
Notes for the Physics-Based Calculus workshop

Adam Coffman

These notes on trigonometric polynomials and the Fourier transform were used
in a Physics-Based Calculus summer workshop for teachers at IPFW, from 2001
to 2004, which was supported by NSF grant DUE 9555408 as part of the Indiana
University system’s Mathematics Throughout the Curriculum project (PI: Dan
Maki). I have also used excerpts in Math 363, the Differential Equations course at
Purdue Fort Wayne, supplementing the textbook [5].

1 Trigonometric Functions

We recall the following identities for trigonometric functions.

Theorem 1.1. For all x ∈ R, cos(−x) = cos(x) and sin(−x) = − sin(x).

Theorem 1.2. For all α, β ∈ R, cos(α + β) = cos(α) cos(β)− sin(α) sin(β).

Theorem 1.3. For all α, β ∈ R, sin(α+ β) = sin(α) cos(β) + cos(α) sin(β).

Proof. For small positive angles (so α+ β is less than a right angle), the identities
from Theorem 1.2 and 1.3 both follow from looking at (and thinking about) the
following diagram.

[omitted from this version]
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Corollary 1.4. For all α, β ∈ R, cos(α− β) = cos(α) cos(β) + sin(α) sin(β).

Proof. This follows from Theorems 1.1 and 1.2:

cos(α+ (−β)) = cos(α) cos(−β)− sin(α) sin(−β)

= cos(α) cos(β)− sin(α)(− sin(β))

= cos(α) cos(β) + sin(α) sin(β).

Corollary 1.5. For all α, β ∈ R, sin(α− β) = sin(α) cos(β) − cos(α) sin(β).

Proof. This follows from Theorems 1.1 and 1.3 in the same way as the Proof of
Corollary 1.4.

Corollary 1.6. For all α, β ∈ R, cos(α) cos(β) = 1
2 (cos(α+ β) + cos(α− β)).

Proof. Add the left hand sides of the identities from Theorem 1.2 and Corol-
lary 1.4, to get cos(α + β) + cos(α − β). This should be the same as adding
the right hand sides of the identities, which is (cos(α) cos(β) − sin(α) sin(β)) +
(cos(α) cos(β) + sin(α) sin(β)). Two terms are the same, the other two cancel, for

a total of 2 cos(α) cos(β). Dividing by 2 gives the result.

Corollary 1.7. For all α, β ∈ R, cos(α) sin(β) = 1
2 (sin(α+ β) + sin(α− β)).

Corollary 1.8. For all α, β ∈ R, sin(α) sin(β) = 1
2 (cos(α− β)− cos(α+ β)).

Proof. The proofs of these Corollaries are both similar to the proof of Corollary
1.6.

Corollary 1.9. For constants A, φ, and ω, any function of the form f(x) =
A cos(ωx + φ) can be expressed as a constant multiple of cos(ωx) plus some other
constant multiple of sin(ωx).

Proof. Using Theorem 1.2,

f(x) = A cos(ωx+ φ)

= A(cos(ωx) cos(φ)− sin(ωx) sin(φ))

= (A cos(φ)) cos(ωx) + (−A sin(φ)) sin(ωx).

Lemma 1.10. If f(x) = M cos(ωx + φ) is a constant function, then M = 0 or
ω = 0.

Proof. Suppose toward a contradiction that M �= 0 and ω �= 0. Then f(x) = f(0)
for all x, so cos(ωx+φ) is the constant function cos(φ)/M , but cos(ω · −φ

ω +φ) = 1

and cos(ω · 1
2π−φ

ω + φ) = 0, which is a contradiction.
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Theorem 1.11. For constants A, B, ω ∈ R, any function of the form f(x) =
A cos(ωx) +B sin(ωx) is equal to a function of the form M cos(ωx + φ), for some
M ≥ 0 and −π < φ ≤ π. If ω �= 0, then the number M is unique.

Proof. If A = B = 0, let M = 0, and φ can be anything, since f is the constant
function 0. If (A,B) �= (0, 0), let M =

√
A2 +B2, and since −1 ≤ A√

A2+B2
≤ 1,

there is a unique number φ1 in the interval [0, π] such that cos(φ1) = A√
A2+B2

.

