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1 Complex differentiability

Let z0 = x0 + iy0 be a point in C, and suppose z0 is in the domain of a complex-valued function
f(z) = u(x, y) + iv(x, y).

These first two Propositions are sufficient conditions for C-differentiability of f at the point
z0.

Proposition 1.1 ([CB], §22, p. 66). If ux, uy, vx, vy are continuous at z0, and satisfy the
Cauchy-Riemann equations at that point: ux(x0, y0) = vy(x0, y0) and uy(x0, y0) = −vx(x0, y0),
then f is C-differentiable at z0.

Remark. In particular, the definition of two-variable continuity requires that ux, uy, vx, vy must
exist in some neighborhood of z0, not just at z0. The idea is that the continuity of the partial
derivatives (called the “C1” property) implies the real differentiability property of f at z0, so

the next Proposition applies.

Proposition 1.2. If u and v are R-differentiable at (x0, y0) and the partial derivatives ux,
uy, vx, vy satisfy the Cauchy-Riemann equations at that point: ux(x0, y0) = vy(x0, y0) and
uy(x0, y0) = −vx(x0, y0), then f is C-differentiable at z0.

Remark. Recall a real-valued two-variable function u(x, y) is R-differentiable at (x0, y0) means
there exist real constants a, c so that

lim
(x,y)→(x0,y0)

|u(x, y)− [u(x0, y0) + a(x− x0) + c(y − y0)]|
|(x, y)− (x0, y0)| = 0.

Again, the two-dimensional limit requires that (x0, y0) is an interior point of the domain of u.

This is equivalent to the properties (2) – (4) from [CB] §22, p. 67.

The next two Propositions are sufficient conditions for f to be analytic on an open set
(meaning, f is C-differentiable at every point in the set).
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Proposition 1.3 (The Looman-Menchoff Theorem). If f(z) is continuous on an open set D,
and the partial derivatives satisfy the Cauchy-Riemann equations at every point of D: ux(x, y) =

vy(x, y) and uy(x, y) = −vx(x, y), then f is analytic on D.

Proposition 1.4 (Montel, Tolstoff). If f(z) is locally bounded on an open set D, and the partial
derivatives satisfy the Cauchy-Riemann equations at every point of D: ux(x, y) = vy(x, y) and
uy(x, y) = −vx(x, y), then f is analytic on D.

Remark. A function is locally bounded on a set D means that for each w ∈ D, there is some
neighborhood Nw, w ∈ Nw ⊆ D, and some bound Mw, so that |f(z)| ≤ Mw for all z ∈ Nw.
Every continuous function is locally bounded (for each w, |f(z)| < |f(w)| + ε for all z within
some δ of w), so this result improves the Looman-Menchoff Theorem by requiring less in the

hypothesis. For more about these Propositions, see [GM].

Exercise 1.5. In any of the above Propositions, C-differentiability of f at a point does not
follow from checking only the Cauchy-Riemann equations at one point, without any further
hypothesis. For example, let

f(z) =

{
z5/|z|4 if z �= 0

0 if z = 0
.

Show that f = u+ iv has the following properties:

• On the set {z �= 0}, expand u and v as rational functions of x, y (so f is continuous for
z �= 0).

• Calculate a limit as z → 0 to show that f is continuous at 0. (Hint: Use [CB] Exercise
#18.9., p. 56.)

• Using the limit definition of real partial derivatives at (0, 0), show that u and v satisfy the
Cauchy-Riemann equations at (0, 0).

• Show that u and v do not satisfy the Cauchy-Riemann equations at any point other than
(0, 0).

• Using the limit definition of complex derivative, show that f is not C-differentiable at
z0 = 0. (Hint: this is related to [CB] Exercise #20.9., p. 63.)

Exercise 1.6. In any of the above Propositions, C-differentiability of f at a point does not
follow only from checking the Cauchy-Riemann equations on an open set, even on all of C,
without any further hypothesis. For example, let

f(z) =

{
e−1/z4

if z �= 0
0 if z = 0

.

Show that f = u+ iv has the following properties:

• On the set {z �= 0}, show that f is C-differentiable by using the rules for derivatives to
find f ′(z). (So, the C-R equations are satisfied at every point z �= 0 by the Theorem from
[CB] §20, p. 65.)
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• Using the limit definition of real partial derivatives at (0, 0), show that u and v satisfy the
Cauchy-Riemann equations at (0, 0). (Hint: one step in a limit calculation could involve
this substitution:)

lim
x→0+

e−1/x4

x
= lim

X→+∞
e−1/(1/X)4

(1/X)
.

• Show that f is not continuous at z = 0, by showing that lim f(z) = +∞ along some
direction (and so f is not locally bounded, and f is not C-differentiable at z = 0 by the
remark in [CB] §15, p. 59).

2 Bonus exercises

The following exercise is similar to [CB] Exercise #26.1, p. 81.

Exercise 2.1. For the following functions u(x, y) with domain D ⊆ C, check that u is harmonic
on D, and find a “harmonic conjugate” v(x, y) on D, using the method from [CB] Example 26.5,
page 81.

1. u = ex sin(y)

2. u = 2x3 − 3x2y − 6xy2 + y3

3. u =
3x2 + 8xy − 3y2

(x2 + y2)2
, domain D = {(x, y) �= (0, 0)}. (some computer algebra might help

on this one)

4. u = tan−1
( y
x

)
, domainD = {x > 0} (this is related to, but not the same as, [CB] Exercise

#26.6, p. 82).

Exercise 2.2. For the principal branch of the logarithm, Log(z) = ln |z|+iθ, for z = |z| exp(iθ),
−π < θ < π, define the analytic function f(z) =

z

Log(z)
, on the domain D = {|z − 1| < 1}.

Find the derivatives f ′(z) and f ′′(z) on D, in terms of Log(z). Prove the following statements
about limits as z approaches 0 but stays in the domain D:

lim
z∈D, z→0

f(z) = 0.

lim
z∈D, z→0

f ′(z) = 0,

lim
z∈D, z→0

|f ′′(z)| = +∞.

Exercise 2.3. Using the exponential formula (1) from [CB] §34, p. 105, find infinitely many
different complex solutions of the equation sin(z) = 5. (You do not have to find all the solutions.)
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3 Review of parametric curve calculus

The following result on real curves in Rn states that for a sufficiently smooth curve �r with finite
arclength, there is a change of parameter so that the composite has the same image but constant
speed 1.

