Notes from a first course on complex analysis

Adam Coffman

These notes supplement the textbook $[\mathrm{CB}]$, which I've used when teaching MA 525 , a first course on complex variables for upper-level undergraduates or graduate students in the M.S. program at Purdue Fort Wayne. Some of these miscellaneous topics appeared on class handouts and this compilation is not intended to be a self-contained reference.

Development of an online version of this course was supported by a 2021-2022 Online Course Development Grant from the Purdue Fort Wayne Division of Continuing Studies.

1 Complex differentiability

Let $z_{0}=x_{0}+i y_{0}$ be a point in \mathbb{C}, and suppose z_{0} is in the domain of a complex-valued function $f(z)=u(x, y)+i v(x, y)$.

These first two Propositions are sufficient conditions for \mathbb{C}-differentiability of f at the point z_{0}.

Proposition $1.1([\mathrm{CB}], \S 22, \mathrm{p} .66)$. If $u_{x}, u_{y}, v_{x}, v_{y}$ are continuous at z_{0}, and satisfy the Cauchy-Riemann equations at that point: $u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right)$ and $u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right)$, then f is \mathbb{C}-differentiable at z_{0}.

Remark. In particular, the definition of two-variable continuity requires that $u_{x}, u_{y}, v_{x}, v_{y}$ must exist in some neighborhood of z_{0}, not just at z_{0}. The idea is that the continuity of the partial derivatives (called the " \mathcal{C} " " property) implies the real differentiability property of f at z_{0}, so the next Proposition applies.

Proposition 1.2. If u and v are \mathbb{R}-differentiable at $\left(x_{0}, y_{0}\right)$ and the partial derivatives u_{x}, u_{y}, v_{x}, v_{y} satisfy the Cauchy-Riemann equations at that point: $u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right)$ and $u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right)$, then f is \mathbb{C}-differentiable at z_{0}.

Remark. Recall a real-valued two-variable function $u(x, y)$ is \mathbb{R}-differentiable at $\left(x_{0}, y_{0}\right)$ means there exist real constants a, c so that

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{\left|u(x, y)-\left[u\left(x_{0}, y_{0}\right)+a\left(x-x_{0}\right)+c\left(y-y_{0}\right)\right]\right|}{\left|(x, y)-\left(x_{0}, y_{0}\right)\right|}=0 .
$$

Again, the two-dimensional limit requires that $\left(x_{0}, y_{0}\right)$ is an interior point of the domain of u. This is equivalent to the properties (2) - (4) from [CB] §22, p. 67.

The next two Propositions are sufficient conditions for f to be analytic on an open set (meaning, f is \mathbb{C}-differentiable at every point in the set).

Proposition 1.3 (The Looman-Menchoff Theorem). If $f(z)$ is continuous on an open set D, and the partial derivatives satisfy the Cauchy-Riemann equations at every point of $D: u_{x}(x, y)=$ $v_{y}(x, y)$ and $u_{y}(x, y)=-v_{x}(x, y)$, then f is analytic on D.

Proposition 1.4 (Montel, Tolstoff). If $f(z)$ is locally bounded on an open set D, and the partial derivatives satisfy the Cauchy-Riemann equations at every point of $D: u_{x}(x, y)=v_{y}(x, y)$ and $u_{y}(x, y)=-v_{x}(x, y)$, then f is analytic on D.
Remark. A function is locally bounded on a set D means that for each $w \in D$, there is some neighborhood $N_{w}, w \in \overline{N_{w} \subseteq D \text {, and }}$ some bound M_{w}, so that $|f(z)| \leq M_{w}$ for all $z \in N_{w}$. Every continuous function is locally bounded (for each $w,|f(z)|<|f(w)|+\epsilon$ for all z within some δ of w), so this result improves the Looman-Menchoff Theorem by requiring less in the hypothesis. For more about these Propositions, see [GM].

Exercise 1.5. In any of the above Propositions, \mathbb{C}-differentiability of f at a point does not follow from checking only the Cauchy-Riemann equations at one point, without any further hypothesis. For example, let

$$
f(z)=\left\{\begin{array}{cc}
z^{5} /|z|^{4} & \text { if } z \neq 0 \\
0 & \text { if } z=0
\end{array} .\right.
$$

Show that $f=u+i v$ has the following properties:

- On the set $\{z \neq 0\}$, expand u and v as rational functions of x, y (so f is continuous for $z \neq 0$).
- Calculate a limit as $z \rightarrow 0$ to show that f is continuous at 0. (Hint: Use [CB] Exercise \#18.9., p. 56.)
- Using the limit definition of real partial derivatives at $(0,0)$, show that u and v satisfy the Cauchy-Riemann equations at $(0,0)$.
- Show that u and v do not satisfy the Cauchy-Riemann equations at any point other than $(0,0)$.
- Using the limit definition of complex derivative, show that f is not \mathbb{C}-differentiable at $z_{0}=0$. (Hint: this is related to [CB] Exercise \#20.9., p. 63.)

Exercise 1.6. In any of the above Propositions, \mathbb{C}-differentiability of f at a point does not follow only from checking the Cauchy-Riemann equations on an open set, even on all of \mathbb{C}, without any further hypothesis. For example, let

$$
f(z)=\left\{\begin{array}{cc}
e^{-1 / z^{4}} & \text { if } z \neq 0 \\
0 & \text { if } z=0
\end{array}\right.
$$

Show that $f=u+i v$ has the following properties:

- On the set $\{z \neq 0\}$, show that f is \mathbb{C}-differentiable by using the rules for derivatives to find $f^{\prime}(z)$. (So, the C-R equations are satisfied at every point $z \neq 0$ by the Theorem from [CB] §20, p. 65.)
- Using the limit definition of real partial derivatives at $(0,0)$, show that u and v satisfy the Cauchy-Riemann equations at $(0,0)$. (Hint: one step in a limit calculation could involve this substitution:)

$$
\lim _{x \rightarrow 0^{+}} \frac{e^{-1 / x^{4}}}{x}=\lim _{X \rightarrow+\infty} \frac{e^{-1 /(1 / X)^{4}}}{(1 / X)}
$$

- Show that f is not continuous at $z=0$, by showing that $\lim f(z)=+\infty$ along some direction (and so f is not locally bounded, and f is not \mathbb{C}-differentiable at $z=0$ by the remark in $[\mathrm{CB}] \S 15$, p. 59).

2 Bonus exercises

The following exercise is similar to [CB] Exercise \#26.1, p. 81 .
Exercise 2.1. For the following functions $u(x, y)$ with domain $D \subseteq \mathbb{C}$, check that u is harmonic on D, and find a "harmonic conjugate" $v(x, y)$ on D, using the method from [CB] Example 26.5, page 81 .

1. $u=e^{x} \sin (y)$
2. $u=2 x^{3}-3 x^{2} y-6 x y^{2}+y^{3}$
3. $u=\frac{3 x^{2}+8 x y-3 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$, domain $D=\{(x, y) \neq(0,0)\}$. (some computer algebra might help on this one)
4. $u=\tan ^{-1}\left(\frac{y}{x}\right)$, domain $D=\{x>0\}$ (this is related to, but not the same as, [CB] Exercise \#26.6, p. 82).

Exercise 2.2. For the principal branch of the $\operatorname{logarithm,~} \log (z)=\ln |z|+i \theta$, for $z=|z| \exp (i \theta)$, $-\pi<\theta<\pi$, define the analytic function $f(z)=\frac{z}{\log (z)}$, on the domain $D=\{|z-1|<1\}$. Find the derivatives $f^{\prime}(z)$ and $f^{\prime \prime}(z)$ on D, in terms of $\log (z)$. Prove the following statements about limits as z approaches 0 but stays in the domain D :

$$
\begin{aligned}
& \lim _{z \in D, z \rightarrow 0} f(z)=0 \\
& \lim _{z \in D, z \rightarrow 0} f^{\prime}(z)=0 \\
& \lim _{z \in D,}\left|f_{z \rightarrow 0}\right| \\
& f^{\prime \prime}(z) \mid=+\infty
\end{aligned}
$$

Exercise 2.3. Using the exponential formula (1) from $[\mathrm{CB}] \S 34$, p. 105, find infinitely many different complex solutions of the equation $\sin (z)=5$. (You do not have to find all the solutions.)

3 Review of parametric curve calculus

The following result on real curves in \mathbb{R}^{n} states that for a sufficiently smooth curve \vec{r} with finite arclength, there is a change of parameter so that the composite has the same image but constant speed 1.
Theorem 3.1. Given $\vec{r}(t)$ which has finite arclength L on $[a, b]$, and such that $\frac{d}{d t} \vec{r}(t)$ is continuous and nonvanishing on (a, b), there exists a function $f(s)$ on the domain $[0, L]$ so that $(\vec{r} \circ f)(0)=\vec{r}(a),(\vec{r} \circ f)(L)=\vec{r}(b)$, and $\vec{r} \circ f$ has constant speed 1 on $(0, L)$.

