An example for Green's Theorem with discontinuous partial derivatives

Adam Coffman
Joint work with Yuan Zhang

Indiana University - Purdue University Fort Wayne
MAA MathFest in Washington, DC
August 2015

Statement of Green's Theorem

Theorem (G. Green, ≈ 1828)

On an open subset $\Omega \subseteq \mathbb{R}^{2}$, let $\vec{F}: \Omega \rightarrow \mathbb{R}^{2}$ be a vector field with components $\vec{F}(x, y)=(P(x, y), Q(x, y))$.

Then, for any closed rectangle R contained in Ω,

$$
\int_{\partial R} \vec{F}=\int_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) .
$$

Proof of Green's Theorem

Proof.

For $R=[a, b] \times[c, d]$,

$$
\begin{aligned}
& \int_{x=a}^{x=b} P(x, c) d x+\int_{y=c}^{y=d} Q(b, y) d y \\
& -\int_{x=a}^{x=b} P(x, d) d x-\int_{y=c}^{y=d} Q(a, y) d y \\
= & \int_{y=c}^{y=d}\left(\int_{x=a}^{x=b} \frac{\partial Q}{\partial x} d x\right) d y-\int_{x=a}^{x=b}\left(\int_{y=c}^{y=d} \frac{\partial P}{\partial y} d y\right) d x .
\end{aligned}
$$

Proof of Green's Theorem

Proof.

For $R=[a, b] \times[c, d]$,

$$
\begin{aligned}
& \int_{x=a}^{x=b} P(x, c) d x+\int_{y=c}^{y=d} Q(b, y) d y \\
& -\int_{x=a}^{x=b} P(x, d) d x-\int_{y=c}^{y=d} Q(a, y) d y \\
= & \int_{y=c}^{y=d}\left(\int_{x=a}^{x=b} \frac{\partial Q}{\partial x} d x\right) d y-\int_{x=a}^{x=b}\left(\int_{y=c}^{y=d} \frac{\partial P}{\partial y} d y\right) d x .
\end{aligned}
$$

Remark

Proof of Green's Theorem

Proof.

For $R=[a, b] \times[c, d]$,

$$
\begin{aligned}
& \int_{x=a}^{x=b} P(x, c) d x+\int_{y=c}^{y=d} Q(b, y) d y \\
& -\int_{x=a}^{x=b} P(x, d) d x-\int_{y=c}^{y=d} Q(a, y) d y \\
= & \int_{y=c}^{y=d}\left(\int_{x=a}^{x=b} \frac{\partial Q}{\partial x} d x\right) d y-\int_{x=a}^{x=b}\left(\int_{y=c}^{y=d} \frac{\partial P}{\partial y} d y\right) d x .
\end{aligned}
$$

Remark

Nope.

Proof of Green's Theorem

Proof.

For $R=[a, b] \times[c, d]$,

$$
\begin{aligned}
& \int_{x=a}^{x=b} P(x, c) d x+\int_{y=c}^{y=d} Q(b, y) d y \\
& -\int_{x=a}^{x=b} P(x, d) d x-\int_{y=c}^{y=d} Q(a, y) d y \\
= & \int_{y=c}^{y=d}\left(\int_{x=a}^{x=b} \frac{\partial Q}{\partial x} d x\right) d y-\int_{x=a}^{x=b}\left(\int_{y=c}^{y=d} \frac{\partial P}{\partial y} d y\right) d x .
\end{aligned}
$$

Remark

Nope. Something's wrong.

Proof of Green's Theorem

Proof.

For $R=[a, b] \times[c, d]$,

$$
\begin{aligned}
& \int_{x=a}^{x=b} P(x, c) d x+\int_{y=c}^{y=d} Q(b, y) d y \\
& -\int_{x=a}^{x=b} P(x, d) d x-\int_{y=c}^{y=d} Q(a, y) d y \\
= & \int_{y=c}^{y=d}\left(\int_{x=a}^{x=b} \frac{\partial Q}{\partial x} d x\right) d y-\int_{x=a}^{x=b}\left(\int_{y=c}^{y=d} \frac{\partial P}{\partial y} d y\right) d x .
\end{aligned}
$$

Remark

Nope. Something's wrong. Let's go back to the statement of the Theorem.