Theorem 3.1. Given �r(t) which has finite arclength L on [a, b], and such that d
dt�r(t) is con-

tinuous and nonvanishing on (a, b), there exists a function f(s) on the domain [0, L] so that
(�r ◦ f)(0) = �r(a), (�r ◦ f)(L) = �r(b), and �r ◦ f has constant speed 1 on (0, L).

Proof. Let s = �(t) be the arclength from the start point �r(a) to the point on the curve at time
t, �r(t). By the formula for arclength,

s = �(t) =

∫ t

a

∣∣∣∣ ddx�r(x)
∣∣∣∣ dx, (3.1)

and assuming the total arclength on the interval [a, b] exists, we can conclude that the integral
on the subinterval [a, t] exists for every t ∈ [a, b].

The Fundamental Theorem of Calculus applies for t in (a, b):

d

dt
�(t) =

d

dt

∫ t

a

∣∣∣∣ ddx�r(x)
∣∣∣∣ dx =

∣∣∣∣ ddx�r(x)
∣∣∣∣
]
x=t

= |�r ′(t)| .

From the assumption that �r ′ �= �0 on (a, b), we can conclude that |�r ′(t)| > 0 on (a, b), so �(t) is
the integral from a to t of a positive, continuous function, and therefore s = �(t) is an increasing
function on [a, b]. It follows that � is invertible: there exists an inverse function t = �−1(s), so
that if s is the arclength, then t is the unique time at which the plot �r gets to length s.

From (� ◦ �−1)(s) = s, we can d
ds both sides to show that the derivative of the composite is

constant: d
ds (� ◦ �−1)(s) = 1. Applying the Chain rule,

1 =
d

ds
((� ◦ �−1)(s)) = �′(�−1(s)) ·

(
d

ds
(�−1(s))

)

=⇒ d

ds
(�−1(s)) =

1

�′(�−1(s))
=

1

�′(t)
.

Combining the above two equations gives:

d

ds
(�−1(s)) =

1

�′(t)
=

1

|�r ′(t)| > 0.

Let s be the input parameter, 0 ≤ s ≤ L, and consider the composition (�r ◦ (�−1))(s) =
�r(�−1(s)). This composite takes input s, gives �−1(s), which is the time at which �r plots an arc
of length s, and plugs this time into the function �r. So, �r(�−1(s)) is the position on the curve
at which the arclength is s. This change of parameter is called a parametrization by arclength,
and the claim is that the function f from the statement of the Theorem can be chosen to be the
function �−1 that we’ve constructed.
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Returning to the calculations, we want to show that �r ◦ (�−1) has constant speed 1 with
respect to the parameter s, 0 < s < L. The velocity of the composite is given by the Chain
Rule:

d

ds

(
(�r ◦ (�−1))(s)

)
= �r ′(�−1(s)) · d

ds
(�−1(s)) = �r ′(t) · d

ds
(�−1(s)),

and the speed is the magnitude:∣∣∣∣ dds ((�r ◦ (�−1))(s)
)∣∣∣∣ =

∣∣∣∣�r ′(t) · d

ds
(�−1(s))

∣∣∣∣ = |�r ′(t)| ·
∣∣∣∣ dds (�−1(s))

∣∣∣∣ ,
and from the above equation d

ds(�
−1(s)) = 1

|�r ′(t)| , this product cancels to exactly 1.

Lemma 3.2. Given �r(t) : [a, b] → Rn which satisfies lim
t→a+

�r(t) = �r(a), and lim
t→a+

(
d

dt
�r(t)

)
= �V ,

the following limit also exists: lim
t→a+

�r(t)− �r(a)

t− a
= �V .

Proof. The existence of the one-sided derivative follows from the Mean Value Theorem (applied

to the components �r(t) = (r1(t), . . . , rn(t))).

So, if �r is continuous on [a, b] and the derivative extends continuously to the value �V at

endpoint a, then �V is also equal to the one-sided derivative at �a.

Theorem 3.3. Given �r(t) which is continuous on [a, b], and such that d
dt�r(t) extends to a

continuous and nonvanishing function on the closed interval [a, b], there exists a function f(s)
on the domain [0, L] so that (�r ◦ f)(0) = �r(a), (�r ◦ f)(L) = �r(b), �r ◦ f is continuous on [0, L],
has constant speed 1 on (0, L), and the one-sided derivatives are also unit vectors, so that the
velocity d

ds (r ◦ f) also extends continuously to [0, L]:

lim
s→0+

(�r ◦ f)(s)− (�r ◦ f)(0)
s

= lim
s→0+

(
d

ds
(r ◦ f)

)
,

and similarly for the other endpoint.

Proof. The finiteness of the arclength, L, is a consequence of the continuity of d
dt�r(t) on the

closed interval [a, b]. Use the same f = �−1 constructed in the Proof of Theorem 3.1; since � is

continuous on [a, b], f is continuous on [0, L]. Let lim
t→a+

�r ′(t) = �V �= �0. The following calculation,

using the Composite Limit Theorem, establishes the existence of the limit.

lim
s→0+

(
d

ds
(r ◦ �−1)

)
= lim

s→0+

(
�r ′(�−1(s)) · d

ds
(�−1(s))

)

= lim
s→0+

(
�r ′(�−1(s))

) · lim
s→0+

(
d

ds
(�−1(s))

)

= �V · lim
s→0+

1

|�r ′(�−1(s))| =
�V · 1

|�V | .

The equality of this unit vector with the one-sided derivative is Lemma 3.2, using the continuity
of �r. The other endpoint is considered similarly.
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Lemma 3.4. Given �r : [a, b] → Rn, if �r(t) is continuous on [a, b], and d
dt�r(t) exists on (a, b)

and extends to a continuous and nonvanishing function on [a, b), with

lim
t→a+

(
d

dt
�r(t)

)
= �V ,

then for any c, 0 < c < |�V |, there exists some δ > 0 so that for a ≤ t < a+ δ,

c · (t− a) ≤ |�r(t)− �r(a)| ≤ (2|�V | − c) · (t− a).

Proof. By Lemma 3.2,

lim
t→a+

�r(t)− �r(a)

t− a
= �V .

Corresponding to ε = |�V | − c > 0, there is some δ > 0 so that for 0 < t− a < δ,∣∣∣∣�r(t)− �r(a)

t− a
− �V

∣∣∣∣ < |�V | − c.

