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Introduction and Motivation

Why consider nontraditional notions of degree?

Suppose we approximate some function f , analytic in the
hypercube Hd := [−1, 1]d . Then consider

inf
degree(p)≤n

‖f − p‖Hd

In [T17], it is shown that for analytic functions with an analytic
continuation to a ”particular” set around the hypercube.

{
O(ρ−n/

√
d + ε), for traditional degree

O(ρ−n + ε), for two selected nontraditional degrees

for any ε > 0, where ρ > 0 depends on the “particular set”.



4/47

Intro Potential Theoretic Background Convex Bodies, Orderings WAMS, Discrete Sequences

Notation

• We begin with a compact set K ⊂ Cd for positive d ∈ Z.

• Then for positive k ∈ Z, define the polynomial spaces PΣ(k)
as all polynomials of standard degree less than or equal to k .

• Let Mk be the dimension of PΣ(k).

• For positive s ∈ Z, let α(s) be an enumeration of the
multi-exponents, so that es = zα(s) for s = 1, . . . ,Mk forms a
basis for PΣ(k).
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Vandermonde Matrix and Determinant

Then for a given k and sequence (zi )
s
i=1 ⊂ K , we can form the s

by s Vandermonde matrix VDM.

[VDM(z1, z2, . . . , zs)]i ,j = z
α( j)
i

And its determinant

V (z1, . . . , zs) = |det(VDM(z1, . . . , zs))|

We will focus on maximizing V (z1, . . . , zs) over sets of s points in
K .
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Vandermonde Matrix and Determinant

Note: In one dimension, the determinant of the Vandermonde is
just the product of the distances between each pair of points.

V (z1, . . . , zs) =
s∏

i=1

s∏
j>i

|zi − zj |
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Fekete Points

• For any s, there exist set(s) of points (ζi )
s
i=1 ⊂ K that

maximize V . We call these Fekete Points.

• We define the measure µs on K via µs(z) =
1

s

s∑
i=1

δζi (z).

• These measures converge weak-*: µs ⇀ µK , where µK is the
potential theoretic equilibrium measure
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Fekete Points: Example

If K is the unit complex disk, {z : |z | ≤ 1}, then the sth order
Fekete points are the roots of unity of order s.
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Fekete Points: Asymptotics

Let Lk =
k∑

i=1
i(Mi −Mi−1).

and we want to define τ(K ) = lim
k→∞

V (ζ
(k)
1 , . . . , ζ

(k)
Mk

)
1/LK

.

In one dimension, it straightforward to prove that
V (ζ1, . . . , ζMk

)1/Lk is decreasing in k , and has a limit as k →∞
which we call the transfinite diameter [R95]

In multiple dimensions, this is much more difficult, but was done in
[Z75].

We say that an array
(

z
(k)
i

)Mk

i=1
for each k is Asymptotically Fekete

if

V (z
(k)
1 , . . . , z

(k)
Mk

)
1/Lk → τ(K ) as k →∞



10/47

Intro Potential Theoretic Background Convex Bodies, Orderings WAMS, Discrete Sequences

A Preview of Orderings

Definition

Let ≺ denote the grevlex ordering on Zd , [M19], where α ≺ β if

• |α| < |β|; or

• |α| = |β|, and there exists k ∈ {1, . . . , d} such that αj = βj
for all j < k , and αk < βk

Ex: For d = 2, this gives

1, x , y , x2, xy , y 2, x3, x2y , . . .

We enumerate the monomials using this ordering, so
e1(z), e2(z), . . . are a polynomial basis.
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Monomial Classes and Tchebyshev Constants

We then, following [Z75] in [BBCL92], define the following
monomial class,

Definition

We define the sth monomial class,

M(s) :=

p : p(z) = es(z) +
s−1∑
j=1

cjej(z) : cj ∈ C


Definition

We define the discrete Tchebyshev constant

Ts := inf {‖p‖K : p ∈ M(s)}1/ deg(es)

And in preparation, we define the set
D = {x1, . . . , xd ∈ R+ :

∑
xi = 1}.
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Zaharjuta Conclusion