Statement of Green's Theorem

Theorem (G. Green, \approx 1828)

On an open subset $\Omega \subseteq \mathbb{R}^{2}$, let $\vec{F}: \Omega \rightarrow \mathbb{R}^{2}$ be a vector field with components $\vec{F}(x, y)=(P(x, y), Q(x, y))$.

Then, for any closed rectangle R contained in Ω,

$$
\int_{\partial R} \vec{F}=\int_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) .
$$

Remark

False!

Statement of Green's Theorem

Theorem (G. Green, \approx 1828)

On an open subset $\Omega \subseteq \mathbb{R}^{2}$, let $\vec{F}: \Omega \rightarrow \mathbb{R}^{2}$ be a vector field with components $\vec{F}(x, y)=(P(x, y), Q(x, y))$.

Then, for any closed rectangle R contained in Ω,

$$
\int_{\partial R} \vec{F}=\int_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) .
$$

Remark

False! What's missing?

Statement of Green's Theorem

Theorem (G. Green, ≈ 1828)

On an open subset $\Omega \subseteq \mathbb{R}^{2}$, let $\vec{F}: \Omega \rightarrow \mathbb{R}^{2}$ be a vector field with components $\vec{F}(x, y)=(P(x, y), Q(x, y))$.
If $\vec{F} \in \mathcal{C}^{1}(\Omega)$ (meaning that the partial derivatives $\frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}, \frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial y}$ are continuous on Ω),
then, for any closed rectangle R contained in Ω,

$$
\int_{\partial R} \vec{F}=\int_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) .
$$

Remark

Statement of Green's Theorem

Theorem (G. Green, ≈ 1828)

On an open subset $\Omega \subseteq \mathbb{R}^{2}$, let $\vec{F}: \Omega \rightarrow \mathbb{R}^{2}$ be a vector field with components $\vec{F}(x, y)=(P(x, y), Q(x, y))$.
If $\vec{F} \in \mathcal{C}^{1}(\Omega)$ (meaning that the partial derivatives $\frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}, \frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial y}$ are continuous on Ω),
then, for any closed rectangle R contained in Ω,

$$
\int_{\partial R} \vec{F}=\int_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) .
$$

Remark

This is the usual calculus textbook statement of Green's Theorem.

Statement of Green's Theorem

Theorem (G. Green, ≈ 1828; P. Cohen, U. Chicago Thesis, ≈ 1958)

On an open subset $\Omega \subseteq \mathbb{R}^{2}$, let $\vec{F}: \Omega \rightarrow \mathbb{R}^{2}$ be a vector field with components $\vec{F}(x, y)=(P(x, y), Q(x, y))$. If P and Q are continuous on Ω, and the partial derivatives $\frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}, \frac{\partial Q}{\partial x}$, $\frac{\partial Q}{\partial y}$ all exist at every point in Ω except for countably many, and $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \in L_{\text {loc }}^{1}(\Omega)$,
then, for any closed rectangle R contained in Ω,

$$
\int_{\partial R} \vec{F}=\int_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) .
$$

Statement of Green's Theorem

Theorem (G. Green, ≈ 1828; P. Cohen, U. Chicago Thesis, ≈ 1958)

On an open subset $\Omega \subseteq \mathbb{R}^{2}$, let $\vec{F}: \Omega \rightarrow \mathbb{R}^{2}$ be a vector field with components $\vec{F}(x, y)=(P(x, y), Q(x, y))$. If P and Q are continuous on Ω, and the partial derivatives $\frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}, \frac{\partial Q}{\partial x}$, $\frac{\partial Q}{\partial y}$ all exist at every point in Ω except for countably many, and $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \in L_{\text {loc }}^{1}(\Omega)$, then, for any closed rectangle R contained in Ω,

$$
\int_{\partial R} \vec{F}=\int_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) .
$$

Proof.

Difficult - comparable to the Looman-Menchoff Theorem in complex analysis.