Proof. Let $s=\ell(t)$ be the arclength from the start point $\vec{r}(a)$ to the point on the curve at time $t, \vec{r}(t)$. By the formula for arclength,

$$
\begin{equation*}
s=\ell(t)=\int_{a}^{t}\left|\frac{d}{d x} \vec{r}(x)\right| d x \tag{3.1}
\end{equation*}
$$

and assuming the total arclength on the interval $[a, b]$ exists, we can conclude that the integral on the subinterval $[a, t]$ exists for every $t \in[a, b]$.

The Fundamental Theorem of Calculus applies for t in (a, b) :

$$
\left.\frac{d}{d t} \ell(t)=\frac{d}{d t} \int_{a}^{t}\left|\frac{d}{d x} \vec{r}(x)\right| d x=\left|\frac{d}{d x} \vec{r}(x)\right|\right]_{x=t}=\left|\vec{r}^{\prime}(t)\right|
$$

From the assumption that $\vec{r}^{\prime} \neq \overrightarrow{0}$ on (a, b), we can conclude that $\left|\vec{r}^{\prime}(t)\right|>0$ on (a, b), so $\ell(t)$ is the integral from a to t of a positive, continuous function, and therefore $s=\ell(t)$ is an increasing function on $[a, b]$. It follows that ℓ is invertible: there exists an inverse function $t=\ell^{-1}(s)$, so that if s is the arclength, then t is the unique time at which the plot \vec{r} gets to length s.

From $\left(\ell \circ \ell^{-1}\right)(s)=s$, we can $\frac{d}{d s}$ both sides to show that the derivative of the composite is constant: $\frac{d}{d s}\left(\ell \circ \ell^{-1}\right)(s)=1$. Applying the Chain rule,

$$
\begin{aligned}
1 & =\frac{d}{d s}\left(\left(\ell \circ \ell^{-1}\right)(s)\right)=\ell^{\prime}\left(\ell^{-1}(s)\right) \cdot\left(\frac{d}{d s}\left(\ell^{-1}(s)\right)\right) \\
\Longrightarrow \frac{d}{d s}\left(\ell^{-1}(s)\right) & =\frac{1}{\ell^{\prime}\left(\ell^{-1}(s)\right)}=\frac{1}{\ell^{\prime}(t)} .
\end{aligned}
$$

Combining the above two equations gives:

$$
\frac{d}{d s}\left(\ell^{-1}(s)\right)=\frac{1}{\ell^{\prime}(t)}=\frac{1}{\left|\vec{r}^{\prime}(t)\right|}>0
$$

Let s be the input parameter, $0 \leq s \leq L$, and consider the composition $\left(\vec{r} \circ\left(\ell^{-1}\right)\right)(s)=$ $\vec{r}\left(\ell^{-1}(s)\right)$. This composite takes input s, gives $\ell^{-1}(s)$, which is the time at which \vec{r} plots an arc of length s, and plugs this time into the function \vec{r}. So, $\vec{r}\left(\ell^{-1}(s)\right)$ is the position on the curve at which the arclength is s. This change of parameter is called a parametrization by arclength, and the claim is that the function f from the statement of the Theorem can be chosen to be the function ℓ^{-1} that we've constructed.

Returning to the calculations, we want to show that $\vec{r} \circ\left(\ell^{-1}\right)$ has constant speed 1 with respect to the parameter $s, 0<s<L$. The velocity of the composite is given by the Chain Rule:

$$
\frac{d}{d s}\left(\left(\vec{r} \circ\left(\ell^{-1}\right)\right)(s)\right)=\vec{r}^{\prime}\left(\ell^{-1}(s)\right) \cdot \frac{d}{d s}\left(\ell^{-1}(s)\right)=\vec{r}^{\prime}(t) \cdot \frac{d}{d s}\left(\ell^{-1}(s)\right)
$$

and the speed is the magnitude:

$$
\left|\frac{d}{d s}\left(\left(\vec{r} \circ\left(\ell^{-1}\right)\right)(s)\right)\right|=\left|\vec{r}^{\prime}(t) \cdot \frac{d}{d s}\left(\ell^{-1}(s)\right)\right|=\left|\vec{r}^{\prime}(t)\right| \cdot\left|\frac{d}{d s}\left(\ell^{-1}(s)\right)\right|,
$$

and from the above equation $\frac{d}{d s}\left(\ell^{-1}(s)\right)=\frac{1}{\left|\vec{r}{ }^{\prime}(t)\right|}$, this product cancels to exactly 1 .
Lemma 3.2. Given $\vec{r}(t):[a, b] \rightarrow \mathbb{R}^{n}$ which satisfies $\lim _{t \rightarrow a^{+}} \vec{r}(t)=\vec{r}(a)$, and $\lim _{t \rightarrow a^{+}}\left(\frac{d}{d t} \vec{r}(t)\right)=\vec{V}$, the following limit also exists: $\lim _{t \rightarrow a^{+}} \frac{\vec{r}(t)-\vec{r}(a)}{t-a}=\vec{V}$.

Proof. The existence of the one-sided derivative follows from the Mean Value Theorem (applied to the components $\left.\vec{r}(t)=\left(r_{1}(t), \ldots, r_{n}(t)\right)\right)$.

So, if \vec{r} is continuous on $[a, b]$ and the derivative extends continuously to the value \vec{V} at endpoint a, then \vec{V} is also equal to the one-sided derivative at \vec{a}.

Theorem 3.3. Given $\vec{r}(t)$ which is continuous on $[a, b]$, and such that $\frac{d}{d t} \vec{r}(t)$ extends to a continuous and nonvanishing function on the closed interval $[a, b]$, there exists a function $f(s)$ on the domain $[0, L]$ so that $(\vec{r} \circ f)(0)=\vec{r}(a),(\vec{r} \circ f)(L)=\vec{r}(b), \vec{r} \circ f$ is continuous on $[0, L]$, has constant speed 1 on $(0, L)$, and the one-sided derivatives are also unit vectors, so that the velocity $\frac{d}{d s}(r \circ f)$ also extends continuously to $[0, L]$:

$$
\lim _{s \rightarrow 0^{+}} \frac{(\vec{r} \circ f)(s)-(\vec{r} \circ f)(0)}{s}=\lim _{s \rightarrow 0^{+}}\left(\frac{d}{d s}(r \circ f)\right)
$$

and similarly for the other endpoint.
Proof. The finiteness of the arclength, L, is a consequence of the continuity of $\frac{d}{d t} \vec{r}(t)$ on the closed interval $[a, b]$. Use the same $f=\ell^{-1}$ constructed in the Proof of Theorem 3.1; since ℓ is continuous on $[a, b], f$ is continuous on $[0, L]$. Let $\lim _{t \rightarrow a^{+}} \vec{r}^{\prime}(t)=\vec{V} \neq \overrightarrow{0}$. The following calculation, using the Composite Limit Theorem, establishes the existence of the limit.

$$
\begin{aligned}
\lim _{s \rightarrow 0^{+}}\left(\frac{d}{d s}\left(r \circ \ell^{-1}\right)\right) & =\lim _{s \rightarrow 0^{+}}\left(\vec{r}^{\prime}\left(\ell^{-1}(s)\right) \cdot \frac{d}{d s}\left(\ell^{-1}(s)\right)\right) \\
& =\lim _{s \rightarrow 0^{+}}\left(\vec{r}^{\prime}\left(\ell^{-1}(s)\right)\right) \cdot \lim _{s \rightarrow 0^{+}}\left(\frac{d}{d s}\left(\ell^{-1}(s)\right)\right) \\
& =\vec{V} \cdot \lim _{s \rightarrow 0^{+}} \frac{1}{\left|\vec{r}^{\prime}\left(\ell^{-1}(s)\right)\right|}=\vec{V} \cdot \frac{1}{|\vec{V}|}
\end{aligned}
$$

The equality of this unit vector with the one-sided derivative is Lemma 3.2, using the continuity of \vec{r}. The other endpoint is considered similarly.