From sin2(φ1) + cos2(φ1) = 1 and 0 ≤ φ1 ≤ π, we can conclude sin(φ1) =

+
√
1− cos2(φ1) =

|B|√
A2+B2 . If sin(φ1) = − B√

A2+B2 , then let φ = φ1, otherwise, if

sin(φ1) = B√
A2+B2

�= 0, then let φ = −φ1, so sin(φ) = − sin(φ1). In either case,

cos(φ) = cos(φ1) = cos(−φ1). Using Theorem 1.2 again,

M cos(ωx+ φ) =
√
A2 +B2(cos(ωx) cos(φ)− sin(ωx) sin(φ))

= A cos(ωx) +B sin(ωx).

For ω �= 0, the uniqueness means that if M ≥ 0 and M ′ ≥ 0 and

f(x) = A cos(ωx) +B sin(ωx) = M cos(ωx+ φ) = M ′ cos(ωx+ φ′),

then M ′ = M . If M = 0 then M ′ cos(ωx + φ′) is a constant function with ω �= 0,
so M ′ = 0 by Lemma 1.10. If M �= 0, then by Lemma 1.10, M cos(ωx + φ) is a
non-constant function, with maximum value M > 0 on the domain R, and M ′ is
the maximum value of the non-constant function M ′ cos(ωx + φ′), but f can have

only one maximum value.

Definition 1.12. Given A,B ∈ R, and ω �= 0, the coefficient M ≥ 0 that appears
in the equality

f(x) = A cos(ωx) +B sin(ωx) = M cos(ωx+ φ)

is called the amplitude of the function f(x), and the previous proof showed that

M is given uniquely by the formula
√
A2 +B2. If f(x) happens to be a constant

function, f(x) = A, define its amplitude to be |A|.
Corollary 1.13. If f(x) = A cos(ωx) + B sin(ωx) is a constant, then either A =
B = 0 or ω = 0.

Proof. Let f(x) = M cos(ωx+ φ) as in Theorem 1.11, so Lemma 1.10 applies, and
either ω = 0 or M = 0. If ω �= 0, then 0 = M =

√
A2 +B2 by the uniqueness part

of Theorem 1.11, so A = B = 0.

Theorem 1.14. Given constants A, B, A′, B′, ω �= 0, ω′ �= 0, if

A cos(ωx) +B sin(ωx) = A′ cos(ω′x) +B′ sin(ω′x)

for all x ∈ R, then A′ = A and B′ = ±B. If (A,B) �= (0, 0) then ω′ = ±ω. If
(A,B) �= (0, 0) and ω > 0 and ω′ > 0, then ω′ = ω and B′ = B.
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Proof. Plugging x = 0 into both sides gives A = A′. Let f(x) = A cos(ωx) +
B sin(ωx).

Case 1. If (A,B) = (0, 0), then f is constant, and since ω′ �= 0, A′ = B′ = 0 by
Corollary 1.13.

Case 2. If (A,B) �= (0, 0), then f is not constant (using ω �= 0 and Corollary
1.13). By Theorem 1.11, f(x) = M cos(ωx + φ), with M > 0, and since ω �= 0,
M is the maximum value of f . Applying Theorem 1.11 to f(x) = A′ cos(ω′x) +
B′ sin(ω′x) gives f(x) = M ′ cos(ω′x + φ′), with maximum value M ′ > 0. Since f
has a unique maximum value, M = M ′ > 0. We can conclude A2 + B2 = M2 =
A2 +(B′)2, so B′ = ±B. We also get cos(ωx+φ) = cos(ω′x+φ′) for all x. Taking
the derivative of both sides gives −ω sin(ωx+ φ) = −ω′ sin(ω′x+ φ′). Since ω �= 0
and ω′ �= 0, these are non-constant functions with maximum values |ω| and |ω′|,
respectively, which must be equal, so ω′ = ±ω.

If ω > 0 and ω′ > 0, ω′ = ω follows immediately, and the hypothesis becomes:

A cos(ωx) +B sin(ωx) = A cos(ωx) + B′ sin(ωx),

and the cosine terms cancel, so (B −B′) sin(ωx) is the constant function 0 and by

Corollary 1.13, B −B′ = 0.

Definition 1.15. Given a function of the form f(x) = A cos(ωx) + B sin(ωx),
which is not identically zero, the constant |ω| is uniquely defined, and we define

the number |ω|
2π to be the frequency of f(x).

If f is a non-zero constant function, its frequency is |ω|
2π = 0

2π = 0 by Corollary
1.13, and if f is the constant function 0, its frequency is undefined.