Statement of Green's Theorem

Theorem (Green's Theorem, in Bruna and Cufí, Complex Analysis)

On an open subset $\Omega \subseteq \mathbb{R}^{2}$, let $\vec{F}: \Omega \rightarrow \mathbb{R}^{2}$ be a vector field with components $\vec{F}(x, y)=(P(x, y), Q(x, y))$.
If P and Q are differentiable on Ω, and $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$ is continuous on Ω, then, for any closed rectangle R contained in Ω,

$$
\int_{\partial R} \vec{F}=\int_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) .
$$

Statement of Green's Theorem

Theorem (Green's Theorem, in Bruna and Cufí, Complex Analysis)

On an open subset $\Omega \subseteq \mathbb{R}^{2}$, let $\vec{F}: \Omega \rightarrow \mathbb{R}^{2}$ be a vector field with components $\vec{F}(x, y)=(P(x, y), Q(x, y))$.
If P and Q are differentiable on Ω, and $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$ is continuous on Ω, then, for any closed rectangle R contained in Ω,

$$
\int_{\partial R} \vec{F}=\int_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) .
$$

Proof.

Not as difficult - comparable to the Cauchy-Goursat Theorem in complex analysis.
Differentiable means: can be locally approximated by a linear function. \Longrightarrow all partial derivatives exist, but not conversely.

How about an example?

Is there some $\vec{F}=(P, Q)$ so that P and Q are differentiable, and $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$ is continuous, but at least one of the partial derivatives $\frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}, \frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial y}$ is discontinuous?

How about an example?

Is there some $\vec{F}=(P, Q)$ so that P and Q are differentiable, and $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$ is continuous, but at least one of the partial derivatives $\frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}, \frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial y}$ is discontinuous?

So the Bruna-Cufí version of Green's Theorem applies, but the usual calculus textbook version does not.

How about an example?

Is there some $\vec{F}=(P, Q)$ so that P and Q are differentiable, and $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$ is continuous, but at least one of the partial derivatives $\frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}, \frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial y}$ is discontinuous?

So the Bruna-Cufí version of Green's Theorem applies, but the usual calculus textbook version does not.

1-dimensional analogue: $f(x)=x^{2} \sin \left(1 / x^{2}\right)$ is differentiable with $f(0)=f^{\prime}(0)=0$, but $\lim _{x \rightarrow 0} f^{\prime}(x)$ does not exist: f^{\prime} is not locally bounded.

Example 1

Let $\Omega=$ unit disk in $\mathbb{R}^{2} . \vec{F}(x, y)=(P(x, y), Q(x, y))$. $\vec{F}(0,0)=(0,0)$, so the following example is continuous:

Example 1

Let $\Omega=$ unit disk in $\mathbb{R}^{2} . \vec{F}(x, y)=(P(x, y), Q(x, y))$.
$\vec{F}(0,0)=(0,0)$, so the following example is continuous:

$$
\begin{aligned}
P & =y \sqrt{-\ln \left(x^{2}+y^{2}\right)} \\
Q & =x \sqrt{-\ln \left(x^{2}+y^{2}\right)} \\
\frac{\partial P}{\partial y} & =\sqrt{-\ln \left(x^{2}+y^{2}\right)}+\frac{y^{2}}{x^{2}+y^{2}} \cdot \frac{-1}{\sqrt{-\ln \left(x^{2}+y^{2}\right)}} \\
\frac{\partial Q}{\partial x} & =\sqrt{-\ln \left(x^{2}+y^{2}\right)}+\frac{x^{2}}{x^{2}+y^{2}} \cdot \frac{-1}{\sqrt{-\ln \left(x^{2}+y^{2}\right)}}
\end{aligned}
$$

Example 1

Let $\Omega=$ unit disk in $\mathbb{R}^{2} . \vec{F}(x, y)=(P(x, y), Q(x, y))$.
$\vec{F}(0,0)=(0,0)$, so the following example is continuous:

$$
\begin{aligned}
P & =y \sqrt{-\ln \left(x^{2}+y^{2}\right)} \\
Q & =x \sqrt{-\ln \left(x^{2}+y^{2}\right)} \\
\frac{\partial P}{\partial y} & =\sqrt{-\ln \left(x^{2}+y^{2}\right)}+\frac{y^{2}}{x^{2}+y^{2}} \cdot \frac{-1}{\sqrt{-\ln \left(x^{2}+y^{2}\right)}} \\
\frac{\partial Q}{\partial x} & =\sqrt{-\ln \left(x^{2}+y^{2}\right)}+\frac{x^{2}}{x^{2}+y^{2}} \cdot \frac{-1}{\sqrt{-\ln \left(x^{2}+y^{2}\right)}} \\
& \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=\frac{y^{2}-x^{2}}{x^{2}+y^{2}} \cdot \frac{1}{\sqrt{-\ln \left(x^{2}+y^{2}\right)}}
\end{aligned}
$$