Lemma 3.4. Given $\vec{r}:[a, b] \rightarrow \mathbb{R}^{n}$, if $\vec{r}(t)$ is continuous on $[a, b]$, and $\frac{d}{d t} \vec{r}(t)$ exists on (a, b) and extends to a continuous and nonvanishing function on $[a, b)$, with

$$
\lim _{t \rightarrow a^{+}}\left(\frac{d}{d t} \vec{r}(t)\right)=\vec{V}
$$

then for any $c, 0<c<|\vec{V}|$, there exists some $\delta>0$ so that for $a \leq t<a+\delta$,

$$
c \cdot(t-a) \leq|\vec{r}(t)-\vec{r}(a)| \leq(2|\vec{V}|-c) \cdot(t-a)
$$

Proof. By Lemma 3.2,

$$
\lim _{t \rightarrow a^{+}} \frac{\vec{r}(t)-\vec{r}(a)}{t-a}=\vec{V}
$$

Corresponding to $\epsilon=|\vec{V}|-c>0$, there is some $\delta>0$ so that for $0<t-a<\delta$,

$$
\left|\frac{\vec{r}(t)-\vec{r}(a)}{t-a}-\vec{V}\right|<|\vec{V}|-c .
$$

By the triangle inequality,

$$
\begin{aligned}
|\vec{r}(t)-\vec{r}(a)| & \geq|(t-a) \vec{V}|-|\vec{r}(t)-\vec{r}(a)-(t-a) \vec{V}| \\
& >(t-a)|\vec{V}|-(t-a)(|\vec{V}|-c) \\
& =c \cdot(t-a)
\end{aligned}
$$

and

$$
\begin{aligned}
|\vec{r}(t)-\vec{r}(a)| & =\left|\frac{\vec{r}(t)-\vec{r}(a)}{t-a}-\vec{V}+\vec{V}\right| \cdot|t-a| \\
& <(|\vec{V}|-c+|\vec{V}|) \cdot|t-a|
\end{aligned}
$$

Theorem 3.5. Given $\vec{r}(t)$ which is continuous on $[a, b]$, and such that $\frac{d}{d t} \vec{r}(t)$ extends to a continuous and nonvanishing function on $[a, b)$ and which has arclength function $\ell(t)$ as in (3.1), then for any $c, 0<c<1$, there exists some $\delta>0$ so that for $a \leq t<a+\delta$,

$$
c \cdot \ell(t) \leq|\vec{r}(t)-\vec{r}(a)| \leq \ell(t)
$$

Proof. By Theorem 3.3 (possibly applied to some shorter interval $\left[a, b_{0}\right], b_{0} \leq b$), there exists a function $f(s)$ on the domain $[0, L]$ so that $(\vec{r} \circ f)(0)=\vec{r}(a), \vec{r} \circ f$ is continuous on $[0, L]$, has constant speed 1 on $(0, L)$, and the one-sided derivative at a is also a unit vector. Lemma 3.4 applies to any $c, 0<c<1$, to give a lower bound, and there is a better upper bound:

$$
c \cdot s \leq|\vec{r}(f(s))-\vec{r}(f(0))| \leq s
$$

for s in some interval $\left[0, \delta_{1}\right)$, depending on $0<c<1$. From the Proof of Theorem 3.1, $f=\ell^{-1}$, so if $0<s=\ell(t)<\delta_{1}$, then

$$
c \cdot \ell(t) \leq|\vec{r}(t)-\vec{r}(a)| \leq \ell(t)
$$

for $0<t<\ell^{-1}\left(\delta_{1}\right)$.

The conclusion from the Theorem is that for some initial interval, the magnitude of the displacement is comparable to the arclength.

Given a continuous function $\vec{r}(t):[a, b] \rightarrow \mathbb{R}^{n}$, the composite $|\vec{r}(t)-\vec{r}(a)|$ is a continuous function $[a, b] \rightarrow \mathbb{R}$. If there is some interval (a, c) on which $|\vec{r}(t)-\vec{r}(a)|$ is nonvanishing and $\frac{d}{d t} \vec{r}(t)$ exists (for example, $(a, a+\delta)$ from Lemma 3.4), then:

$$
\begin{aligned}
\frac{d}{d t}(|\vec{r}(t)-\vec{r}(a)|) & =\frac{d}{d t} \sqrt{\sum_{k=1}^{n}\left(r_{k}(t)-r_{k}(a)\right)^{2}} \\
& =\frac{1}{2} \cdot \frac{\sum_{k=1}^{n} 2\left(r_{k}(t)-r_{k}(a)\right) \cdot \frac{d r_{k}(t)}{d t}}{\sqrt{\sum_{k=1}^{n}\left(r_{k}(t)-r_{k}(a)\right)^{2}}} \\
& =\frac{1}{|\vec{r}(t)-\vec{r}(a)|}(\vec{r}(t)-\vec{r}(a)) \cdot \frac{d \vec{r}}{d t} \\
& =\cos (\alpha(t))\left|\frac{d \vec{r}}{d t}\right| .
\end{aligned}
$$

The cosine appears from the dot product formula, where $\alpha(t)$ is the angle between the direction vector $\vec{r}(t)-\vec{r}(a)$ and the velocity vector $\frac{d \vec{r}}{d t}$. If \vec{r} happens to have unit speed for $a<t<c$, then $\frac{d}{d t}(|\vec{r}(t)-\vec{r}(a)|)=\cos (\alpha(t))$.

Exercise 3.6. Let F be an analytic function on a domain containing the closed unit disk $\{|z| \leq 1\}$, with derivative $f(z)=F^{\prime}(z)$. If $F(1)$ is real and $f(1)=1$, then the squared modulus of the values of F on the unit circle, given by the real function

$$
g(\theta)=\left|F\left(e^{i \theta}\right)\right|^{2}
$$

has a critical point at $\theta=0$.

4 Cauchy integrals

Notation 4.1. For $r>0$ and $z_{0} \in \mathbb{C}$, let $D\left(z_{0}, r\right)$ denote the Euclidean disk with center z_{0} and radius r, and as the special case with $z_{0}=0$, abbreviate $D(0, r)=D_{r}$.

Notation 4.2. By a smooth arc, we mean a continuous parametric map $z:[0,1] \rightarrow \mathbb{C}$ with image Γ, which is one-to-one on $[0,1]$ with the possible exception of $z(0)=z(1)$, and differentiable on $(0,1)$ with $\frac{d z}{d t}$ extending to a continuous, non-vanishing function on $[0,1]$. By a piecewise smooth arc, we mean a continuous parametric map $z:[0,1] \rightarrow \mathbb{C}$ with image Γ, which is one-to-one on $[0,1]$, with the possible exception of $z(0)=z(1)$ (in this special case we say piecewise smooth contour), so that the domain has a partition $0=t_{0}<t_{1}<\ldots<t_{N}=1$, where z restricted to each $\left[t_{i}, t_{i+1}\right]$ is, after a suitable re-scaling of the domain, a smooth arc. In any case, the notation can be abused by referring only to Γ, with the parametrization (and the induced orientation) understood.

By Lemma 3.2, the one-sided derivatives are defined at the endpoints of a smooth arc.

Notation 4.3. For φ integrable on a piecewise smooth arc Γ (meaning, as in the previous Notation, $(\varphi \circ z)(t) \cdot z^{\prime}(t)$ is integrable on $\left.[0,1]\right)$, define a function $\Phi: \mathbb{C} \backslash \Gamma \rightarrow \mathbb{C}$ by the formula:

$$
\Phi(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{\varphi(\zeta)}{\zeta-z} d \zeta
$$

More generally, for $n=1,2,3,4, \ldots$, define

$$
\Phi_{n}(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{\varphi(\zeta)}{(\zeta-z)^{n}} d \zeta
$$

so $\Phi_{1}=\Phi$.
Theorem 4.4. For a piecewise smooth arc Γ and φ continuous on Γ, Φ_{n} is complex differentiable on the complement of Γ, with $\frac{d}{d z} \Phi_{n}=n \cdot \Phi_{n+1}$.

Proof. Note that the derivative formula is just a special case of interchanging derivative and integral signs: formally, $\frac{d}{d z} \int_{\Gamma} F(z, w) d w=\int_{\Gamma} \frac{d}{d z} F(z, w) d w$. We will prove only the special case and not make any more general claim; the outline of the proof follows $[\mathrm{A}]$.

Step 1: a factoring trick.

$$
\begin{align*}
& (w-a)^{n}-(w-z)^{n} \\
= & (w-a)^{n}-(w-z)(w-a)^{n-1}+(w-z)(w-a)^{n-1}-(w-z)^{n} \\
= & (w-a)^{n-1}((w-a)-(w-z))+(w-z)(w-a)^{n-1}-(w-z)^{n} \tag{4.1}\\
= & (w-a)^{n-1}(z-a)+(z-a) Q_{n-1}(z, w, a) \tag{4.2}
\end{align*}
$$

where the $(w-z)(w-a)^{n-1}-(w-z)^{n}$ quantity in (4.1) is a polynomial in z of degree n, which has value 0 at $z=a$, so it factors as in (4.2). When $n=1, Q_{0}$ is identically zero.