By the triangle inequality,

|�r(t)− �r(a)| ≥ |(t− a)�V | −
∣∣∣�r(t)− �r(a)− (t− a)�V

∣∣∣
> (t− a)|�V | − (t− a)(|�V | − c)

= c · (t− a),

and

|�r(t)− �r(a)| =

∣∣∣∣�r(t)− �r(a)

t− a
− �V + �V

∣∣∣∣ · |t− a|

< (|�V | − c+ |�V |) · |t− a|.

Theorem 3.5. Given �r(t) which is continuous on [a, b], and such that d
dt�r(t) extends to a

continuous and nonvanishing function on [a, b) and which has arclength function �(t) as in
(3.1), then for any c, 0 < c < 1, there exists some δ > 0 so that for a ≤ t < a+ δ,

c · �(t) ≤ |�r(t)− �r(a)| ≤ �(t).

Proof. By Theorem 3.3 (possibly applied to some shorter interval [a, b0], b0 ≤ b), there exists a
function f(s) on the domain [0, L] so that (�r ◦ f)(0) = �r(a), �r ◦ f is continuous on [0, L], has
constant speed 1 on (0, L), and the one-sided derivative at a is also a unit vector. Lemma 3.4
applies to any c, 0 < c < 1, to give a lower bound, and there is a better upper bound:

c · s ≤ |�r(f(s)) − �r(f(0))| ≤ s

for s in some interval [0, δ1), depending on 0 < c < 1. From the Proof of Theorem 3.1, f = �−1,
so if 0 < s = �(t) < δ1, then

c · �(t) ≤ |�r(t)− �r(a)| ≤ �(t)

for 0 < t < �−1(δ1).
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The conclusion from the Theorem is that for some initial interval, the magnitude of the
displacement is comparable to the arclength.

Given a continuous function �r(t) : [a, b] → Rn, the composite |�r(t) − �r(a)| is a continuous
function [a, b] → R. If there is some interval (a, c) on which |�r(t) − �r(a)| is nonvanishing and
d
dt�r(t) exists (for example, (a, a+ δ) from Lemma 3.4), then:

d

dt
(|�r(t)− �r(a)|) =

d

dt

√√√√ n∑
k=1

(rk(t)− rk(a))2

=
1

2
·
∑n

k=1 2(rk(t)− rk(a)) · drk(t)
dt√∑n

k=1(rk(t)− rk(a))2

=
1

|�r(t)− �r(a)| (�r(t)− �r(a)) · d�r
dt

= cos(α(t))

∣∣∣∣d�rdt
∣∣∣∣ .

The cosine appears from the dot product formula, where α(t) is the angle between the direction
vector �r(t)−�r(a) and the velocity vector d�r

dt . If �r happens to have unit speed for a < t < c, then
d
dt(|�r(t)− �r(a)|) = cos(α(t)).

Exercise 3.6. Let F be an analytic function on a domain containing the closed unit disk
{|z| ≤ 1}, with derivative f(z) = F ′(z). If F (1) is real and f(1) = 1, then the squared modulus
of the values of F on the unit circle, given by the real function

g(θ) = |F (eiθ)|2,

has a critical point at θ = 0.

4 Cauchy integrals

Notation 4.1. For r > 0 and z0 ∈ C, let D(z0, r) denote the Euclidean disk with center z0 and
radius r, and as the special case with z0 = 0, abbreviate D(0, r) = Dr.

Notation 4.2. By a smooth arc, we mean a continuous parametric map z : [0, 1] → C with
image Γ, which is one-to-one on [0, 1] with the possible exception of z(0) = z(1), and differ-
entiable on (0, 1) with dz

dt extending to a continuous, non-vanishing function on [0, 1]. By a
piecewise smooth arc, we mean a continuous parametric map z : [0, 1] → C with image Γ, which
is one-to-one on [0, 1], with the possible exception of z(0) = z(1) (in this special case we say
piecewise smooth contour), so that the domain has a partition 0 = t0 < t1 < . . . < tN = 1,
where z restricted to each [ti, ti+1] is, after a suitable re-scaling of the domain, a smooth arc. In
any case, the notation can be abused by referring only to Γ, with the parametrization (and the
induced orientation) understood.

By Lemma 3.2, the one-sided derivatives are defined at the endpoints of a smooth arc.
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Notation 4.3. For ϕ integrable on a piecewise smooth arc Γ (meaning, as in the previous
Notation, (ϕ ◦ z)(t) · z′(t) is integrable on [0, 1]), define a function Φ : C \Γ → C by the formula:

Φ(z) =
1

2πi

∫
Γ

ϕ(ζ)

ζ − z
dζ.

More generally, for n = 1, 2, 3, 4, . . ., define

Φn(z) =
1

2πi

∫
Γ

ϕ(ζ)

(ζ − z)n
dζ,

so Φ1 = Φ.

Theorem 4.4. For a piecewise smooth arc Γ and ϕ continuous on Γ, Φn is complex differentiable
on the complement of Γ, with d

dzΦn = n · Φn+1.

Proof. Note that the derivative formula is just a special case of interchanging derivative and
integral signs: formally, d

dz

∫
Γ F (z, w)dw =

∫
Γ

d
dzF (z, w)dw. We will prove only the special case

and not make any more general claim; the outline of the proof follows [A].
Step 1: a factoring trick.

(w − a)n − (w − z)n

= (w − a)n − (w − z)(w − a)n−1 + (w − z)(w − a)n−1 − (w − z)n

= (w − a)n−1((w − a)− (w − z)) + (w − z)(w − a)n−1 − (w − z)n (4.1)

= (w − a)n−1(z − a) + (z − a)Qn−1(z, w, a), (4.2)

where the (w− z)(w− a)n−1− (w− z)n quantity in (4.1) is a polynomial in z of degree n, which
has value 0 at z = a, so it factors as in (4.2). When n = 1, Q0 is identically zero.