Definition

For θ ∈ int(C ), the directional Chebyshev constant is the function

T (K , θ) := lim sup
s→∞, α(s)

deg(es )
→θ

Ts

And this gives us the formula for the transfinite diameter

log(τ(K )) = lim
k→∞

log

 ∏
deg(es)=k

Ts

1/(Mk−Mk−1)

=
1

meas(D)

∫
D

ln T (K , θ) dθ
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Zaharjuta Conclusion

Lastly, from [Z75] and [BBCL92], we note the connection between
the maximum Vandermonde matrix determinant, V (ζ1, . . . , ζs),
and these averages. For k ≥ 1,(

Mk∏
s=1

T
deg(s)
s

)
≤ V (ζ1, . . . , ζMk

) ≤ Mk !

(
Mk∏
s=1

T
deg(s)
s

)
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Leja Points

Fekete sequences are very difficult to find, so for given k we define
a Leja Sequence (`i )

s
i=1 ⊂ K as a sequence given by the following

procedure.

• Choose `1 ∈ K at a maximum of zα(1).

• Assuming `1, . . . , `s−1 have been chosen,

• For each subsequent point `s , choose a maximum of
`→ V (`1, . . . , `s−1, `).

We know that Leja points are asymptotically Fekete, in both the
one and several variable cases.
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Leja Points: Example

If K is the unit complex disk, {z : |z | ≤ 1}, then the 2nth order
Leja points are the roots of unity of order 2n.
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Leja Points in Cd : Proof of Asymptotically Fekete

From [BBCL92],

• Let Ls = V (`1, . . . , `s). Then Ls ≤ V (ζ1, . . . , ζs) is clear.

•
V (`1, . . . , `s−1, `)

V (`1, . . . , `s−1)
= ps(`).

• ps(`) is monic, with es(`) being the monic term.

• Further, Ls/Ls−1 = ‖ps‖K ≥ T
deg(es)
s .

• So LMk
=
LMk

LMk−1

LMk−1

LMk−2
. . .
L1

1
= ‖ps‖K ≥

Mk∏
s=1

T
deg(es)
s .

• Taking Lkth roots, we achieve Ls ≥ Vs/Mk !.

Thus, in Cd , Leja point sequences are asymptotically Fekete.



17/47

Intro Potential Theoretic Background Convex Bodies, Orderings WAMS, Discrete Sequences

Polynomial Spaces associated with Convex Bodies

So far, we have used PΣ(k) to denote our polynomial space.
We let

Σ :=

{
x1, . . . , xd : xi ≥ 0,

d∑
i=1

xi ≤ 1

}
More generally, let C ∈ Rd

+ be a convex body containing 1
nΣ for

some positive n.
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C Polynomial Spaces

Then we define the polynomial space PC (k) as

PC (k) :=

p(z) =
∑

J∈C∩Zd
+

cJzJ


(Which encompasses our use of PΣ(k) thus far.)

With these new polynomials comes the question of C-degree,
which we answer

degC (p) = min
p ∈PC (k)

(k)
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Grevlex Ordering

Definition

Let ≺ denote the grevlex ordering on Zd , [M19], where α ≺ β if

• |α| < |β|; or

• |α| = |β|, and there exists k ∈ {1, . . . , d} such that αj = βj
for all j < k , and αk < βk

Ex: For d = 2, this gives

1, x , y , x2, xy , y 2, x3, x2y , . . .

We note that this definition pays no attention to the gradiation
given by the convex body C .
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Grevlex Ordering

Definition

Let ≺ denote the grevlex ordering on Zd , [M19], where α ≺ β if

• |α| < |β|; or

• |α| = |β|, and there exists k ∈ {1, . . . , d} such that αj = βj
for all j < k , and αk < βk
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Nested and Additive

We now deal with the question of ordering within these monomial
classes. Two properties are desireable for an ordering <.

Definition (Additivity)

For any α, β, δ such that α < β, we have

α + δ < β + δ

Definition (Nested)

For k1 < k2, both in Z+, let α ∈ PC (k1), β ∈ PC (k2) \ PC (k1).
Then

α < β

We often say that an order “respects the C-degree”, if it is nested.
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Grevlex Ordering Not Usually Nested

We consider the grevlex ordering again.