The non-uniqueness from Theorem 1.14 follows from the “odd” identity for sin
(Theorem 1.1). The functions f(x) = 4 cos(7x)+5 sin(7x) and f(x) = 4 cos(−7x)−
5 sin(−7x) are identically equal, even though the coefficients in front of the sin and
in front of the x are different, but for non-constant functions, this is the only thing
that can go wrong with uniqueness, and if we only use positive frequencies, then
the coefficient B is uniquely determined.

Remark 1.16. The constant |ω| from Definition 1.15 is called the angular frequency
of f , although this is sometimes also abbreviated as just “frequency.”

2 Periodic Functions

Definition 2.1. Given f(x) with domain R, if there is a number P > 0 so that f
satisfies the identity

f(x+ P ) = f(x)

for all x ∈ R, then f is periodic, with period P .

Using this definition, the period is not unique: if f has period P , it is also true
that f has period 2P , 3P , etc., and it is possible there are others.
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Example 2.2. For any P > 0, a trigonometric function of the form A cos(2πP x) is
periodic with period P .

Example 2.3. For any ω > 0, the function A cos(ωx) +B sin(ωx) is periodic with
period P = 2π

ω (the reciprocal of the frequency).

Example 2.4. For any P > 0 and integer k, the functionA cos(k 2π
P x)+B sin(k 2π

P x)

is periodic with period P
k . It is also periodic with period P .

3 Trigonometric polynomials

At this point we fix a number P > 0 and call it the “fundamental period.”

Definition 3.1. A function f(x) is a trigonometric polynomial means: there is a
natural number n and there are real numbers A0, A1, A2, . . . , An and B1, B2, . . . , Bn

so that for all x ∈ R,

f(x) =

(
n∑

k=0

Ak cos(k
2π

P
x)

)
+

(
n∑

k=1

Bk sin(k
2π

P
x)

)
. (1)

A trigonometric polynomial can be written:

f(x) = A0 +A1 cos(
2π

P
x) +A2 cos(2

2π

P
x) + . . .+An cos(n

2π

P
x)

+B1 sin(
2π

P
x) +B2 sin(2

2π

P
x) + . . .+Bn sin(n

2π

P
x).

As in Example 2.4, every term cos(k 2π
P x) has period P :

cos(k
2π

P
(x+ P )) = cos(k

2π

P
x+ k · 2π) = cos(k

2π

P
x),

using the facts that k is an integer and that cos has period 2π. Similarly, the
sin(k 2π

P x) terms also have period P . If Ak �= 0, the term Ak cos(k
2π
P x) has fre-

quency
|k 2π

P |
2π = k

P , and if Bk �= 0, the term Bk sin(k
2π
P x) also has frequency k

P .
Since every term in (1) has period P , so does the total sum, f(x).

So, a trigonometric polynomial (1) can be compared with the usual kind of
polynomial,

p(x) =

n∑
k=0

akx
k = a0 + a1x+ a2x

2 + . . .+ anx
n :

They both have finitely many terms with real coefficients, starting with a constant
term. After the constant term, a polynomial has a list of powers of x: x1, . . . , xn,
but a trigonometric polynomial has sin and cos terms with a list of frequencies:
1
P , 2

P , . . . , n
P , which are all multiples of the lowest frequency 1

P .
Using Theorem 1.11, for each frequency, we get an amplitude:

Ak cos(k
2π

P
x) +Bk sin(k

2π

P
x) = Ck cos(k

2π

P
x+ φk),
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where Ck =
√
A2

k +B2
k ≥ 0, and there is also a different number φk for each

frequency k
P . The trigonometric polynomial can be written

f(x) = A0 +

n∑
k=1

Ck cos(k
2π

P
x+ φk).

Here are a few examples of periodic functions that happen to be equal to trigono-
metric polynomials.

Example 3.2. The function cos2(x) is periodic with period P = 2π, but it is not
written in the trigonometric polynomial form — which uses only sines and cosines
without any exponents other than 0 and 1. However, using a double-angle identity,
we get:

cos2(x) =
1

2
+

1

2
cos(2x),

so A0 = 1
2 , A1 = 0, A2 = 1

2 , and all the Bk coefficients are 0.

Example 3.3. The function cos3(x) is periodic with period P = 2π, and there is
a trigonometric identity:

cos3(x) =
3

4
cos(x) +

1

4
cos(3x),

so the coefficients are A0 = 0, A1 = 3
4 , A2 = 0, A3 = 1

4 .

Example 3.4. In fact, for any combination of powers of sin and cos, there are
trigonometric identities making it equal to a trigonometric polynomial. An easy
example is sin2(x)+cos2(x), since the constant function 1 counts as a trigonometric
polynomial.