Dividing by (w − z)n(w − a)n,

1

(w − z)n
− 1

(w − a)n

=
z − a

(w − z)n(w − a)
+

1

(w − z)n−1(w − a)
− 1

(w − a)n
(4.3)

= (z − a) · (w − a)n−1 +Qn−1(z, w, a)

(w − z)n(w − a)n
. (4.4)

Step 2: Φn is continuous on the complement of Γ. To show this, fix a /∈ Γ, and we want
lim
z→a

Φn(z) = Φn(a). Since the complement is open, we can find some radius ρ > 0 so that

D(a, ρ) is contained in the complement, and for all w ∈ Γ, |w − a| > ρ and |w − z| > ρ/2 for
z ∈ D(a, ρ/2). Using (4.4),

Φn(z)− Φn(a) =
1

2πi

∫
Γ

ϕ(w)

(w − z)n
dw − 1

2πi

∫
Γ

ϕ(w)

(w − a)n
dw

=
1

2πi

∫
Γ

ϕ(w) · (z − a) · (w − a)n−1 +Qn−1(z, w, a)

(w − z)n(w − a)n
dw. (4.5)
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Taking absolute value and using L for the arclength of Γ,

|Φn(z)− Φn(a)|
=

|z − a|
|2πi| ·

∣∣∣∣
∫
Γ

ϕ(w) · (w − a)n−1 +Qn−1(z, w, a)

(w − z)n(w − a)n
dw

∣∣∣∣
≤ |z − a|

2π

1

(ρ/2)n
1

ρn
max
w∈Γ

{|ϕ(w)|}max{∣∣(w − a)n−1 +Qn−1(z, w, a)
∣∣} · L,

where the second max is over the compact product space {(z, w) : w ∈ Γ, |z − a| ≤ ρ/2}. Every
factor in the last line except |z − a| depends only on Γ, ϕ, ρ, a, and n, but not on z, and this is
enough to establish the claimed continuity.

Step 3: Φ1 is complex differentiable on C \ Γ. Again, fix a /∈ Γ. Using the n = 1 case of
(4.5), where Q0 ≡ 0,

Φ1(z)− Φ1(a)

z − a
=

1

2πi

∫
Γ

ϕ(w)

(w − z)(w − a)
dw (4.6)

=
1

2πi

∫
Γ

(
ϕ(w)
(w−a)

)
(w − z)

dw. (4.7)

In (4.7), the numerator ϕ(w)
w−a is continuous on Γ, so the n = 1 case of Step 2 applies with this

fraction substituted for ϕ(w), and quantity (4.7) is, as a function of z, continuous at a. Taking
the z → a limit of (4.6)=(4.7) gives:

Φ′
1(a) =

1

2πi

∫
Γ

(
ϕ(w)
(w−a)

)
(w − a)

dw = Φ2(a).

The equation Φ′
1 = 1 ·Φ2 is the n = 1 case of the claimed derivative formula, and also the start

of an induction on n.
Step 4: The inductive step. Assume, for any continuous ϕ on Γ, Φ′

n−1 = (n − 1) · Φn on
C \ Γ.

Φn(z)− Φn(a)

z − a
(4.8)

=

∫
Γ

ϕ(w)
(w−z)n dw − ∫

Γ
ϕ(w)

(w−a)n dw

2πi(z − a)

=

∫
Γ ϕ(w)

(
z−a

(w−z)n(w−a) +
1

(w−z)n−1(w−a) − 1
(w−a)n

)
dw

2πi(z − a)
(4.9)

=
1

2πi

∫
Γ

(
ϕ(w)
w−a

)
(w − z)n

dw +

∫
Γ

(ϕ(w)
w−a )

(w−z)n−1dw − ∫
Γ

(ϕ(w)
w−a )

(w−a)n−1dw

2πi(z − a)

= Φ̃n(z) +
Φ̃n−1(z)− Φ̃n−1(a)

z − a
, (4.10)

where (4.9) uses (4.3), and Φ̃n in (4.10) denotes the Φn expression with the continuous function
ϕ(w)
w−a substituted for ϕ(w), as in the previous step. Taking the z → a limit, quantity (4.8) has
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limit Φ′
n(a), and in (4.10), the first term Φ̃n(z) is continuous at a by Step 2, and the limit of

the second term is Φ̃′
n−1(a) = (n− 1) · Φ̃n(a), by the inductive hypothesis. The conclusion is

Φ′
n(a) = Φ̃n(a) + (n− 1)Φ̃n(a)

= nΦ̃n(a) =
n

2πi

∫
Γ

(
ϕ(w)
w−a

)
(w − a)n

dw

= n · Φn+1(a).

Corollary 4.5. If f(z) is complex differentiable on an open set D, then f ′(z) is also complex
differentiable on D.

Proof. Given any a ∈ D, there is some disk D(a, r) ⊆ D; let Γ be the circle {|z− a| = r/2}, and
let ϕ be the (continuous) restriction of f to Γ. Theorem 4.4 applies to z in D(a, r/2), where

Φ1(z) =
1

2πi

∫
Γ

f(w)

(w − z)1
dw = f(z)

by the Cauchy Integral Formula, and the conclusion of the Theorem is that the derivative of
f = Φ1 on D(a, r/2) is:

f ′(z) = Φ2(z) =
1

2πi

∫
Γ

f(w)

(w − z)2
dw,

which is complex differentiable on D(a, r/2).

Repeating the above construction shows that all higher derivatives f (n) exist, with the for-
mula

f (n)(z) =
n!

2πi

∫
Γ

f(w)

(w − z)n+1
dw.

5 Principal values

Definition 5.1. For Γ as in Notation 4.3, a point τ ∈ Γ, and ε > 0, let Γε denote the complement
Γ\D(τ, ε), which for small ε is a pair of piecewise smooth arcs (or possibly one arc), parametrized
by restricting the parametrization of Γ. If, for ϕ as in Notation 4.3, the limit

lim
ε→0+

1

2πi

∫
Γε

ϕ(ζ)

ζ − τ
dζ (5.1)

exists, then it is called the Principal Value of the Cauchy integral Φ at τ , P.V.Φ(τ).

Definition 5.2. For any constant 0 < α < 1 and any set B ⊆ C, a function ϕ : B → C is
Hölder continuous with exponent α on B means: there is a constant C so that for any z1, z2 ∈ B,
|ϕ(z1)− ϕ(z2)| < C|z1 − z2|α. This property is abbreviated ϕ ∈ C0,α(B).
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Theorem 5.3. For 0 < α < 1, and a piecewise smooth contour Γ, if ϕ ∈ C0,α(Γ), then:

• The Principal Value of Φ exists at any point τ ∈ Γ;

• For any smooth point τ ∈ Γ, the Principal Value of Φ is equal to

1

2πi

∫
Γ

ϕ(ζ) − ϕ(τ)

ζ − τ
dζ +

1

2
ϕ(τ).