We see quickly that the only ordering this respects is the canonical
one, associated with C = Σ.
Ex: Consider C = [0, 1]× [0, 1].
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Modified Grevlex Ordering

Definition

For a given convex body C , let ≺C denote the modified grevlex
ordering on Zd , where α ≺ β if

• degC (α) < degC (β); or

• degC (α) = degC (β), and α ≺ β.

Ex: For d = 2 and C = [0, 1]× [0, 1], this provides

1, x , y , xy ,

x2, y 2, x2y , xy 2, x2y 2,

x3, y 3, x3y , xy 3, x3y 2, x2y 3, x3y 3, . . .
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Modified Grevlex Ordering

Definition

For a given convex body C , let ≺C denote the modified grevlex
ordering on Zd , where α ≺ β if

• degC (α) < degC (β); or

• degC (α) = degC (β), and zα ≺ zβ.

Ex: For d = 2 and C = [0, 1]× [0, 1], this provides
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Modified Grevlex Ordering (Not Additive!)

Definition

For a given convex body C , let ≺C denote the modified grevlex
ordering on Zd , where α ≺ β if

• degC (α) < degC (β); or

• degC (α) = degC (β), and zα ≺ zβ.

Ex: For d = 2 and C = [0, 1]× [0, 1], this provides
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Standard Spaces

• For C = Σ, both the grevlex and modified grevlex orderings
result in the standard polynomial ordering, and this ordering
satisfies both the additive and nesting properties.

• For C an irregular simplex, we can construct an ordering
which is both additive and nested, but it is not the modified
or standard grevlex ordering.

• For C not a simplex of any kind, there is no ordering which is
both nested and additive.
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Continuous Grevlex Ordering

We let the fractional C-degree, rdegC (zα) = inf {r ∈ R : α ∈ rC}.

Definition

For a convex body C , let CC denote the continuous grevlex
ordering on Zd , where αCCβ if

• rdegC (α) < rdegC (β); or

• rdegC (α) = rdegC (β), and α ≺ β.

We make two remarks

• For any convex body C , CC is nested.

• For a simplex T of any kind, CT is both nested and additive.
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Result: No A.N. Ordering if C not a Simplex

• We construct T ⊂ C ⊂ rT ,
r > 1.

• Consider the scaled lattice,
1
kZ

d
+.

• For large k , we can find two
pairs of points that are
abitrarily close to realizing
this line segment’s passing in
and out of C

• Then we can find a
contradiction through
additivity
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Making Do

When C is not a simplex of any kind, we must make do:

• The grevlex ordering is always additive: necessary for
Zaharjuta Theory

• The modified grevlex ordering is always nested: necessary for
Leja Point Construction

Following [M19], we use the grevlex ordering to develop the main
asymptotics, and compare to get results for the modified grevlex
ordering.
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Generalized Zaharjuta: Conclusion

Through detailed work in [M19, Thm. 4.6], we have.

Theorem

Let Vk be the maximum determinant of the matrix V (z1, . . . , zMk
)

for the Mk points z1, . . . , zMk
∈ K .

1

Mk !
Vk ≤

∏
α∈kC

T≺k (α)k ≤ Vk

The same inequality holds for T≺C
k (α).
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Generalized Zaharjuta: Conclusion

We also have a recreation of the transfinite diameter formula, but
now integrating across the entire convex body C .

τ(K )c = exp

(
1

volN(C )

∫
int(C)

log T≺(K , θ) dθ

)
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C-Leja and C-Fekete Points

Now we use the ordering ≺C to give a reordered basis of
polynomials that respects degC . We again refer to these as
es(z) = zα(s).

Then as before, for a given k and sequence (zi )
Mk
i=1 ⊂ K , we can

form the Mk by Mk matrix VDM.

VDMC (z1, z2, . . . , zMk
)i ,j = z

α( j)
i

And its determinant

V (z1, . . . , zMk
)C = |det(VDM(z1, . . . , zMk

))|
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C-Fekete and C-Leja Sequences

For any s ≥ 1, there exist set(s) of points (ζi )
s
i=1 ⊂ K that

maximize V . We call these C-Fekete Points.