Example 1

Let $\Omega=$ unit disk in $\mathbb{R}^{2} . \vec{F}(x, y)=(P(x, y), Q(x, y))$. $\vec{F}(0,0)=(0,0)$, so the following example is continuous:

$$
\begin{aligned}
P & =y \sqrt{-\ln \left(x^{2}+y^{2}\right)} \\
Q & =x \sqrt{-\ln \left(x^{2}+y^{2}\right)} \\
\frac{\partial P}{\partial y} & =\sqrt{-\ln \left(x^{2}+y^{2}\right)}+\frac{y^{2}}{x^{2}+y^{2}} \cdot \frac{-1}{\sqrt{-\ln \left(x^{2}+y^{2}\right)}} \\
\frac{\partial Q}{\partial x} & =\sqrt{-\ln \left(x^{2}+y^{2}\right)}+\frac{x^{2}}{x^{2}+y^{2}} \cdot \frac{-1}{\sqrt{-\ln \left(x^{2}+y^{2}\right)}}
\end{aligned}
$$

Remark

Close!

Example 1

Let $\Omega=$ unit disk in $\mathbb{R}^{2} . \vec{F}(x, y)=(P(x, y), Q(x, y))$.
$\vec{F}(0,0)=(0,0)$, so the following example is continuous:

$$
\begin{aligned}
P & =y \sqrt{-\ln \left(x^{2}+y^{2}\right)} \\
Q & =x \sqrt{-\ln \left(x^{2}+y^{2}\right)} \\
\frac{\partial P}{\partial y} & =\sqrt{-\ln \left(x^{2}+y^{2}\right)}+\frac{y^{2}}{x^{2}+y^{2}} \cdot \frac{-1}{\sqrt{-\ln \left(x^{2}+y^{2}\right)}} \\
\frac{\partial Q}{\partial x} & =\sqrt{-\ln \left(x^{2}+y^{2}\right)}+\frac{x^{2}}{x^{2}+y^{2}} \cdot \frac{-1}{\sqrt{-\ln \left(x^{2}+y^{2}\right)}}
\end{aligned}
$$

Remark

Close! Cohen's version of Green's Theorem applies. But $\frac{\partial P}{\partial y}$ and $\frac{\partial Q}{\partial x}$ DNE at $(0,0)$.

Example 1

Let $\Omega=$ unit disk in $\mathbb{R}^{2} . \vec{F}(x, y)=(P(x, y), Q(x, y))$.
$\vec{F}(0,0)=(0,0)$, so the following example is continuous:

$$
\begin{aligned}
P & =y \sqrt{-\ln \left(x^{2}+y^{2}\right)} \\
Q & =x \sqrt{-\ln \left(x^{2}+y^{2}\right)} \\
\frac{\partial P}{\partial y} & =\sqrt{-\ln \left(x^{2}+y^{2}\right)}+\frac{y^{2}}{x^{2}+y^{2}} \cdot \frac{-1}{\sqrt{-\ln \left(x^{2}+y^{2}\right)}} \\
\frac{\partial Q}{\partial x} & =\sqrt{-\ln \left(x^{2}+y^{2}\right)}+\frac{x^{2}}{x^{2}+y^{2}} \cdot \frac{-1}{\sqrt{-\ln \left(x^{2}+y^{2}\right)}}
\end{aligned}
$$

Remark

Close! Cohen's version of Green's Theorem applies. But $\frac{\partial P}{\partial y}$ and $\frac{\partial Q}{\partial x}$ DNE at $(0,0) \cdot \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$ has a removable discontinuity.

Graphics by Maple 18

Plotting \vec{F} as a vector field:

Figure: fieldplot([P, Q], x = -. 7 .. .7, y = -. 7 .. .7);

Graphics by Maple 18

Plotting the magnitude $\|\vec{F}\|$ as a scalar:

Figure: plot3d(sqrt(P^2+Q^2), $x=-.7$.. .7, $y=-.7$.. .7);

Graphics by Maple 18

Plotting the partial derivatives as scalars:

Figure: plot3d(diff(P,y), x = -.7 .. .7, y = -. 7 .. .7);
plot3d(diff(Q,x), x = -.7 .. .7, y = -. 7 .. .7);

Graphics by Maple 18

Plotting $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$ as a scalar:

Figure: plot3d(diff(Q,x)-(diff(P,y)),x=-.1 .. .1,y=-. 1 .. .1);

Example 2

We want to modify Example 1 to get differentiable P and Q, so $\frac{\partial P}{\partial y}$ and $\frac{\partial Q}{\partial x}$ exist everywhere, but are discontinuous, while $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$ is continuous.