Proof. The first step is to show that for a piecewise smooth arc Γ,∫
Γ

ϕ(ζ) − ϕ(τ)

ζ − τ
dζ

exists, as a complex valued improper integral, in the following sense. On Γε, the quantity
being integrated is continuous, so the only parts requiring attention are the one or two arcs
with endpoint τ in the disk D(τ, ε). It is enough to show that there is some smooth arc re-
parametrizing a piece of Γ, z(t) ∈ Γ ∩ D(τ, ε), t ∈ [0, 1], with z(0) = τ , with the property: for
any η > 0 there is some δ > 0 so that for all 0 < a < δ:∣∣∣∣∣

∫ z(δ)

z(a)

ϕ(ζ) − ϕ(τ)

ζ − τ
dζ

∣∣∣∣∣ < η.

By Lemma 3.4, we can choose a small enough sub-arc of Γ ∩ D(τ, ε), parametrized by z(t)
on [0, B], z(0) = τ , |z′(t)| = 1 on (0, B), and |z(t)− z(0)| ≥ ct for some c > 0. (This is not yet
related to η.)

Then, for any 0 < b < B,

∫ B

b

|ϕ(z(t))− ϕ(z(0))|
|z(t)− z(0)| dt

≤
∫ B

b

C|z(t)− z(0)|α
|z(t)− z(0)| dt

=

∫ B

b

C

|z(t)− z(0)|1−α
dt

≤ C

∫ B

b

1

(ct)1−α
dt

=
C

c1−α

tα

α

]B
b

<
CBα

αc1−α
.

Since the quantity being integrated is nonnegative and has bounded integral for all b, as b

decreases to 0,
∫ B

b weakly increases to some finite least upper bound 0 ≤ U ≤ CBα

αc1−α . In

particular, for any η, there is some small δ > 0 so that for all 0 < a ≤ δ, U − η <
∫ B

a ≤ U . So,

11



for all 0 < a < δ, ∣∣∣∣∣
∫ z(δ)

z(a)

ϕ(ζ) − ϕ(τ)

ζ − τ
dζ

∣∣∣∣∣ =

∣∣∣∣∣
∫ t=δ

t=a

ϕ(z(t))− ϕ(z(0))

z(t)− z(0)
z′(t)dt

∣∣∣∣∣
≤

∫ δ

a

|ϕ(z(t))− ϕ(z(0))|
|z(t)− z(0)| dt

=

∫ B

δ

−
∫ B

a

< U − (U − η) = η.

and the claim follows.
The previous part only required that Γ is a piecewise smooth arc; the next step uses the

assumption that it is a contour, with global parametrization z(t). We make the simplifying
assumption that τ = z(t0) for some t0 �= 0, 1; otherwise, the argument can be easily modified.

For a smooth point τ , and sufficiently small ε > 0, there are numbers t1 < t2 so that Γε is a
connected arc, that is parametrized by z(t) in two sub-arcs, one for the restricted domain [0, t1],
and the other for [t2, 1]. As a function of ζ, the expression 1

ζ−τ has an antiderivative log(ζ − τ),
away from some branch cut starting at τ and avoiding Γε by staying in the connected exterior
of Γ. Considering the quantity

∫
Γε

dζ

ζ − τ
=

∫ z(t1)

z(0)

dζ

ζ − z(t0)
+

∫ z(1)

z(t2)

dζ

ζ − z(t0)

= (log(z(t1)− τ) − log(z(0)− τ))

+ (log(z(1)− τ)− log(z(t2)− τ))

= log

(
z(t1)− τ

z(t2)− τ

)

= ln

∣∣∣∣z(t1)− τ

z(t2)− τ

∣∣∣∣+ i arg

(
z(t1)− τ

z(t2)− τ

)
,

as ε → 0+, the integral approaches 0 + iπ. If τ is a corner point (a shared endpoint of arcs in
the contour) with angle ρ, then the above difference in arguments approaches ρ and the integral
approaches iρ. The claimed formula for the smooth point follows from the add-and-subtract
trick:

lim
ε→0+

1

2πi

∫
Γε

ϕ(ζ)

ζ − τ
dζ = lim

ε→0+

(
1

2πi

∫
Γε

ϕ(ζ) − ϕ(τ)

ζ − τ
dζ +

ϕ(τ)

2πi

∫
Γε

dζ

ζ − τ

)

=
1

2πi

∫
Γ

ϕ(ζ)− ϕ(τ)

ζ − τ
dζ +

1

2
ϕ(τ).

Notation 5.4. Given a C0,α function ϕ on a piecewise smooth arc Γ, and any point τ ∈ Γ,
define Ψτ by

Ψτ (z) =

∫
Γ

ϕ(ζ) − ϕ(τ)

ζ − z
dζ.

It was checked in the above proof that Ψτ (τ) is well-defined as an improper integral, and
Ψτ (z) is analytic on C \ Γ by Theorem 4.4.
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Theorem 5.5. For any limit with z approaching τ non-tangentially,

lim
z→τ

Ψτ (z) = Ψτ (τ).

Proof. The arc Γ and the point τ are given, and we also fix an arc on which z will approach
τ , that has the following property: There is some δ1 > 0 and some c > 0 so that if z is on the
approach arc and 0 < |z − τ | < δ1, then for all ζ ∈ Γ, |z − ζ| > c|z − τ |. We take this as the
definition of non-tangential, although if we choose some other approach arc, the constants δ1
and c may be different.

Given η > 0, we want to show that there is some δ > 0 so that if z is on the approach arc
and 0 < |z − τ | < δ, then |Ψτ (z)−Ψτ (τ)| < η. By definition,

Ψτ (z)−Ψτ (τ) =

∫
Γ

ϕ(ζ) − ϕ(τ)

ζ − z
dζ −

∫
Γ

ϕ(ζ)− ϕ(τ)

ζ − τ
dζ

=

∫
Γ

(ϕ(ζ) − ϕ(τ))(z − τ)

(ζ − z)(ζ − τ)
dζ.

From the Proof of Theorem 5.3, there is some ε > 0 and some parametrization ζ(t) of Γ near τ
so that the improper integral satisfies:∣∣∣∣∣

∫
Γ\Γε

ϕ(ζ) − ϕ(τ)

ζ − τ
dζ

∣∣∣∣∣ ≤
∫ t0+δ3

t0−δ2

|ϕ(ζ(t)) − ϕ(τ)|
|ζ(t) − τ | dt <

ηc

2
.