Dividing by $(w-z)^{n}(w-a)^{n}$,

$$
\begin{align*}
& \frac{1}{(w-z)^{n}}-\frac{1}{(w-a)^{n}} \\
= & \frac{z-a}{(w-z)^{n}(w-a)}+\frac{1}{(w-z)^{n-1}(w-a)}-\frac{1}{(w-a)^{n}} \tag{4.3}\\
= & (z-a) \cdot \frac{(w-a)^{n-1}+Q_{n-1}(z, w, a)}{(w-z)^{n}(w-a)^{n}} . \tag{4.4}
\end{align*}
$$

Step 2: Φ_{n} is continuous on the complement of Γ. To show this, fix $a \notin \Gamma$, and we want $\lim _{z \rightarrow a} \Phi_{n}(z)=\Phi_{n}(a)$. Since the complement is open, we can find some radius $\rho>0$ so that $D(a, \rho)$ is contained in the complement, and for all $w \in \Gamma,|w-a|>\rho$ and $|w-z|>\rho / 2$ for $z \in D(a, \rho / 2)$. Using (4.4),

$$
\begin{align*}
\Phi_{n}(z)-\Phi_{n}(a) & =\frac{1}{2 \pi i} \int_{\Gamma} \frac{\varphi(w)}{(w-z)^{n}} d w-\frac{1}{2 \pi i} \int_{\Gamma} \frac{\varphi(w)}{(w-a)^{n}} d w \\
& =\frac{1}{2 \pi i} \int_{\Gamma} \varphi(w) \cdot(z-a) \cdot \frac{(w-a)^{n-1}+Q_{n-1}(z, w, a)}{(w-z)^{n}(w-a)^{n}} d w \tag{4.5}
\end{align*}
$$

Taking absolute value and using L for the arclength of Γ,

$$
\begin{aligned}
& \left|\Phi_{n}(z)-\Phi_{n}(a)\right| \\
= & \frac{|z-a|}{|2 \pi i|} \cdot\left|\int_{\Gamma} \varphi(w) \cdot \frac{(w-a)^{n-1}+Q_{n-1}(z, w, a)}{(w-z)^{n}(w-a)^{n}} d w\right| \\
\leq & \frac{|z-a|}{2 \pi} \frac{1}{(\rho / 2)^{n}} \frac{1}{\rho^{n}} \max _{w \in \Gamma}\{|\varphi(w)|\} \max \left\{\left|(w-a)^{n-1}+Q_{n-1}(z, w, a)\right|\right\} \cdot L
\end{aligned}
$$

where the second max is over the compact product space $\{(z, w): w \in \Gamma,|z-a| \leq \rho / 2\}$. Every factor in the last line except $|z-a|$ depends only on Γ, φ, ρ, a, and n, but not on z, and this is enough to establish the claimed continuity.

Step 3: Φ_{1} is complex differentiable on $\mathbb{C} \backslash \Gamma$. Again, fix $a \notin \Gamma$. Using the $n=1$ case of (4.5), where $Q_{0} \equiv 0$,

$$
\begin{align*}
\frac{\Phi_{1}(z)-\Phi_{1}(a)}{z-a} & =\frac{1}{2 \pi i} \int_{\Gamma} \frac{\varphi(w)}{(w-z)(w-a)} d w \tag{4.6}\\
& =\frac{1}{2 \pi i} \int_{\Gamma} \frac{\left(\frac{\varphi(w)}{(w-a)}\right)}{(w-z)} d w \tag{4.7}
\end{align*}
$$

In (4.7), the numerator $\frac{\varphi(w)}{w-a}$ is continuous on Γ, so the $n=1$ case of Step 2 applies with this fraction substituted for $\varphi(w)$, and quantity (4.7) is, as a function of z, continuous at a. Taking the $z \rightarrow a$ limit of $(4.6)=(4.7)$ gives:

$$
\Phi_{1}^{\prime}(a)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{\left(\frac{\varphi(w)}{(w-a)}\right)}{(w-a)} d w=\Phi_{2}(a)
$$

The equation $\Phi_{1}^{\prime}=1 \cdot \Phi_{2}$ is the $n=1$ case of the claimed derivative formula, and also the start of an induction on n.

Step 4: The inductive step. Assume, for any continuous φ on $\Gamma, \Phi_{n-1}^{\prime}=(n-1) \cdot \Phi_{n}$ on $\mathbb{C} \backslash \Gamma$.

$$
\begin{align*}
& \frac{\Phi_{n}(z)-\Phi_{n}(a)}{z-a} \tag{4.8}\\
= & \frac{\int_{\Gamma} \frac{\varphi(w)}{(w-z)^{n}} d w-\int_{\Gamma} \frac{\varphi(w)}{(w-a)^{n}} d w}{2 \pi i(z-a)} \\
= & \frac{\int_{\Gamma} \varphi(w)\left(\frac{z-a}{(w-z)^{n}(w-a)}+\frac{1}{(w-z)^{n-1}(w-a)}-\frac{1}{(w-a)^{n}}\right) d w}{2 \pi i(z-a)} \tag{4.9}\\
= & \frac{1}{2 \pi i} \int_{\Gamma} \frac{\left(\frac{\varphi(w)}{w-a}\right)}{(w-z)^{n}} d w+\frac{\int_{\Gamma} \frac{\left(\frac{\varphi(w)}{w-a}\right)}{(w-z)^{n-1}} d w-\int_{\Gamma} \frac{\left(\frac{\varphi(w)}{w-a}\right)}{(w-a)^{n-1}} d w}{2 \pi i(z-a)} \\
= & \tilde{\Phi}_{n}(z)+\frac{\tilde{\Phi}_{n-1}(z)-\tilde{\Phi}_{n-1}(a)}{z-a}, \tag{4.10}
\end{align*}
$$

where (4.9) uses (4.3), and $\tilde{\Phi}_{n}$ in (4.10) denotes the Φ_{n} expression with the continuous function $\frac{\varphi(w)}{w-a}$ substituted for $\varphi(w)$, as in the previous step. Taking the $z \rightarrow a$ limit, quantity (4.8) has
limit $\Phi_{n}^{\prime}(a)$, and in (4.10), the first term $\tilde{\Phi}_{n}(z)$ is continuous at a by Step 2, and the limit of the second term is $\tilde{\Phi}_{n-1}^{\prime}(a)=(n-1) \cdot \tilde{\Phi}_{n}(a)$, by the inductive hypothesis. The conclusion is

$$
\begin{aligned}
\Phi_{n}^{\prime}(a) & =\tilde{\Phi}_{n}(a)+(n-1) \tilde{\Phi}_{n}(a) \\
& =n \tilde{\Phi}_{n}(a)=\frac{n}{2 \pi i} \int_{\Gamma} \frac{\left(\frac{\varphi(w)}{w-a}\right)}{(w-a)^{n}} d w \\
& =n \cdot \Phi_{n+1}(a)
\end{aligned}
$$

Corollary 4.5. If $f(z)$ is complex differentiable on an open set D, then $f^{\prime}(z)$ is also complex differentiable on D.

Proof. Given any $a \in D$, there is some disk $D(a, r) \subseteq D$; let Γ be the circle $\{|z-a|=r / 2\}$, and let φ be the (continuous) restriction of f to Γ. Theorem 4.4 applies to z in $D(a, r / 2)$, where

$$
\Phi_{1}(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(w)}{(w-z)^{1}} d w=f(z)
$$

by the Cauchy Integral Formula, and the conclusion of the Theorem is that the derivative of $f=\Phi_{1}$ on $D(a, r / 2)$ is:

$$
f^{\prime}(z)=\Phi_{2}(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(w)}{(w-z)^{2}} d w
$$

which is complex differentiable on $D(a, r / 2)$.
Repeating the above construction shows that all higher derivatives $f^{(n)}$ exist, with the formula

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{\Gamma} \frac{f(w)}{(w-z)^{n+1}} d w
$$

5 Principal values

Definition 5.1. For Γ as in Notation 4.3, a point $\tau \in \Gamma$, and $\varepsilon>0$, let Γ_{ε} denote the complement $\Gamma \backslash D(\tau, \varepsilon)$, which for small ε is a pair of piecewise smooth arcs (or possibly one arc), parametrized by restricting the parametrization of Γ. If, for φ as in Notation 4.3, the limit

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{2 \pi i} \int_{\Gamma_{\varepsilon}} \frac{\varphi(\zeta)}{\zeta-\tau} d \zeta \tag{5.1}
\end{equation*}
$$

exists, then it is called the Principal Value of the Cauchy integral Φ at $\tau, \operatorname{P.V.\Phi (\tau)}$.
Definition 5.2. For any constant $0<\alpha<1$ and any set $B \subseteq \mathbb{C}$, a function $\varphi: B \rightarrow \mathbb{C}$ is Hölder continuous with exponent α on B means: there is a constant C so that for any $z_{1}, z_{2} \in B$, $\left|\varphi\left(z_{1}\right)-\varphi\left(z_{2}\right)\right|<C\left|z_{1}-z_{2}\right|^{\alpha}$. This property is abbreviated $\varphi \in \mathcal{C}^{0, \alpha}(B)$.

