SOME PROOFS ON AN INEQUALITY RELATED TO A THEOREM BY MALLIAVIN

{ EVANGELOS NASTAS } SYRACUSE UNIVERSITY

Midwestern Conference on Asymptotic Analysis, Poster Session, October 4-6, 2019, Purdue University, Fort Wayne, IN, USA

SYNOPSIS

This work is devoted to an inequality that's an estimated inversion formula related to the Cauchy integral of a distribution function on $\mathbb{R}_+ = (0, +\infty)$. It yields a theorem proven by Malliavin. Alternatives to the inequality are presented. The inequality (3) has been applied in spectral theory of differential and pseudo-differential operators and by extension to mathematical physics, notably quantum mechanics, e.g. atomic spectra, and more generally physics of vibrations.

ESTIMATED RIESZ MEANS

Given a power asymptotics of the Cauchy integral of $N(\lambda)$ along a certain parabola-like curve in \mathbb{C} that avoids \mathbb{R}_+ , the asymptotics of the Riesz means as $\lambda \to +\infty$ can be recovered utilizing:

Theorem 2 (Theorem 1) Let the function $N(\lambda)$ be constant in a neighbourhood of λ_0 . Then for any $\alpha > 0$

$$\left| N^{(\alpha)}(\lambda_0) \right| - \int_{\Gamma} \frac{S(\zeta) \left(1 - \frac{\zeta}{\lambda_0} \right)^{\alpha} d\zeta}{2\pi i} \right| \leq \left(\frac{\eta_0}{\lambda_0} \right)^{\alpha} \frac{\eta_0 |S(\zeta_0)|}{\alpha \pi}.$$

For $\alpha < 1$ the factor $(\alpha \pi)^{-1}$ in the RHS may be replaced by $\sqrt{\pi^{-2} + 1/4}$.

The LHS vanishes if a closed contour of integration consisting of Γ and the segment $[\zeta, \bar{\zeta_0}]$ is used. Indeed, since $N(\lambda)$ is assumed constant in the vicinity of λ_0 , one may change the order of integration:

$$\int_0^\infty dN(\lambda) \, \frac{1}{2\pi i} \oint \left(\frac{\lambda_0 - \zeta}{\lambda_0}\right)^\alpha \, \frac{d\zeta}{\lambda - \zeta}.$$

Henceforth the branch $z^{\alpha} = \exp(\alpha \ln z)$ with $-\pi < \text{Im } \ln z \leq \pi$ is assumed.

^a A continuous dependence of the constant on α can be realized by substituting the term 1/4 with $(1 - \alpha^{1+\epsilon})/4$, with $\epsilon > \epsilon_0 \approx 1/16$, calculated numerically.

REMARK

In Theorems 1 and 2, $N(\lambda)$ need not be continuous at λ_0 . If λ_0 is a discontinuity point of $N(\lambda)$, Theorem 1 remains valid without change, while in Theorem 2 the value $N(\lambda_0)$ in the LHS can be replaced by any value between $N(\lambda_0 - 0)$ and $N(\lambda_0 + 0)$.

$N(\lambda)$ & its Cauchy Integral

Let $N(\lambda)$ be a nondecreasing function defined on $\mathbb{R}_+ = (0, +\infty)$ such that $N(\lambda) = 0$ for small λ and

$$\int_0^\infty \lambda^{-1} dN(\lambda) < \infty. \tag{1}$$

The Cauchy Integral of $N(\lambda)$ is defined as

$$S(\zeta) = \int_0^\infty (\lambda - \zeta)^{-1} dN(\lambda), \qquad \zeta \notin \mathbb{R}_+. \quad (2)$$

Ordinary Cauchy Integral

If in lieu of (1) a weaker a condition with some integer q>1

$$\int_0^\infty \lambda^{-q} dN(\lambda) < \infty \tag{6}$$

holds true, then the leading term of the asymptotics of $N(\lambda)$ can be recovered by means of the next theorem from the behaviour of its generalized Cauchy integral

$$S_q(\zeta) = \int_0^\infty (\lambda - \zeta)^{-q} \, dN(\lambda), \qquad \zeta \notin \mathbb{R}_+. \quad (7)$$