The ε depends on the constant c from the fixed approach arc, but not on the point z. For z on

the approach arc such that 0 < |z − τ | < δ1,
|z−τ |
|ζ−z| <

1
c , so∣∣∣∣∣

∫
Γ\Γε

(ϕ(ζ) − ϕ(τ))(z − τ)

(ζ − z)(ζ − τ)
dζ

∣∣∣∣∣ < η

2
.

Suppose 0 < |z − τ | < ε/2, so |ζ − z| > ε/2 for all ζ ∈ Γε. Let Lε be the arclength of Γε.
Then ∣∣∣∣

∫
Γε

ϕ(ζ) − ϕ(τ)

(ζ − z)(ζ − τ)
dζ

∣∣∣∣ ≤ max

∣∣∣∣ ϕ(ζ) − ϕ(t)

(ζ − z)(ζ − τ)

∣∣∣∣Lε

<
2

ε
max

∣∣∣∣ϕ(ζ)− ϕ(τ)

ζ − τ

∣∣∣∣Lε,

where the max is over ζ ∈ Γε.

If max
∣∣∣ϕ(ζ)−ϕ(τ)

ζ−τ

∣∣∣Lε = 0, then the claim is established, with δ = min{δ1, ε/2}. Otherwise, if

0 < |z − τ | < ηε

4max
∣∣∣ϕ(ζ)−ϕ(τ)

ζ−τ

∣∣∣Lε

,

then ∣∣∣∣
∫
Γε

(ϕ(ζ) − ϕ(τ))(z − τ)

(ζ − z)(ζ − τ)
dζ

∣∣∣∣ = |z − τ |
∣∣∣∣
∫
Γε

ϕ(ζ) − ϕ(τ)

(ζ − z)(ζ − τ)
dζ

∣∣∣∣
<

η

2
.
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For a piecewise smooth contour Γ as in Theorem 5.3, let D+ denote the interior region of
Γ and let D− denote the exterior. For ϕ and Φ as in Notation 4.3, define Φ± : Γ → C as a
non-tangential limit, if it exists:

Φ±(τ) = lim
z→τ, z∈D±

Φ(z).

Theorem 5.6 (Plemelj Jump). Given a C0,α function ϕ on Γ, the functions Φ± are well-defined
at every smooth point τ , and satisfy

Φ±(τ) = P.V.Φ(τ) ± 1

2
ϕ(τ).

Proof. At any smooth point, there is a non-tangential approach arc on either side. Use the
add-and-subtract trick again.

Φ±(τ) = lim
z→τ, z∈D±

1

2πi

∫
Γ

ϕ(ζ)

ζ − z
dζ

=
1

2πi
lim

z→τ, z∈D±

(∫
Γ

ϕ(ζ) − ϕ(τ)

ζ − z
dζ + ϕ(τ)

∫
Γ

dζ

ζ − z

)
.

So, using the Cauchy Integral Formula,

Φ+(τ) =
1

2πi
lim

z→τ, z∈D+
Ψτ (z) + ϕ(τ),

and

Φ−(τ) =
1

2πi
lim

z→τ, z∈D−
Ψτ (z).

The claimed result follows from the limit in Theorem 5.5 and the formula for the Principal Value
in Theorem 5.3.

6 Power series

Definition 6.1. An infinite series of the form

∞∑
n=0

cn(z − a)n is called a power series. The cn

are called the coefficients, and a is called the center of the power series.

The coefficients cn, the center a, and the variable z can all be complex numbers. The index
n usually starts at 0 (the constant term is c0z

0 = c0), or, if the first few coefficients are 0, n may
start at any positive integer. (This definition of power series excludes negative or non-integer
exponents n.)

Definition 6.2. The domain of convergence of a power series

∞∑
n=0

cn(z − a)n is the set of all

(complex) numbers z so that the series is convergent.

Note that the domain of convergence cannot be the empty set, since any power series always

converges at its center, z = a:
∞∑
n=0

cn(a− a)n = c0 + c10
1 + c20

2 + · · · = c0.
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Proposition 6.3 (“Abel’s Lemma”). For a power series centered at a,

∞∑
n=0

cn(z − a)n, exactly

one of the following holds:

•

∞∑
n=0

cn(z − a)n converges to c0 at z = a, and diverges for all other z.

•

∞∑
n=0

cn(z − a)n is absolutely convergent for all z ∈ C.

• There is a real number R > 0 so that

∞∑
n=0

cn(z − a)n is absolutely convergent for |z−a| < R,

and the series is divergent for |z − a| > R.

Proof. For a proof, see [C].

Definition 6.4. The number R is the radius of convergence of the power series, and it must be
nonnegative. The first two cases are referred to as R = 0 and R = ∞.

Note that Proposition 6.3 is inconclusive when both 0 < R < ∞ and |z − a| = R. (Geo-
metrically, this is the case where the domain of convergence is a disk in C with positive radius,
and z is on the circular boundary of the disk.) The power series could be divergent, absolutely
convergent, or conditionally convergent for z on the boundary. In the case where the center
a is on the real number line, then the real values of z for which the series is convergent form
an interval centered at a (the intersection of the disk and the real axis), and the points on the
boundary are the two endpoints, a−R and a+R.

Proposition 6.5. If

∞∑
n=0

cn(z − a)n has radius of convergence R, then

∞∑
n=1

cnn(z − a)n−1 also

has radius of convergence R.

Proof. For a proof, see [C].

Theorem 6.6. The function defined by f(z) =

∞∑
n=0

cn(z − a)n is analytic on the disk {|z− a| <

R}, with f ′(z) =
∞∑
n=1

cnn(z − a)n−1.

Proof. The following steps give an elementary ε/δ argument, based on a proof from [BC]; unlike
[CB] Chapter 5, we do not use integration and we do not use the general theory of uniform
convergence, only what is specifically needed here.

First pick a specific point z in the disk {|z − a| < R}. Then choose some ρ so that |z − a| <
ρ < R.

We want to check the definition of limit appearing in the definition of derivative at the point
z, f ′(z), so we want to show:

lim
w→z

f(w)− f(z)

w − z
=

∞∑
n=1

cnn(z − a)n−1.
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The absolute convergence of the RHS series is Proposition 6.5. So, given ε > 0, we want to find
δ > 0 so that

0 < |w − z| < δ =⇒
∣∣∣∣∣f(w)− f(z)

w − z
−

∞∑
n=1

cnn(z − a)n−1

∣∣∣∣∣ < ε. (6.1)

The δ may depend on ε, a, cn, R, ρ, and z, but not on w.
For integer N = 1, 2, 3, . . ., define:

SN (z) =

N∑
n=0

cn(z − a)n

RN (z) =

∞∑
n=N+1

cn(z − a)n.