Theorem 5.3. For $0<\alpha<1$, and a piecewise smooth contour Γ, if $\varphi \in \mathcal{C}^{0, \alpha}(\Gamma)$, then:

- The Principal Value of Φ exists at any point $\tau \in \Gamma$;
- For any smooth point $\tau \in \Gamma$, the Principal Value of Φ is equal to

$$
\frac{1}{2 \pi i} \int_{\Gamma} \frac{\varphi(\zeta)-\varphi(\tau)}{\zeta-\tau} d \zeta+\frac{1}{2} \varphi(\tau)
$$

Proof. The first step is to show that for a piecewise smooth arc Γ,

$$
\int_{\Gamma} \frac{\varphi(\zeta)-\varphi(\tau)}{\zeta-\tau} d \zeta
$$

exists, as a complex valued improper integral, in the following sense. On Γ_{ϵ}, the quantity being integrated is continuous, so the only parts requiring attention are the one or two arcs with endpoint τ in the disk $D(\tau, \varepsilon)$. It is enough to show that there is some smooth arc reparametrizing a piece of $\Gamma, z(t) \in \Gamma \cap D(\tau, \varepsilon), t \in[0,1]$, with $z(0)=\tau$, with the property: for any $\eta>0$ there is some $\delta>0$ so that for all $0<a<\delta$:

$$
\left|\int_{z(a)}^{z(\delta)} \frac{\varphi(\zeta)-\varphi(\tau)}{\zeta-\tau} d \zeta\right|<\eta
$$

By Lemma 3.4, we can choose a small enough sub-arc of $\Gamma \cap D(\tau, \varepsilon)$, parametrized by $z(t)$ on $[0, B], z(0)=\tau,\left|z^{\prime}(t)\right|=1$ on $(0, B)$, and $|z(t)-z(0)| \geq c t$ for some $c>0$. (This is not yet related to η.)

Then, for any $0<b<B$,

$$
\begin{aligned}
& \int_{b}^{B} \frac{|\varphi(z(t))-\varphi(z(0))|}{|z(t)-z(0)|} d t \\
\leq & \int_{b}^{B} \frac{C|z(t)-z(0)|^{\alpha}}{|z(t)-z(0)|} d t \\
= & \int_{b}^{B} \frac{C}{|z(t)-z(0)|^{1-\alpha}} d t \\
\leq & C \int_{b}^{B} \frac{1}{(c t)^{1-\alpha}} d t \\
= & \left.\frac{C}{c^{1-\alpha}} \frac{t^{\alpha}}{\alpha}\right]_{b}^{B}<\frac{C B^{\alpha}}{\alpha c^{1-\alpha}} .
\end{aligned}
$$

Since the quantity being integrated is nonnegative and has bounded integral for all b, as b decreases to $0, \int_{b}^{B}$ weakly increases to some finite least upper bound $0 \leq U \leq \frac{C B^{\alpha}}{\alpha c^{1-\alpha}}$. In particular, for any η, there is some small $\delta>0$ so that for all $0<a \leq \delta, U-\eta<\int_{a}^{B} \leq U$. So,
for all $0<a<\delta$,

$$
\begin{aligned}
\left|\int_{z(a)}^{z(\delta)} \frac{\varphi(\zeta)-\varphi(\tau)}{\zeta-\tau} d \zeta\right| & =\left|\int_{t=a}^{t=\delta} \frac{\varphi(z(t))-\varphi(z(0))}{z(t)-z(0)} z^{\prime}(t) d t\right| \\
& \leq \int_{a}^{\delta} \frac{|\varphi(z(t))-\varphi(z(0))|}{|z(t)-z(0)|} d t \\
& =\int_{\delta}^{B}-\int_{a}^{B}<U-(U-\eta)=\eta
\end{aligned}
$$

and the claim follows.
The previous part only required that Γ is a piecewise smooth arc; the next step uses the assumption that it is a contour, with global parametrization $z(t)$. We make the simplifying assumption that $\tau=z\left(t_{0}\right)$ for some $t_{0} \neq 0,1$; otherwise, the argument can be easily modified.

For a smooth point τ, and sufficiently small $\varepsilon>0$, there are numbers $t_{1}<t_{2}$ so that Γ_{ε} is a connected arc, that is parametrized by $z(t)$ in two sub-arcs, one for the restricted domain $\left[0, t_{1}\right]$, and the other for $\left[t_{2}, 1\right]$. As a function of ζ, the expression $\frac{1}{\zeta-\tau}$ has an antiderivative $\log (\zeta-\tau)$, away from some branch cut starting at τ and avoiding Γ_{ε} by staying in the connected exterior of Γ. Considering the quantity

$$
\begin{aligned}
\int_{\Gamma_{\varepsilon}} \frac{d \zeta}{\zeta-\tau}= & \int_{z(0)}^{z\left(t_{1}\right)} \frac{d \zeta}{\zeta-z\left(t_{0}\right)}+\int_{z\left(t_{2}\right)}^{z(1)} \frac{d \zeta}{\zeta-z\left(t_{0}\right)} \\
= & \left(\log \left(z\left(t_{1}\right)-\tau\right)-\log (z(0)-\tau)\right) \\
& +\left(\log (z(1)-\tau)-\log \left(z\left(t_{2}\right)-\tau\right)\right) \\
= & \log \left(\frac{z\left(t_{1}\right)-\tau}{z\left(t_{2}\right)-\tau}\right) \\
= & \ln \left|\frac{z\left(t_{1}\right)-\tau}{z\left(t_{2}\right)-\tau}\right|+i \arg \left(\frac{z\left(t_{1}\right)-\tau}{z\left(t_{2}\right)-\tau}\right)
\end{aligned}
$$

as $\varepsilon \rightarrow 0^{+}$, the integral approaches $0+i \pi$. If τ is a corner point (a shared endpoint of arcs in the contour) with angle ρ, then the above difference in arguments approaches ρ and the integral approaches $i \rho$. The claimed formula for the smooth point follows from the add-and-subtract trick:

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{2 \pi i} \int_{\Gamma_{\varepsilon}} \frac{\varphi(\zeta)}{\zeta-\tau} d \zeta & =\lim _{\varepsilon \rightarrow 0^{+}}\left(\frac{1}{2 \pi i} \int_{\Gamma_{\varepsilon}} \frac{\varphi(\zeta)-\varphi(\tau)}{\zeta-\tau} d \zeta+\frac{\varphi(\tau)}{2 \pi i} \int_{\Gamma_{\varepsilon}} \frac{d \zeta}{\zeta-\tau}\right) \\
& =\frac{1}{2 \pi i} \int_{\Gamma} \frac{\varphi(\zeta)-\varphi(\tau)}{\zeta-\tau} d \zeta+\frac{1}{2} \varphi(\tau)
\end{aligned}
$$

Notation 5.4. Given a $\mathcal{C}^{0, \alpha}$ function φ on a piecewise smooth arc Γ, and any point $\tau \in \Gamma$, define Ψ_{τ} by

$$
\Psi_{\tau}(z)=\int_{\Gamma} \frac{\varphi(\zeta)-\varphi(\tau)}{\zeta-z} d \zeta
$$

It was checked in the above proof that $\Psi_{\tau}(\tau)$ is well-defined as an improper integral, and $\Psi_{\tau}(z)$ is analytic on $\mathbb{C} \backslash \Gamma$ by Theorem 4.4.

Theorem 5.5. For any limit with z approaching τ non-tangentially,

$$
\lim _{z \rightarrow \tau} \Psi_{\tau}(z)=\Psi_{\tau}(\tau)
$$

Proof. The arc Γ and the point τ are given, and we also fix an arc on which z will approach τ, that has the following property: There is some $\delta_{1}>0$ and some $c>0$ so that if z is on the approach arc and $0<|z-\tau|<\delta_{1}$, then for all $\zeta \in \Gamma,|z-\zeta|>c|z-\tau|$. We take this as the definition of non-tangential, although if we choose some other approach arc, the constants δ_{1} and c may be different.

