THE DEPARTMENT OF MATHEMATICAL SCIENCES

Purdue University Fort Wayne

is pleased to present

Ziming Shi

University of Wisconsin, Madison

How "Sharp" is the Lojasiewicz Gradient Inequality?

Abstract

The (famous) Lojasiewicz gradient inequality says that given a real analytic function f such that $f(x_0) = \nabla f(x_0) = 0$, there exists a number $\beta \in (0, 1)$ such that

 $\left|\nabla f(x)\right| \ge c \left|f(x)\right|^{\beta}$

for x in a neighborhood of x_0 . The smallest such β is called the Lojasiewicz exponent of f at x_0 . Recently, Feehan gave a geometric proof of the above statement using Hironaka's theory of resolution of singularities. Moreover he showed that the range of the Lojasiewicz exponent is in fact $\left[\frac{1}{2},1\right)$, and he proved that the Lojasiewicz exponent is $\frac{1}{2}$ if and only if f is a Morse-Bott function (a generalized version of a Morse function). We introduce a notion measuring how sharp the Lojasiewicz inequality is in an integral sense, using a general blow-up phenomenon recently discovered by Pan. We will discuss examples illustrating the potential usefulness of this point of view. Joint work with Yifei Pan.

11:00 – Noon, Monday, November 25, 2019. Location: Kettler 218

http://www.pfw.edu/departments/coas/depts/math/news/seminars.html

Abstract