So, for any N , f(z) + SN (z) + RN (z), and lim
N→∞

SN(z) = f(z) and lim
N→∞

RN (z) = 0. We will

choose a specific N later, in a way that may depend on ε, a, cn, R, ρ, and z, but not on w and
not on the δ we have not yet found. The quantity from (6.1) satisfies the following inequality
for any N : ∣∣∣∣∣f(w) − f(z)

w − z
−

∞∑
n=1

cnn(z − a)n−1

∣∣∣∣∣
=

∣∣∣∣(SN (w) +RN (w)) − (SN (z) +RN (z))

z − w

−
((

N∑
n=1

cnn(z − a)n−1

)
+

( ∞∑
n=N+1

cnn(z − a)n−1

))∣∣∣∣∣
≤

∣∣∣∣∣SN (w) − SN (z)

w − z
−

N∑
n=1

cnn(z − a)n−1

∣∣∣∣∣ (6.2)

+

∣∣∣∣∣
∞∑

n=N+1

cnn(z − a)n−1

∣∣∣∣∣ (6.3)

+

∣∣∣∣RN (w)−RN (z)

w − z

∣∣∣∣ . (6.4)

The term (6.3) is the tail end of the convergent series from Proposition 6.5: there’s some N1 so
that if N > N1, then the term (6.3) is less than ε/3. This cutoff N1 depends on ε, a, cn, and z,
but not on w.
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The term (6.4) can be re-arranged:

RN (w) −RN (z)

w − z
=

( ∞∑
n=N+1

cn(w − a)n

)
−
( ∞∑

n=N+1

cn(z − a)n

)

w − z

=

∞∑
n=N+1

cn
(w − a)n − (z − a)n

(w − a)− (z − a)

=

∞∑
n=N+1

cn

n−1∑
k=0

(z − a)k(w − a)n−1−k (6.5)

The step (6.5) follows from the polynomial identity

(w − a)n − (z − a)n = ((w − a)− (z − a))

n−1∑
k=0

(z − a)k(w − a)n−1−k,

a telescoping sum similar to the geometric series formula, which holds for all z, w, and a.
Assuming |w − a| < ρ, the following estimate holds:∣∣∣∣∣cn

n−1∑
k=0

(z − a)k(w − a)n−1−k

∣∣∣∣∣ ≤ |cn|
n−1∑
k=0

|z − a|k|w − a|k

< |cn|
n−1∑
k=0

ρkρn−1−k = |cn|nρn−1.

The series

∞∑
n=0

cn

n−1∑
k=0

(z − a)k(w − a)n−1−k is absolutely convergent, by the Comparison Test

([C]) applied to
∞∑

n=0

∣∣∣∣∣cn
n−1∑
k=0

(z − a)k(w − a)n−1−k

∣∣∣∣∣ ≤
∞∑
n=0

|cn|nρn−1,

which is absolutely convergent by Proposition 6.5 (with z = ρ+ a). So (6.5) is the tail end of a
convergent series, and there is some there is some N2 so that if N > N2 then∣∣∣∣∣

∞∑
n=N+1

cn

n−1∑
k=0

(z − a)k(w − a)n−1−k

∣∣∣∣∣ ≤
∞∑

n=N+1

|cn|nρn−1 < ε/3.

This cutoff N2 depends on ε, cn, and ρ, but not on the specific values of z or w, only that they
both are in the disk D(a, ρ), and in particular w does not have to be close to z. It follows that

if N > N2, w �= z, |z − a| < ρ, and |w − a| < ρ, then
∣∣∣RN (w)−RN (z)

w−z

∣∣∣ < ε/3.

Now, fix a number N > max{N1, N2}, and consider the term (6.2). SN (z) =
N∑

n=0

cn(z − a)n

is a polynomial of degree N , with derivative

S′
N (z) = lim

w→z

SN(w) − SN (z)

w − z
=

N∑
n=1

cnn(z − a)n−1,
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so corresponding to ε/3 > 0, there is some δ1 > 0 so that if 0 < |w − z| < δ1, then the (6.2)
quantity is less than ε/3.

To bound all three terms at the same time, let δ = min{δ1, ρ− |z − a|} > 0. Then |w− a| =
|w− a+ z− z| ≤ |w− z|+ |z− a|, and if 0 < |w− z| < δ, then |w− a| ≤ ρ, which, together with
N > N2, is all we need for the ε/3 bound on the (6.4) term. The (6.3) term is bounded by ε/3

because N > N1, and the (6.2) term is bounded by ε/3 because 0 < |w − z| < δ ≤ δ1.

The following property of analytic functions may be useful in answering [CB] Exercises
#59.12.a., p. 195, and #66.4 and #66.5, p. 219.

Lemma 6.7. Given an open set D ⊆ C, a point z0 ∈ D, and a number n = 1, 2, 3, . . ., if h(z)
is analytic on D and there is some disk {z : |z − z0| < r} where h has a series expansion:

h(z) =
∞∑

k=n

ck(z − z0)
k,

then this function f is also analytic on D:

f(z) =

⎧⎨
⎩

h(z)

(z − z0)n
for z �= z0

cn for z = z0

⎫⎬
⎭ .

Proof. The series for h has a positive radius of convergence r > 0 by Taylor’s Theorem from [CB]
§57, p. 189 (possibly r = ∞); the hypothesis of the Lemma is that the coefficients c0, . . . , cn−1

are all = 0, so the series starts with coefficient cn (which may or may not be = 0).
The function f(z) is complex differentiable at every point in D \ {z0}, by the quotient rule

for derivatives. We only need to check that f is complex differentiable at z0 to get the claimed
conclusion. Consider the series:

g(z) =
∞∑

k=n

ck(z − z0)
k−n.

This is a power series with all non-negative exponents, and defines some function g so that
g(z0) = cn = f(z0). For any point z with 0 < |z − z0| < r, the series is convergent, because it is
equal to a scalar multiple of the convergent series for h:

g(z) =
∞∑

k=n

(
ck(z − z0)

k · 1

(z − z0)n

)

=
1

(z − z0)n
·

∞∑
k=n

ck(z − z0)
k =

1

(z − z0)n
h(z).