Given $\eta>0$, we want to show that there is some $\delta>0$ so that if z is on the approach arc and $0<|z-\tau|<\delta$, then $\left|\Psi_{\tau}(z)-\Psi_{\tau}(\tau)\right|<\eta$. By definition,

$$
\begin{aligned}
\Psi_{\tau}(z)-\Psi_{\tau}(\tau) & =\int_{\Gamma} \frac{\varphi(\zeta)-\varphi(\tau)}{\zeta-z} d \zeta-\int_{\Gamma} \frac{\varphi(\zeta)-\varphi(\tau)}{\zeta-\tau} d \zeta \\
& =\int_{\Gamma} \frac{(\varphi(\zeta)-\varphi(\tau))(z-\tau)}{(\zeta-z)(\zeta-\tau)} d \zeta
\end{aligned}
$$

From the Proof of Theorem 5.3, there is some $\varepsilon>0$ and some parametrization $\zeta(t)$ of Γ near τ so that the improper integral satisfies:

$$
\left|\int_{\Gamma \backslash \Gamma_{\varepsilon}} \frac{\varphi(\zeta)-\varphi(\tau)}{\zeta-\tau} d \zeta\right| \leq \int_{t_{0}-\delta_{2}}^{t_{0}+\delta_{3}} \frac{|\varphi(\zeta(t))-\varphi(\tau)|}{|\zeta(t)-\tau|} d t<\frac{\eta c}{2}
$$

The ε depends on the constant c from the fixed approach arc, but not on the point z. For z on the approach arc such that $0<|z-\tau|<\delta_{1}, \frac{|z-\tau|}{|\zeta-z|}<\frac{1}{c}$, so

$$
\left|\int_{\Gamma \backslash \Gamma_{\varepsilon}} \frac{(\varphi(\zeta)-\varphi(\tau))(z-\tau)}{(\zeta-z)(\zeta-\tau)} d \zeta\right|<\frac{\eta}{2}
$$

Suppose $0<|z-\tau|<\varepsilon / 2$, so $|\zeta-z|>\varepsilon / 2$ for all $\zeta \in \Gamma_{\varepsilon}$. Let L_{ε} be the arclength of Γ_{ε}. Then

$$
\begin{aligned}
\left|\int_{\Gamma_{\varepsilon}} \frac{\varphi(\zeta)-\varphi(\tau)}{(\zeta-z)(\zeta-\tau)} d \zeta\right| & \leq \max \left|\frac{\varphi(\zeta)-\varphi(t)}{(\zeta-z)(\zeta-\tau)}\right| L_{\varepsilon} \\
& <\frac{2}{\varepsilon} \max \left|\frac{\varphi(\zeta)-\varphi(\tau)}{\zeta-\tau}\right| L_{\varepsilon}
\end{aligned}
$$

where the max is over $\zeta \in \Gamma_{\varepsilon}$.
If $\max \left|\frac{\varphi(\zeta)-\varphi(\tau)}{\zeta-\tau}\right| L_{\varepsilon}=0$, then the claim is established, with $\delta=\min \left\{\delta_{1}, \varepsilon / 2\right\}$. Otherwise, if

$$
0<|z-\tau|<\frac{\eta \varepsilon}{4 \max \left|\frac{\varphi(\zeta)-\varphi(\tau)}{\zeta-\tau}\right| L_{\varepsilon}}
$$

then

$$
\begin{aligned}
\left|\int_{\Gamma_{\varepsilon}} \frac{(\varphi(\zeta)-\varphi(\tau))(z-\tau)}{(\zeta-z)(\zeta-\tau)} d \zeta\right| & =|z-\tau|\left|\int_{\Gamma_{\varepsilon}} \frac{\varphi(\zeta)-\varphi(\tau)}{(\zeta-z)(\zeta-\tau)} d \zeta\right| \\
& <\frac{\eta}{2}
\end{aligned}
$$

For a piecewise smooth contour Γ as in Theorem 5.3, let D^{+}denote the interior region of Γ and let D^{-}denote the exterior. For φ and Φ as in Notation 4.3, define $\Phi^{ \pm}: \Gamma \rightarrow \mathbb{C}$ as a non-tangential limit, if it exists:

$$
\Phi^{ \pm}(\tau)=\lim _{z \rightarrow \tau, z \in D^{ \pm}} \Phi(z)
$$

Theorem 5.6 (Plemelj Jump). Given a $\mathcal{C}^{0, \alpha}$ function φ on Γ, the functions $\Phi^{ \pm}$are well-defined at every smooth point τ, and satisfy

$$
\Phi^{ \pm}(\tau)=P . V . \Phi(\tau) \pm \frac{1}{2} \varphi(\tau)
$$

Proof. At any smooth point, there is a non-tangential approach arc on either side. Use the add-and-subtract trick again.

$$
\begin{aligned}
\Phi^{ \pm}(\tau) & =\lim _{z \rightarrow \tau, z \in D^{ \pm}} \frac{1}{2 \pi i} \int_{\Gamma} \frac{\varphi(\zeta)}{\zeta-z} d \zeta \\
& =\frac{1}{2 \pi i} \lim _{z \rightarrow \tau, z \in D^{ \pm}}\left(\int_{\Gamma} \frac{\varphi(\zeta)-\varphi(\tau)}{\zeta-z} d \zeta+\varphi(\tau) \int_{\Gamma} \frac{d \zeta}{\zeta-z}\right)
\end{aligned}
$$

So, using the Cauchy Integral Formula,

$$
\Phi^{+}(\tau)=\frac{1}{2 \pi i} \lim _{z \rightarrow \tau, z \in D^{+}} \Psi_{\tau}(z)+\varphi(\tau)
$$

and

$$
\Phi^{-}(\tau)=\frac{1}{2 \pi i} \lim _{z \rightarrow \tau, z \in D^{-}} \Psi_{\tau}(z)
$$

The claimed result follows from the limit in Theorem 5.5 and the formula for the Principal Value in Theorem 5.3.

6 Power series

Definition 6.1. An infinite series of the form $\sum_{n=0}^{\infty} c_{n}(z-a)^{n}$ is called a power series. The c_{n} are called the coefficients, and a is called the center of the power series.

The coefficients c_{n}, the center a, and the variable z can all be complex numbers. The index n usually starts at 0 (the constant term is $c_{0} z^{0}=c_{0}$), or, if the first few coefficients are $0, n$ may start at any positive integer. (This definition of power series excludes negative or non-integer exponents n.)
Definition 6.2. The domain of convergence of a power series $\sum_{n=0}^{\infty} c_{n}(z-a)^{n}$ is the set of all (complex) numbers z so that the series is convergent.

Note that the domain of convergence cannot be the empty set, since any power series always converges at its center, $z=a: \sum_{n=0}^{\infty} c_{n}(a-a)^{n}=c_{0}+c_{1} 0^{1}+c_{2} 0^{2}+\cdots=c_{0}$.

Proposition 6.3 ("Abel's Lemma"). For a power series centered at a, $\sum_{n=0}^{\infty} c_{n}(z-a)^{n}$, exactly one of the following holds:

- $\sum_{n=0}^{\infty} c_{n}(z-a)^{n}$ converges to c_{0} at $z=a$, and diverges for all other z.
- $\sum_{n=0}^{\infty} c_{n}(z-a)^{n}$ is absolutely convergent for all $z \in \mathbb{C}$.
- There is a real number $R>0$ so that $\sum_{n=0}^{\infty} c_{n}(z-a)^{n}$ is absolutely convergent for $|z-a|<R$, and the series is divergent for $|z-a|>R$.

Proof. For a proof, see [C].
Definition 6.4. The number R is the radius of convergence of the power series, and it must be nonnegative. The first two cases are referred to as $R=0$ and $R=\infty$.

Note that Proposition 6.3 is inconclusive when both $0<R<\infty$ and $|z-a|=R$. (Geometrically, this is the case where the domain of convergence is a disk in \mathbb{C} with positive radius, and z is on the circular boundary of the disk.) The power series could be divergent, absolutely convergent, or conditionally convergent for z on the boundary. In the case where the center a is on the real number line, then the real values of z for which the series is convergent form an interval centered at a (the intersection of the disk and the real axis), and the points on the boundary are the two endpoints, $a-R$ and $a+R$.
Proposition 6.5. If $\sum_{n=0}^{\infty} c_{n}(z-a)^{n}$ has radius of convergence R, then $\sum_{n=1}^{\infty} c_{n} n(z-a)^{n-1}$ also has radius of convergence R.

Proof. For a proof, see [C].
Theorem 6.6. The function defined by $f(z)=\sum_{n=0}^{\infty} c_{n}(z-a)^{n}$ is analytic on the disk $\{|z-a|<$ $R\}$, with $f^{\prime}(z)=\sum_{n=1}^{\infty} c_{n} n(z-a)^{n-1}$.
Proof. The following steps give an elementary ϵ / δ argument, based on a proof from [BC]; unlike [CB] Chapter 5, we do not use integration and we do not use the general theory of uniform convergence, only what is specifically needed here.

First pick a specific point z in the disk $\{|z-a|<R\}$. Then choose some ρ so that $|z-a|<$ $\rho<R$.

