2et}}$

$$\vec{\mathbf{F}}(x,y) = \sum_{k=1}^{\infty} 2^{-k} r_k \vec{F}_{2^{-4k}} \left(\frac{x - R_k}{r_k}, \frac{y - R_k}{r_k} \right)$$

STEP 5: Last step! For each k = 1, 2, 3, ..., re-center a shrunken $\vec{F_t}$ onto disk #k with center R_k , with $t = 2^{-4k} \to 0^+$. Also shrink the height again by a factor of 2^{-k} , so that $\frac{\partial \mathbf{P}}{\partial y}$, $\frac{\partial \mathbf{Q}}{\partial x}$ have max. value $2^{-k} \frac{1}{\sqrt{2et}} = \frac{2^k}{\sqrt{2e}} \to \infty$:

$$\vec{\mathbf{F}}(x,y) = \sum_{k=1}^{\infty} 2^{-k} r_k \vec{F}_{2^{-4k}} \left(\frac{x - R_k}{r_k}, \frac{y - R_k}{r_k} \right)$$

Exercise

Still need to check:

• $\vec{F} = (P, Q)$ is differentiable everywhere, including the origin.

• $\frac{\partial \mathbf{Q}}{\partial x} - \frac{\partial \mathbf{P}}{\partial y}$ is continuous everywhere, including the origin.

Figure: Easy to check partial derivatives exist at origin because $\vec{F} \equiv 0$ along axes!

Dr. Y. Zhang's research supported by National Science Foundation grant DMS-1265330.

- J. BRUNA and J. CUFÍ, Complex Analysis, Eur. Math. Soc., 2013. MR 3076702.
- A. COFFMAN, Y. PAN, and Y. ZHANG, Continuous solutions of nonlinear Cauchy-Riemann equations and pseudoholomorphic curves in normal coordinates, preprint.
- P. COHEN, *Topics in the Theory of Uniqueness of Trigonometrical Series*, dissertation, University of Chicago, 1958. MR 2611474.
- P. COHEN, On Green's theorem, Proc. AMS 10 (1959), 109–112. MR 0104249.
- J. CUFÍ and J. VERDERA, A general form of Green's Formula and the Cauchy Integral Theorem, Proc. AMS. (5) **143** (2015), 2091–2102. MR 3314118.
 - J. GRAY and S. MORRIS, When is a function that satisfies the Cauchy-Riemann equations analytic?, The American Mathematical Monthly (4) **85** (Apr., 1978), 246–256. MR 0470179.