Example 2

We want to modify Example 1 to get differentiable P and Q, so $\frac{\partial P}{\partial y}$ and $\frac{\partial Q}{\partial x}$ exist everywhere, but are discontinuous, while $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$ is continuous.

STEP 1: Introduce a parameter $0<t<\frac{1}{2}$:
$\vec{F}_{t}(x, y)=\left(P_{t}(x, y), Q_{t}(x, y)\right)$.
$\vec{F}_{t}(0,0)=(0,0)$,

Example 2

We want to modify Example 1 to get differentiable P and Q, so $\frac{\partial P}{\partial y}$ and $\frac{\partial Q}{\partial x}$ exist everywhere, but are discontinuous, while $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$ is continuous.

STEP 1: Introduce a parameter $0<t<\frac{1}{2}$:
$\vec{F}_{t}(x, y)=\left(P_{t}(x, y), Q_{t}(x, y)\right)$.
$\vec{F}_{t}(0,0)=(0,0)$,

$$
\begin{aligned}
& P_{t}=y \sqrt{-\ln \left(x^{2}+y^{2}\right)} \cdot\left(x^{2}+y^{2}\right)^{t} \\
& Q_{t}=x \sqrt{-\ln \left(x^{2}+y^{2}\right)} \cdot\left(x^{2}+y^{2}\right)^{t}
\end{aligned}
$$

so Example 1 is the $t \rightarrow 0^{+}$limit.

Example 2

P_{t} and Q_{t} are $\mathcal{C}^{1}(\Longrightarrow$ differentiable $)$ with $\left.\left.\frac{\partial P_{t}}{\partial y}\right]_{(0,0)}=\frac{\partial Q_{t}}{\partial x}\right]_{(0,0)}=0$, and:

$$
\begin{aligned}
P_{t} & =y \sqrt{-\ln \left(x^{2}+y^{2}\right)} \cdot\left(x^{2}+y^{2}\right)^{t} \\
Q_{t} & =x \sqrt{-\ln \left(x^{2}+y^{2}\right)} \cdot\left(x^{2}+y^{2}\right)^{t} \\
\frac{\partial P_{t}}{\partial y} & =\sqrt{-\ln \left(x^{2}+y^{2}\right)}\left(x^{2}+y^{2}\right)^{t}-\frac{y^{2}\left(1+2 t \ln \left(x^{2}+y^{2}\right)\right)}{\left(x^{2}+y^{2}\right)^{1-t} \cdot \sqrt{-\ln \left(x^{2}+y^{2}\right)}} \\
\frac{\partial Q_{t}}{\partial x} & =\sqrt{-\ln \left(x^{2}+y^{2}\right)}\left(x^{2}+y^{2}\right)^{t}-\frac{x^{2}\left(1+2 t \ln \left(x^{2}+y^{2}\right)\right)}{\left(x^{2}+y^{2}\right)^{1-t} \sqrt{-\ln \left(x^{2}+y^{2}\right)}}
\end{aligned}
$$

Example 2

P_{t} and Q_{t} are $\mathcal{C}^{1}(\Longrightarrow$ differentiable $)$ with $\left.\left.\frac{\partial P_{t}}{\partial y}\right]_{(0,0)}=\frac{\partial Q_{t}}{\partial x}\right]_{(0,0)}=0$, and:

$$
\begin{aligned}
P_{t} & =y \sqrt{-\ln \left(x^{2}+y^{2}\right)} \cdot\left(x^{2}+y^{2}\right)^{t} \\
Q_{t} & =x \sqrt{-\ln \left(x^{2}+y^{2}\right)} \cdot\left(x^{2}+y^{2}\right)^{t} \\
\frac{\partial P_{t}}{\partial y} & =\sqrt{-\ln \left(x^{2}+y^{2}\right)}\left(x^{2}+y^{2}\right)^{t}-\frac{y^{2}\left(1+2 t \ln \left(x^{2}+y^{2}\right)\right)}{\left(x^{2}+y^{2}\right)^{1-t} \cdot \sqrt{-\ln \left(x^{2}+y^{2}\right)}} \\
\frac{\partial Q_{t}}{\partial x} & =\sqrt{-\ln \left(x^{2}+y^{2}\right)}\left(x^{2}+y^{2}\right)^{t}-\frac{x^{2}\left(1+2 t \ln \left(x^{2}+y^{2}\right)\right)}{\left(x^{2}+y^{2}\right)^{1-t} \sqrt{-\ln \left(x^{2}+y^{2}\right)}}
\end{aligned}
$$

Let $r^{2}=x^{2}+y^{2}$.