We want to check the definition of limit appearing in the definition of derivative at the point $z, f^{\prime}(z)$, so we want to show:

$$
\lim _{w \rightarrow z} \frac{f(w)-f(z)}{w-z}=\sum_{n=1}^{\infty} c_{n} n(z-a)^{n-1}
$$

The absolute convergence of the RHS series is Proposition 6.5. So, given $\epsilon>0$, we want to find $\delta>0$ so that

$$
\begin{equation*}
0<|w-z|<\delta \Longrightarrow\left|\frac{f(w)-f(z)}{w-z}-\sum_{n=1}^{\infty} c_{n} n(z-a)^{n-1}\right|<\epsilon \tag{6.1}
\end{equation*}
$$

The δ may depend on $\epsilon, a, c_{n}, R, \rho$, and z, but not on w.
For integer $N=1,2,3, \ldots$, define:

$$
\begin{aligned}
S_{N}(z) & =\sum_{n=0}^{N} c_{n}(z-a)^{n} \\
R_{N}(z) & =\sum_{n=N+1}^{\infty} c_{n}(z-a)^{n}
\end{aligned}
$$

So, for any $N, f(z)+S_{N}(z)+R_{N}(z)$, and $\lim _{N \rightarrow \infty} S_{N}(z)=f(z)$ and $\lim _{N \rightarrow \infty} R_{N}(z)=0$. We will choose a specific N later, in a way that may depend on $\epsilon, a, c_{n}, R, \rho$, and z, but not on w and not on the δ we have not yet found. The quantity from (6.1) satisfies the following inequality for any N :

$$
\begin{align*}
& \left|\frac{f(w)-f(z)}{w-z}-\sum_{n=1}^{\infty} c_{n} n(z-a)^{n-1}\right| \\
= & \left\lvert\, \frac{\left(S_{N}(w)+R_{N}(w)\right)-\left(S_{N}(z)+R_{N}(z)\right)}{z-w}\right. \\
& -\left(\left(\sum_{n=1}^{N} c_{n} n(z-a)^{n-1}\right)+\left(\sum_{n=N+1}^{\infty} c_{n} n(z-a)^{n-1}\right)\right) \mid \\
\leq & \left|\frac{S_{N}(w)-S_{N}(z)}{w-z}-\sum_{n=1}^{N} c_{n} n(z-a)^{n-1}\right| \tag{6.2}\\
& +\left|\sum_{n=N+1}^{\infty} c_{n} n(z-a)^{n-1}\right| \tag{6.3}\\
& +\left|\frac{R_{N}(w)-R_{N}(z)}{w-z}\right| \tag{6.4}
\end{align*}
$$

The term (6.3) is the tail end of the convergent series from Proposition 6.5: there's some N_{1} so that if $N>N_{1}$, then the term (6.3) is less than $\epsilon / 3$. This cutoff N_{1} depends on ϵ, a, c_{n}, and z, but not on w.

The term (6.4) can be re-arranged:

$$
\begin{align*}
\frac{R_{N}(w)-R_{N}(z)}{w-z} & =\frac{\left(\sum_{n=N+1}^{\infty} c_{n}(w-a)^{n}\right)-\left(\sum_{n=N+1}^{\infty} c_{n}(z-a)^{n}\right)}{w-z} \\
& =\sum_{n=N+1}^{\infty} c_{n} \frac{(w-a)^{n}-(z-a)^{n}}{(w-a)-(z-a)} \\
& =\sum_{n=N+1}^{\infty} c_{n} \sum_{k=0}^{n-1}(z-a)^{k}(w-a)^{n-1-k} \tag{6.5}
\end{align*}
$$

The step (6.5) follows from the polynomial identity

$$
(w-a)^{n}-(z-a)^{n}=((w-a)-(z-a)) \sum_{k=0}^{n-1}(z-a)^{k}(w-a)^{n-1-k}
$$

a telescoping sum similar to the geometric series formula, which holds for all z, w, and a. Assuming $|w-a|<\rho$, the following estimate holds:

$$
\begin{aligned}
\left|c_{n} \sum_{k=0}^{n-1}(z-a)^{k}(w-a)^{n-1-k}\right| & \leq\left|c_{n}\right| \sum_{k=0}^{n-1}|z-a|^{k}|w-a|^{k} \\
& <\left|c_{n}\right| \sum_{k=0}^{n-1} \rho^{k} \rho^{n-1-k}=\left|c_{n}\right| n \rho^{n-1}
\end{aligned}
$$

The series $\sum_{n=0}^{\infty} c_{n} \sum_{k=0}^{n-1}(z-a)^{k}(w-a)^{n-1-k}$ is absolutely convergent, by the Comparison Test ([C]) applied to

$$
\sum_{n=0}^{\infty}\left|c_{n} \sum_{k=0}^{n-1}(z-a)^{k}(w-a)^{n-1-k}\right| \leq \sum_{n=0}^{\infty}\left|c_{n}\right| n \rho^{n-1}
$$

which is absolutely convergent by Proposition 6.5 (with $z=\rho+a$). So (6.5) is the tail end of a convergent series, and there is some there is some N_{2} so that if $N>N_{2}$ then

$$
\left|\sum_{n=N+1}^{\infty} c_{n} \sum_{k=0}^{n-1}(z-a)^{k}(w-a)^{n-1-k}\right| \leq \sum_{n=N+1}^{\infty}\left|c_{n}\right| n \rho^{n-1}<\epsilon / 3
$$

This cutoff N_{2} depends on ϵ, c_{n}, and ρ, but not on the specific values of z or w, only that they both are in the disk $D(a, \rho)$, and in particular w does not have to be close to z. It follows that if $N>N_{2}, w \neq z,|z-a|<\rho$, and $|w-a|<\rho$, then $\left|\frac{R_{N}(w)-R_{N}(z)}{w-z}\right|<\epsilon / 3$.

Now, fix a number $N>\max \left\{N_{1}, N_{2}\right\}$, and consider the term (6.2). $S_{N}(z)=\sum_{n=0}^{N} c_{n}(z-a)^{n}$ is a polynomial of degree N, with derivative

$$
S_{N}^{\prime}(z)=\lim _{w \rightarrow z} \frac{S_{N}(w)-S_{N}(z)}{w-z}=\sum_{n=1}^{N} c_{n} n(z-a)^{n-1}
$$

so corresponding to $\epsilon / 3>0$, there is some $\delta_{1}>0$ so that if $0<|w-z|<\delta_{1}$, then the (6.2) quantity is less than $\epsilon / 3$.

To bound all three terms at the same time, let $\delta=\min \left\{\delta_{1}, \rho-|z-a|\right\}>0$. Then $|w-a|=$ $|w-a+z-z| \leq|w-z|+|z-a|$, and if $0<|w-z|<\delta$, then $|w-a| \leq \rho$, which, together with $N>N_{2}$, is all we need for the $\epsilon / 3$ bound on the (6.4) term. The (6.3) term is bounded by $\epsilon / 3$ because $N>N_{1}$, and the (6.2) term is bounded by $\epsilon / 3$ because $0<|w-z|<\delta \leq \delta_{1}$.

The following property of analytic functions may be useful in answering [CB] Exercises \#59.12.a., p. 195, and \#66.4 and \#66.5, p. 219.

Lemma 6.7. Given an open set $D \subseteq \mathbb{C}$, a point $z_{0} \in D$, and a number $n=1,2,3, \ldots$, if $h(z)$ is analytic on D and there is some disk $\left\{z:\left|z-z_{0}\right|<r\right\}$ where h has a series expansion:

$$
h(z)=\sum_{k=n}^{\infty} c_{k}\left(z-z_{0}\right)^{k}
$$

then this function f is also analytic on D :

$$
f(z)=\left\{\begin{array}{cc}
\frac{h(z)}{\left(z-z_{0}\right)^{n}} & \text { for } z \neq z_{0} \\
c_{n} & \text { for } z=z_{0}
\end{array}\right\}
$$

Proof. The series for h has a positive radius of convergence $r>0$ by Taylor's Theorem from [CB] $\S 57$, p. 189 (possibly $r=\infty$); the hypothesis of the Lemma is that the coefficients c_{0}, \ldots, c_{n-1} are all $=0$, so the series starts with coefficient c_{n} (which may or may not be $=0$).

The function $f(z)$ is complex differentiable at every point in $D \backslash\left\{z_{0}\right\}$, by the quotient rule for derivatives. We only need to check that f is complex differentiable at z_{0} to get the claimed conclusion. Consider the series:

$$
g(z)=\sum_{k=n}^{\infty} c_{k}\left(z-z_{0}\right)^{k-n}
$$

This is a power series with all non-negative exponents, and defines some function g so that $g\left(z_{0}\right)=c_{n}=f\left(z_{0}\right)$. For any point z with $0<\left|z-z_{0}\right|<r$, the series is convergent, because it is equal to a scalar multiple of the convergent series for h :

$$
\begin{aligned}
g(z) & =\sum_{k=n}^{\infty}\left(c_{k}\left(z-z_{0}\right)^{k} \cdot \frac{1}{\left(z-z_{0}\right)^{n}}\right) \\
& =\frac{1}{\left(z-z_{0}\right)^{n}} \cdot \sum_{k=n}^{\infty} c_{k}\left(z-z_{0}\right)^{k}=\frac{1}{\left(z-z_{0}\right)^{n}} h(z)
\end{aligned}
$$

The scalar multiple rule applies because $\frac{1}{\left(z-z_{0}\right)^{n}}$ does not depend on the summation index k. We can conclude that the series for $g(z)$ converges for all z with $\left|z-z_{0}\right|<r$, so $g(z)$ is complex differentiable at z_{0} by Theorem 6.6 (or the Corollary from [CB] $\S 65$, p. 215). The above construction shows $g(z)=f(z)$ for all z with $\left|z-z_{0}\right|<r$, so f is also complex differentiable at z_{0} and has a series expansion centered at z_{0} given by the $g(z)$ series.