The scalar multiple rule applies because 1
(z−z0)n

does not depend on the summation index

k. We can conclude that the series for g(z) converges for all z with |z − z0| < r, so g(z) is
complex differentiable at z0 by Theorem 6.6 (or the Corollary from [CB] §65, p. 215). The above
construction shows g(z) = f(z) for all z with |z − z0| < r, so f is also complex differentiable at

z0 and has a series expansion centered at z0 given by the g(z) series.
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7 Rational functions

Definition 7.1. A rational function is defined by f(z) = P (z)/Q(z), where P and Q are
polynomials and Q �≡ 0.

By the Fundamental Theorem of Algebra, there are finitely many points r where Q(r) = 0,
so the domain of a rational function is {z ∈ C : Q(z) �= 0}, the open, connected, non-empty
complement of a finite set.

Lemma 7.2. Given any complex number w and polynomials P (z) and Q(z) so that the rational
function f(z) = P (z)/Q(z) is non-constant on the domain D = {z ∈ C : Q(z) �= 0}, the
following are equivalent:

1. There exists a solution z = s ∈ D of the equation f(z) = w.

2. There exists s ∈ D and a polynomial F (z) �≡ 0 so that P (z)− wQ(z) = (z − s)F (z).

Proof. First, P (z)−wQ(z) is not the constant zero polynomial; otherwise, if P (z)−wQ(z) ≡ 0,
then for any t ∈ D, P (t) = wQ(t) ⇐⇒ P (t)/Q(t) = w = f(t), which contradicts the initial
assumption that f is not a constant function in D.

For (2) =⇒ (1), plugging in z = s ∈ D gives P (s)−wQ(s) = (s− s)F (s) = 0 and Q(s) �= 0,
so P (s) = wQ(s) and f(s) = P (s)/Q(s) = w.

Conversely, for (1) =⇒ (2), the hypothesis is that f(s) = P (s)/Q(s) = w, with Q(s) �= 0;
this is equivalent to P (s) = wQ(s) ⇐⇒ P (s) − wQ(s) = 0, so s is a root of the polynomial
P (z) − wQ(z). P (z) − wQ(z) cannot be any constant polynomial: it was already shown that
it can’t be ≡ 0, and it also cannot be any non-zero constant, because it has a root s. So
P (z) − wQ(z) has degree ≥ 1 and root s, and it factors as (z − s)F (z) for some (possibly

constant but not ≡ 0) polynomial F (z).

Theorem 7.3. For any non-constant rational function f(z) = P (z)/Q(z), the set of numbers
w such that f(z) = w has no solution is a finite set.

Proof. Let P have degree M and let Q have degree N . Let f(z) = P (z)/Q(z) have domain
D ⊆ C as in Lemma 7.2.

Case 1. Q(z) is a constant function. Q �≡ 0 by definition, so f(z) = P (z)/Q(z) is a non-
constant polynomial and for any w, there is at least one root of the polynomial f(z)−w, by the
Fundamental Theorem of Algebra. So the set of w with no solutions of f(z) = w is the empty
set.

Case 2. Q(z) is a non-constant polynomial of degree N > 0 and, by the Fundamental
Theorem of Algebra, factors as Q(z) = qN (z − r1)(z − r2) · · · (z − rN ), for leading coefficient
qN �= 0 and some possibly repeating list of roots (r1, . . . , rN ). For any ordered list of non-
negative integers �v = (v1, v2, . . . , vN ), define R�v(z) = (z − r1)

v1(z − r2)
v2 · · · (z − rN )vN , so R�v

has leading coefficient 1 and degree v1 + · · ·+ vN , and every root of R�v is one of the roots of Q.
If w is a number such that f(z) = w has no solution in D, then neither of the equivalent

conditions in Lemma 7.2 holds. In particular, P (z)−wQ(z) cannot be equal to any polynomial
of the form (z − s)F (z) for s ∈ D. We want to show that given P and Q, there are only finitely
many such w.
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Case 2.a. Consider the set of w such that P (z) − wQ(z) is a constant function. For any w
in this set, applying the N th derivative to both sides of P (z)− wQ(z) ≡ C gives

P (N)(z)− wqNN ! ≡ 0,

so P (N)(z) is a constant function and w = P (N)(z)/(qNN !) is uniquely determined by P and
Q and does not depend on C (or z). The set of such w is either empty or has only this one
element.

Case 2.b. Consider the set of w such that P (z)−wQ(z) is non-constant and not of the form
(z − s)F (z) for any s ∈ D. So any root of P (z) − wQ(z) must be a root of Q(z), and we can
conclude P (z)− wQ(z) must be equal to C�vR�v(z) for some non-zero leading coefficient C�v and
some vector �v with non-negative integer entries satsifying 0 < v1 + · · · + vN ≤ max{M,N}.
There are only finitely many such vectors �v; we will show that for each �v, there is at most one
pair (w,C�v) such that P (z)− wQ(z) = C�vR�v(z).

Pick any t in the non-empty set D, so Q(t) �= 0, R�v(t) �= 0, and w and C�v satisfy P (t) −
wQ(t) = C�vR�v(t) �= 0. Using this constant t, define a new polynomial

d(z) = det

[
Q(t) R�v(t)
Q(z) R�v(z)

]
= Q(t)R�v(z)−R�v(t)Q(z).

If d(z) ≡ 0 then R�v(z) =
(

R�v(t)
Q(t)

)
Q(z), and P (z) − wQ(z) = C�v

(
R�v(t)
Q(t)

)
Q(z), so P (z) −(

w − C�vR�v(t)
Q(t)

)
Q(z) ≡ 0. However, as in the Proof of Lemma 7.2, this implies f(z) = P (z)/Q(z)

is constant on D, contradicting the assumption. So d(z) �≡ 0, and there is some u ∈ C with
d(u) �= 0. This means the pair (w,C�v) satisfies P (u) − wQ(u) = C�vR�v(u) and also the linear
system [

Q(t) R�v(t)
Q(u) R�v(u)

] [
w
C�v

]
=

[
P (t)
P (u)

]
,

where the constant coefficient matrix has non-zero determinant d(u), and there is exactly one
solution (w,C�v) satisfying this system. There may be other constraints on (w,C�v) but checking
P (z)−wQ(z) = C�vR�v(z) at these two points z = t and z = u already rules out the existence of

more than one solution for (w,C�v).
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