Theorem 3 (Theorem 2) Let the function $N(\lambda)$ satisfy (6) and be constant in a neigbourhood of λ_0 . There exist constants $C_0, C_1, \ldots, C_{q-2}$ (which depend only on q) such that

$$\left| N(\lambda_0) - \frac{1}{2\pi i} \int_{\Gamma} S_q(\zeta) (\zeta - \lambda_0)^{q-1} d\zeta \right|$$

$$\leq \sum_{m=0}^{q-2} C_m \eta_0^{q-1-m} \left| \int_{\Gamma} S_q(\zeta) (\lambda_0 - \zeta)^m d\zeta \right|$$
(8)

^aInequality (6) is weaker than (1) because it is taken for granted that $dN(\lambda) = 0$ near $\lambda = 0$.

Inequality: Estimated Inversion \rightarrow Cauchy integral

Fix a point $\zeta_0 = \lambda_0 + i\eta_0$ in the first quadrant of the complex plane \mathbb{C} . Denote by Γ a contour that connects the point ζ_0 to $\overline{\zeta}_0 = \lambda_0 - i\eta_0$ and does not cross the integration path \mathbb{R}_+ of (2).

The inequality related to a theorem by Malliavin is

$$\left| N(\lambda_0) \right| - \frac{1}{2\pi i} \int_{\Gamma} S(\zeta) \, d\zeta \, \right| \le \eta_0 \sqrt{1 + \pi^{-2}} \, |S(\zeta_0)| \tag{3}$$

and employed it to provide a brief proof of Malliavin's Tauberian theorem. For $\alpha > 0$, the Riesz mean of order α of $N(\lambda)$ is

$$N^{(\alpha)}(\lambda) = \int_0^{\lambda} \left(1 - \frac{x}{\lambda}\right)^{\alpha} dN(x), \qquad \lambda > 0.$$
 (4)

^aThere exists an alternative convention according to which the Cauchy Integral of f(t) is defined as $\int_0^\infty (\zeta + t)^{-1} f(t) dt$.

∃ Non-negative Constants

Theorem 1 (Theorem 3) Let function $N(\lambda)$ defined on \mathbb{R}_+ be nondecreasing, equal zero near $\lambda = 0$, and satisfy condition (6). For any $\alpha > 0$ and any integer $q = 2, 3, \ldots$ there exist nonnegative constants C_0, \ldots, C_{q-2} , depending on q and α , such that for any $\lambda > 0$

$$\left| N^{\alpha}(\lambda_{0}) - \frac{\alpha B(q, \alpha)}{2\pi i} \int_{\Gamma} S_{q}(\zeta) (\zeta - \lambda_{0})^{q-1} \left(1 - \frac{\zeta}{\lambda_{0}} \right)^{\alpha} d\zeta \right|$$

$$\leq \sum_{m=0}^{q-2} C_{m} \left(\frac{\eta_{0}}{\lambda_{0}} \right)^{\alpha} \cdot \eta_{0}^{q-1-m} \left| \int_{\Gamma} S_{q}(\zeta) (\zeta - \lambda_{0})^{m} d\zeta \right|,$$

where

$$B(q, \alpha) = \frac{\Gamma(q)\Gamma(\alpha)}{\Gamma(q+\alpha)}.$$

Its proof mimics that of Theorem 2 by substituting $T_{q,q-1}(\mu)$ with

$$T_{q,q-1+\alpha}(\mu) = \int_{-1}^{1} \frac{\tau^{q-1+\alpha}}{(\mu - i\tau)^q} d\tau.$$

This theorem is connected to Theorem 2, as Theorem 1 to the inequality.

EPILOGUE

An estimated Riesz means of the distribution function from its Cauchy integral and another with power growth for which the ordinary Cauchy Integral is non-existent, wherein a power of the Cauchy kernel is utilized to yield the generalized Cauchy integral. A plethora of more applications in and beyond spectral theory are expected to realized.

CONTACT INFORMATION

Email enastas@syr.edu