Example 2

P_{t} and Q_{t} are $\mathcal{C}^{1}(\Longrightarrow$ differentiable $)$ with $\left.\left.\frac{\partial P_{t}}{\partial y}\right]_{(0,0)}=\frac{\partial Q_{t}}{\partial x}\right]_{(0,0)}=0$, and:

$$
\begin{aligned}
P_{t} & =y \sqrt{-\ln \left(x^{2}+y^{2}\right)} \cdot\left(x^{2}+y^{2}\right)^{t} \\
Q_{t} & =x \sqrt{-\ln \left(x^{2}+y^{2}\right)} \cdot\left(x^{2}+y^{2}\right)^{t} \\
\frac{\partial P_{t}}{\partial y} & =\sqrt{-\ln \left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}\right)^{t}-\frac{y^{2}\left(1+2 t \ln \left(x^{2}+y^{2}\right)\right)}{\left(x^{2}+y^{2}\right)^{1-t} \cdot \sqrt{-\ln \left(x^{2}+y^{2}\right)}}} \\
\frac{\partial Q_{t}}{\partial x} & =\sqrt{-\ln \left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}\right)^{t}-\frac{x^{2}\left(1+2 t \ln \left(x^{2}+y^{2}\right)\right)}{\left(x^{2}+y^{2}\right)^{1-t} \sqrt{-\ln \left(x^{2}+y^{2}\right)}}}
\end{aligned}
$$

Let $r^{2}=x^{2}+y^{2}$. Max. Value of $f(r)=\sqrt{-\ln \left(r^{2}\right)} r^{2 t}$ is $f\left(e^{\frac{-1}{4 t}}\right)=\frac{1}{\sqrt{2 e t}}$.

Example 2

STEP 2: Multiply by a smooth "cutoff." Define $\kappa:(0, \infty) \rightarrow[0,1]$ to be a weakly decreasing, \mathcal{C}^{∞} function:

$$
\kappa(r)= \begin{cases}1 & \text { for } 0<r<0.5 \\ 0 & \text { for } r>0.6\end{cases}
$$

Example 2

STEP 2: Multiply by a smooth "cutoff." Define $\kappa:(0, \infty) \rightarrow[0,1]$ to be a weakly decreasing, \mathcal{C}^{∞} function:

$$
\kappa(r)= \begin{cases}1 & \text { for } 0<r<0.5 \\ 0 & \text { for } r>0.6\end{cases}
$$

$\vec{F}_{t}(x, y)=\left(P_{t}(x, y), Q_{t}(x, y)\right)$, now with domain \mathbb{R}^{2}
$\vec{F}_{t}(0,0)=(0,0)$,

$$
\begin{aligned}
& P_{t}=y \sqrt{-\ln \left(x^{2}+y^{2}\right)} \cdot\left(x^{2}+y^{2}\right)^{t} \cdot \kappa\left(\sqrt{x^{2}+y^{2}}\right) \\
& Q_{t}=x \sqrt{-\ln \left(x^{2}+y^{2}\right)} \cdot\left(x^{2}+y^{2}\right)^{t} \cdot \kappa\left(\sqrt{x^{2}+y^{2}}\right)
\end{aligned}
$$

Still \mathcal{C}^{1}, with large $\frac{\partial P_{t}}{\partial y}, \frac{\partial Q_{t}}{\partial x}$ just off-center for small t.