7 Rational functions

Definition 7.1. A rational function is defined by $f(z)=P(z) / Q(z)$, where P and Q are polynomials and $Q \not \equiv 0$.

By the Fundamental Theorem of Algebra, there are finitely many points r where $Q(r)=0$, so the domain of a rational function is $\{z \in \mathbb{C}: Q(z) \neq 0\}$, the open, connected, non-empty complement of a finite set.

Lemma 7.2. Given any complex number w and polynomials $P(z)$ and $Q(z)$ so that the rational function $f(z)=P(z) / Q(z)$ is non-constant on the domain $D=\{z \in \mathbb{C}: Q(z) \neq 0\}$, the following are equivalent:

1. There exists a solution $z=s \in D$ of the equation $f(z)=w$.
2. There exists $s \in D$ and a polynomial $F(z) \not \equiv 0$ so that $P(z)-w Q(z)=(z-s) F(z)$.

Proof. First, $P(z)-w Q(z)$ is not the constant zero polynomial; otherwise, if $P(z)-w Q(z) \equiv 0$, then for any $t \in D, P(t)=w Q(t) \Longleftrightarrow P(t) / Q(t)=w=f(t)$, which contradicts the initial assumption that f is not a constant function in D.

For $(2) \Longrightarrow(1)$, plugging in $z=s \in D$ gives $P(s)-w Q(s)=(s-s) F(s)=0$ and $Q(s) \neq 0$, so $P(s)=w Q(s)$ and $f(s)=P(s) / Q(s)=w$.

Conversely, for $(1) \Longrightarrow(2)$, the hypothesis is that $f(s)=P(s) / Q(s)=w$, with $Q(s) \neq 0$; this is equivalent to $P(s)=w Q(s) \Longleftrightarrow P(s)-w Q(s)=0$, so s is a root of the polynomial $P(z)-w Q(z) . P(z)-w Q(z)$ cannot be any constant polynomial: it was already shown that it can't be $\equiv 0$, and it also cannot be any non-zero constant, because it has a root s. So $P(z)-w Q(z)$ has degree ≥ 1 and root s, and it factors as $(z-s) F(z)$ for some (possibly constant but not $\equiv 0$) polynomial $F(z)$.

Theorem 7.3. For any non-constant rational function $f(z)=P(z) / Q(z)$, the set of numbers w such that $f(z)=w$ has no solution is a finite set.

Proof. Let P have degree M and let Q have degree N. Let $f(z)=P(z) / Q(z)$ have domain $D \subseteq \mathbb{C}$ as in Lemma 7.2.

Case 1. $Q(z)$ is a constant function. $Q \not \equiv 0$ by definition, so $f(z)=P(z) / Q(z)$ is a nonconstant polynomial and for any w, there is at least one root of the polynomial $f(z)-w$, by the Fundamental Theorem of Algebra. So the set of w with no solutions of $f(z)=w$ is the empty set.

Case 2. $Q(z)$ is a non-constant polynomial of degree $N>0$ and, by the Fundamental Theorem of Algebra, factors as $Q(z)=q_{N}\left(z-r_{1}\right)\left(z-r_{2}\right) \cdots\left(z-r_{N}\right)$, for leading coefficient $q_{N} \neq 0$ and some possibly repeating list of roots $\left(r_{1}, \ldots, r_{N}\right)$. For any ordered list of nonnegative integers $\vec{v}=\left(v_{1}, v_{2}, \ldots, v_{N}\right)$, define $R_{\vec{v}}(z)=\left(z-r_{1}\right)^{v_{1}}\left(z-r_{2}\right)^{v_{2}} \cdots\left(z-r_{N}\right)^{v_{N}}$, so $R_{\vec{v}}$ has leading coefficient 1 and degree $v_{1}+\cdots+v_{N}$, and every root of $R_{\vec{v}}$ is one of the roots of Q.

If w is a number such that $f(z)=w$ has no solution in D, then neither of the equivalent conditions in Lemma 7.2 holds. In particular, $P(z)-w Q(z)$ cannot be equal to any polynomial of the form $(z-s) F(z)$ for $s \in D$. We want to show that given P and Q, there are only finitely many such w.

Case 2.a. Consider the set of w such that $P(z)-w Q(z)$ is a constant function. For any w in this set, applying the $N^{t h}$ derivative to both sides of $P(z)-w Q(z) \equiv C$ gives

$$
P^{(N)}(z)-w q_{N} N!\equiv 0
$$

so $P^{(N)}(z)$ is a constant function and $w=P^{(N)}(z) /\left(q_{N} N!\right)$ is uniquely determined by P and Q and does not depend on C (or z). The set of such w is either empty or has only this one element.

Case 2.b. Consider the set of w such that $P(z)-w Q(z)$ is non-constant and not of the form $(z-s) F(z)$ for any $s \in D$. So any root of $P(z)-w Q(z)$ must be a root of $Q(z)$, and we can conclude $P(z)-w Q(z)$ must be equal to $C_{\vec{v}} R_{\vec{v}}(z)$ for some non-zero leading coefficient $C_{\vec{v}}$ and some vector \vec{v} with non-negative integer entries satsifying $0<v_{1}+\cdots+v_{N} \leq \max \{M, N\}$. There are only finitely many such vectors \vec{v}; we will show that for each \vec{v}, there is at most one pair $\left(w, C_{\vec{v}}\right)$ such that $P(z)-w Q(z)=C_{\vec{v}} R_{\vec{v}}(z)$.

Pick any t in the non-empty set D, so $Q(t) \neq 0, R_{\vec{v}}(t) \neq 0$, and w and $C_{\vec{v}}$ satisfy $P(t)-$ $w Q(t)=C_{\vec{v}} R_{\vec{v}}(t) \neq 0$. Using this constant t, define a new polynomial

$$
d(z)=\operatorname{det}\left[\begin{array}{cc}
Q(t) & R_{\vec{v}}(t) \\
Q(z) & R_{\vec{v}}(z)
\end{array}\right]=Q(t) R_{\vec{v}}(z)-R_{\vec{v}}(t) Q(z)
$$

If $d(z) \equiv 0$ then $R_{\vec{v}}(z)=\left(\frac{R_{\vec{\rightharpoonup}}(t)}{Q(t)}\right) Q(z)$, and $P(z)-w Q(z)=C_{\vec{v}}\left(\frac{R_{\vec{\rightharpoonup}}(t)}{Q(t)}\right) Q(z)$, so $P(z)-$ $\left(w-\frac{C_{\vec{v}} R_{\vec{v}}(t)}{Q(t)}\right) Q(z) \equiv 0$. However, as in the Proof of Lemma 7.2, this implies $f(z)=P(z) / Q(z)$ is constant on D, contradicting the assumption. So $d(z) \not \equiv 0$, and there is some $u \in \mathbb{C}$ with $d(u) \neq 0$. This means the pair $\left(w, C_{\vec{v}}\right)$ satisfies $P(u)-w Q(u)=C_{\vec{v}} R_{\vec{v}}(u)$ and also the linear system

$$
\left[\begin{array}{cc}
Q(t) & R_{\vec{v}}(t) \\
Q(u) & R_{\vec{v}}(u)
\end{array}\right]\left[\begin{array}{c}
w \\
C_{\vec{v}}
\end{array}\right]=\left[\begin{array}{c}
P(t) \\
P(u)
\end{array}\right]
$$

where the constant coefficient matrix has non-zero determinant $d(u)$, and there is exactly one solution $\left(w, C_{\vec{v}}\right)$ satisfying this system. There may be other constraints on ($w, C_{\vec{v}}$) but checking $P(z)-w Q(z)=C_{\vec{v}} R_{\vec{v}}(z)$ at these two points $z=t$ and $z=u$ already rules out the existence of more than one solution for $\left(w, C_{\vec{v}}\right)$.

References

[A] L. Ahlfors, Complex Analysis, third ed., McGraw-Hill, New York, 1979.
[BC] J. Bruna and J. Cufí, Complex Analysis, Eur. Math. Soc., 2013.
[CB] R. Churchill and J. Brown, Complex Variables and Applications, eighth ed., McGrawHill, New York, 2009.
[C] A. Coffman, Notes on sequences and series in the calculus of one variable.
https://users.pfw.edu/CoffmanA/
[GM] J. Gray and S. Morris, When is a function that satisfies the Cauchy-Riemann equations analytic?, Amer. Math. Monthly (4) 85 (1978), 246-256.