Example 3.5. Let f(x) = eix, which takes real input x and gives a complex
number output. The function f is periodic, with period 2π:

ei(x+2π) = eix+2πi = eixe2πi = eix = f(x),

using the rules for exponents and the fact that e2πi is the real number 1. There is
a trigonometric identity, “Euler’s Formula,” which says this periodic function is a
trigonometric polynomial with complex coefficients:

eix = cos(x) + i sin(x).

Every trigonometric polynomial is periodic with period P and differentiable
(and therefore continuous) on all of R. Is every periodic, differentiable function a
trigonometric polynomial? No, far from it — the above examples are, of course,
cooked up to have this special property. If you draw a random graph on an interval
of length P , the odds are pretty slim that there is some trigonometric identity
that makes your graph identically equal to a finite sum of sines and cosines with
frequencies that are multiples of 1

P .
However, . . . the odds are better that we can find a good approximation to

any periodic function (or any function defined on an interval [a, b]) by some trigono-
metric polynomial. We might even be able to think of a sequence of increasingly
close approximations. This should sound familiar from Taylor polynomial approx-
imations in calculus. . .
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4 Fourier Coefficients

Given all the coefficients of a trigonometric polynomial f(x), it is easy to plot a
graph of f(x). The reverse problem is: given the graph of f(x), can we find its
coefficients? The answer to this question is the start of “Fourier Analysis.” When
we use the following integral methods to find the coefficients of a periodic function,
we’ll call them “Fourier coefficients.” The process that takes an input function f
and gives as output a pair of coefficient sequences (A0, A1, A2, . . .), (B1, B2, . . .) is
a linear transformation that we’ll call the “Fourier transform.”

Theorem 4.1. Assume f(x) is equal to a trigonometric polynomial with period
P > 0:

f(x) =
A0

2
+

(
n∑

m=1

Am cos(m
2π

P
x)

)
+

(
n∑

m=1

Bm sin(m
2π

P
x)

)
.

Then the coefficients satisfy the following identities:

Ak =
2

P

∫ P

0

f(x) cos(k
2π

P
x)dx

Bk =
2

P

∫ P

0

f(x) sin(k
2π

P
x)dx

Proof. The integrals exist because f , cos, and sin are continuous on the closed
interval [0, P ]. More specifically, we can use the following integral formulas, for
k,m = 0, 1, 2, 3, . . ..

∫ P

0

cos(k
2π

P
x) cos(m

2π

P
x)dx =

∫ P

0

1

2

(
cos((k +m)

2π

P
x) + cos((k −m)

2π

P
x)

)

=

⎧⎨
⎩

0 if k �= m
P
2 if k = m > 0
P if k = m = 0

.

∫ P

0

sin(k
2π

P
x) sin(m

2π

P
x)dx =

∫ P

0

1

2

(
cos((k −m)

2π

P
x) + cos((k +m)

2π

P
x)

)

=

⎧⎨
⎩

0 if k �= m
P
2 if k = m > 0
0 if k = m = 0

.

∫ P

0

cos(k
2π

P
x) sin(m

2π

P
x)dx =

∫ P

0

1

2

(
sin((k +m)

2π

P
x)− sin((k −m)

2π

P
x)

)
= 0.

The key step in these integral formulas is the use of the trigonometric identities
from Corollaries 1.6, 1.7, 1.8. The formulas for Ak and Bk follow: integrating f
times the cosine with frequency k

P will give a sum of terms indexed from m = 0 to
m = n, all of which are 0 except when m = k. The 2

P coefficient is there to cancel
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the P
2 that shows up in the integral formulas, although to be able to use the same

formula for A0 that we do for all the other Ak, we had to introduce an extra 1
2 in

the beginning.

Remark 4.2. All of the above definite integrals
∫ P

0 in the Theorem and its proof

could be shifted to an interval
∫ P/2

−P/2 without changing their value (by the periodic

property of the functions being integrated). The textbook’s notation in [5] Chapter

10, considers functions with period P = 2L and integrals
∫ L

−L
, so the coefficient 2

P

in the above formulas for Ak and Bk becomes 2
2L = 1

L .

The next Theorem starts with very few conditions on a function f — only that
f is continuously differentiable on the domain R and that it is periodic, but we
get a surprisingly strong conclusion. We don’t expect that f is a trigonometric
polynomial, but it turns out that it in a precise sense, it is a limit of trigonometric
polynomials, and the coefficients are given by the same integral formulas as the
previous Theorem. This limit is called a “trigonometric series,” or “Fourier series,”
or the “Fourier expansion” of the function f(x).