Graphics by Maple 18

Figure: Plotting the vector field and its magnitude

Graphics by Corel Paint Shop Pro Photo X2 version 12.00

STEP 3: Pick any sequence of disjoint disks in Quadrant I, with center (R_{k}, R_{k}) and radius $0<r_{k}<\frac{R_{k}}{\sqrt{2}}$, so that $R_{k} \rightarrow 0^{+}$as $k \rightarrow \infty$

Figure: non-overlapping disks approaching the origin in \mathbb{R}^{2}

Graphics by Maple 18

STEP 4: Re-scale x, y, z directions in the graph of \vec{F}_{t} by the same factor, r_{k}, by the formula: $r_{k} \vec{F}_{t}\left(\frac{x}{r_{k}}, \frac{y}{r_{k}}\right)$

Graphics by Maple 18

STEP 4: Re-scale x, y, z directions in the graph of \vec{F}_{t} by the same factor, r_{k}, by the formula: $r_{k} \vec{F}_{t}\left(\frac{x}{r_{k}}, \frac{y}{r_{k}}\right)$

Figure: shrinking the domain and the height

The same large $\frac{\partial P_{t}}{\partial y}, \frac{\partial Q_{t}}{\partial x}$ just off-center for small t.

Example 2

STEP 5: Last step! For each $k=1,2,3, \ldots$, re-center a shrunken \vec{F}_{t} onto disk \#k with center R_{k}, with $t=2^{-4 k} \rightarrow 0^{+}$.

Example 2

STEP 5: Last step! For each $k=1,2,3, \ldots$, re-center a shrunken \vec{F}_{t} onto disk \#k with center R_{k}, with $t=2^{-4 k} \rightarrow 0^{+}$.
Also shrink the height again by a factor of 2^{-k}, so that $\frac{\partial \mathbf{P}}{\partial y}, \frac{\partial \mathbf{Q}}{\partial x}$ have max. value $2^{-k} \frac{1}{\sqrt{2 e t}}=\frac{2^{k}}{\sqrt{2 e}} \rightarrow \infty$:

$$
\overrightarrow{\mathbf{F}}(x, y)=\sum_{k=1}^{\infty} 2^{-k} r_{k} \vec{F}_{2^{-4 k}}\left(\frac{x-R_{k}}{r_{k}}, \frac{y-R_{k}}{r_{k}}\right)
$$

Example 2

STEP 5: Last step! For each $k=1,2,3, \ldots$, re-center a shrunken \vec{F}_{t} onto disk \#k with center R_{k}, with $t=2^{-4 k} \rightarrow 0^{+}$.
Also shrink the height again by a factor of 2^{-k}, so that $\frac{\partial \mathbf{P}}{\partial y}, \frac{\partial \mathbf{Q}}{\partial x}$ have max. value $2^{-k} \frac{1}{\sqrt{2 e t}}=\frac{2^{k}}{\sqrt{2 e}} \rightarrow \infty$:

$$
\overrightarrow{\mathbf{F}}(x, y)=\sum_{k=1}^{\infty} 2^{-k} r_{k} \vec{F}_{2^{-4 k}}\left(\frac{x-R_{k}}{r_{k}}, \frac{y-R_{k}}{r_{k}}\right)
$$

Exercise

Still need to check:

- $\overrightarrow{\mathbf{F}}=(\mathbf{P}, \mathbf{Q})$ is differentiable everywhere, including the origin.
- $\frac{\partial \mathbf{Q}}{\partial x}-\frac{\partial \mathbf{P}}{\partial y}$ is continuous everywhere, including the origin.

Graphics by Maple 18

Figure: Easy to check partial derivatives exist at origin because $\overrightarrow{\mathbf{F}} \equiv 0$ along axes!

References

Dr. Y. Zhang's research supported by National Science Foundation grant DMS-1265330.
(T) J. Bruna and J. Cufí, Complex Analysis, Eur. Math. Soc., 2013. MR 3076702.
(i) A. Coffman, Y. Pan, and Y. Zhang, Continuous solutions of nonlinear Cauchy-Riemann equations and pseudoholomorphic curves in normal coordinates, preprint.

T P. Cohen, Topics in the Theory of Uniqueness of Trigonometrical Series, dissertation, University of Chicago, 1958. MR 2611474.
(i. P. Cohen, On Green's theorem, Proc. AMS 10 (1959), 109-112. MR 0104249.
0. J. Cufí and J. Verdera, A general form of Green's Formula and the Cauchy Integral Theorem, Proc. AMS. (5) 143 (2015), 2091-2102. MR 3314118.
(i. J. Gray and S. Morris, When is a function that satisfies the Cauchy-Riemann equations analytic?, The American Mathematical Monthly (4) 85 (Apr., 1978), 246-256. MR 0470179.