Theorem 4.3. Let f(x) be periodic with period P > 0, and differentiable on R,
and suppose its derivative f ′(x) is continuous on R. Then, for k = 0, 1, 2, 3, . . .,
the following integrals exist:

Ak =
2

P

∫ P

0

f(x) cos(k
2π

P
x)dx

Bk =
2

P

∫ P

0

f(x) sin(k
2π

P
x)dx

and for any real x, the following sequence is convergent, with limit f(x):

f(x) = lim
n→∞

[
A0

2
+

(
n∑

m=1

Am cos(m
2π

P
x)

)
+

(
n∑

m=1

Bm sin(m
2π

P
x)

)]
.

The proof is available in books on Fourier analysis. In fact, the hypothesis can
be weakened further, with a conclusion that is almost as good.

Theorem 4.4. Let f(x) be periodic with period P > 0, and suppose f ′(x) exists
and is continuous at every point in R except for finitely many points p1, . . . , pq
in [0, P ), and their repeats, pt + NP , for integer N , where f and f ′ have the
property that their one-sided limits exist, but are not necessarily equal. Then, for
k = 0, 1, 2, 3, . . ., the following integrals exist:

Ak =
2

P

∫ P

0

f(x) cos(k
2π

P
x)dx

Bk =
2

P

∫ P

0

f(x) sin(k
2π

P
x)dx
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and for any real x except pt +NP , the following sequence is convergent, with limit
f(x):

f(x) = lim
n→∞

[
A0

2
+

(
n∑

m=1

Am cos(m
2π

P
x)

)
+

(
n∑

m=1

Bm sin(m
2π

P
x)

)]
.

At each of the points c = pt +NP , the sequence is still convergent, with limit

1

2

(
lim

x→c+
f(x) + lim

x→c−
f(x)

)
.

5 A Fourier Transform for non-periodic functions

The advantages of Theorems 4.1, 4.3, and 4.4 are that they are easy to use, and
give a nice sequence of coefficients Ak, Bk for a wide class of periodic functions
f(x). The integrals can be calculated exactly if we have a formula for f , or they
can be approximated if we have only a finite collection of sample points on the
graph of f .

The disadvantages of these theorems are that they require we know the exact
period P of f , which is equivalent to knowing its fundamental frequency 1

P . In
Theorem 4.1, we are also making the assumption that all the frequencies that
appear are exact multiples of 1

P . In practice, most functions f that occur from
physical measurements are not periodic, like the decaying mechanical oscillations, or
the non-repetitive characteristics of spoken words. Even with physical phenomena
which we would like to model with periodic functions, like the tone of a tuning fork,
a real-world experiment will record some frequencies which are not mathematically
precise multiples of the fundamental frequency.

One solution to these problems is to try to express f as a combination of
all possible real number (non-negative) frequencies, not just integer multiples of
some fundamental frequency. That way, the Fourier transform will not just give
a sequence of amplitudes, depending on corresponding integers, but an amplitude
function, which depends on a continuous range of frequencies. The infinite sum
from m = 1 . . .∞ in Theorems 4.3 and 4.4 becomes an improper integral from
m = 0 . . .∞. The formula for the amplitude function is given by Theorem 5.1,
which is analogous to Theorem 4.3.

The hypothesis on the integral of |f | in the Theorem is a way to express the
requirement that the function f(x) decay to 0 for x → ∞ — this excludes most
periodic functions, where we can apply Theorems 4.3 and 4.4 instead, but includes
functions from many physically realistic models (e.g., processes with exponential
decay) and practically occuring data sets (e.g., where we know f for a finite sam-
pling of points in some time interval and assume f = 0 outside the interval).
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Theorem 5.1. Let f(x) be differentiable on R, and suppose its derivative f ′(x) is
continuous on R, and the improper integral

∫∞
−∞ |f(x)|dx is convergent. Then, for

0 ≤ k ∈ R, the following integrals exist:

A(k) =
1

π

∫ ∞

−∞
f(x) cos(kx)dx

B(k) =
1

π

∫ ∞

−∞
f(x) sin(kx)dx

and for any x in R, the following improper integral is convergent, with limit f(x):

f(x) =

∫ ∞

0

[A(m) cos(mx) +B(m) sin(mx)] dm.

The amplitude as a function of m is C(m) =
√
(A(m))2 + (B(m))2.

In addition to the textbook [5], here is a list of reference books at a college level;
they are available in Helmke Library.
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