For given k we define a C-Leja Sequence (`i )
s
i=1 ⊂ K as a

sequence given by the following procedure.

• Choose `1 ∈ K at a maximum of zα(1).

• Assuming `1, . . . , `s−1 have been chosen,

• For each subsequent point `s , choose a maximum of
`→ V (`1, . . . , `s−1, `).
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Asymptotically Fekete Sequences

We let τ(K )c = lim
k→∞

V (ζ
(k)
1 , . . . , ζ

(k)
Mk

))

We say that an array
(

z
(k)
i

)Mk

i=1
is Asymptotically Fekete if

V (z
(k)
1 , . . . , z

(k)
Mk

)
1/Lk → τ(K )c
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Weakly Admissable Meshes

We approximate our compact set K by an array of points, Ak ⊂ K ,
which “approximates” K in the following way. [CL08]

Definition

A weakly admissable mesh is a sequence of finite sets Ak ⊂ K , and
sequence of constants Ck , which satisfy the following conditions:

• For any p ∈ PC (k),

‖p‖K ≤ Ck‖p‖Ak

• lim
k→∞

(#Ak)1/k = lim
k→∞

(Ck)1/k = 1
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A Brief Return to Uniform Estimates

Given, for any p ∈ PC (k),

‖p‖K ≤ Ck‖p‖Ak

Let k be some degree, then for p ∈ PC (k) minimizing ‖f − p‖Ak

From [CL08], we have the following:

‖f − p‖K ≤
(

1 + Ck

(
1 +

√
#Ak

))
distK (f ,PC (k))
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Discrete Leja

To generate n standard Leja points, given the first s points, we
choose the next point to maximize this function of `:

` ↪→ V (`1, . . . , `s , `) = |det(VDM(z1, . . . , zs))|

over all ` ∈ K .

To generate a Discrete Leja Sequence [BMS10], we take k large
enough so p1, . . . , pn ∈ PC (k), and given s points, maximize the
function above for ` ∈ Ak .
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Discrete Leja Example

To perform this procedure, we form the non-square Vandermonde
matrix, of dimensions Ak by k . (We transpose, so we are choosing
rows.)

Goal: Permute rows to find the 3 by 3 submatrix of maximal
determinant.

1 z z2

−1 1 −1 1
−1

2 1 −1
2

1
4

0 1 0 0
1
2 1 1

2
1
4

1 1 −1 1

 =


1 −1 1
1 −1

2
1
4

1 0 0
1 1

2
1
4

1 −1 1

→


1 −1 1
0 1

2 −3
4

0 1 −1
0 3

2
3
4

0 2 0
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Discrete Leja Example

After eliminating the first column, we select to move the [0 2 0]
row to be the next pivot row.

1 −1 1
0 1

2 −3
4

0 1 −1
0 3

2
3
4

0 2 0

→


1 −1 1
0 2 0
0 1 −1
0 3

2
3
4

0 1
2 −3

4

→


1 0 1
0 2 0
0 0 −1
0 0 3

4
0 0 −3

4


Since we only care about maximizing the absolute value of the
determinant, we are done.
We want a more automated way to do this, which is LU
factorization with pivoting.
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Discrete Leja in Matlab

This process is very easily automated. We adapt [BL09] and
[BMS10].

n = 20;

m = 1000;

x = linspace(-1,1,m);

V = gallery(’chebvand’, n, x)’;

%LU decomposition

[L, U, sigma] = lu(V, ’vector’);

%Extra points

ind = sigma(1:n);

display(’chosen points’)

zeta = x(ind)



41/47

Intro Potential Theoretic Background Convex Bodies, Orderings WAMS, Discrete Sequences

Discrete Leja in Matlab
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Discrete Leja in Matlab: Comparison

From [BL09].
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Asymptotics and Convex Body Generalization

We first make a theoretical comment: the Discrete Leja point
scheme described above does generate an Asymptotically Fekete
array, as long as the underlying mesh is in fact a weakly admissable
mesh.

Second, we note that to generalize this process to the convex body
case–that is, to find Discrete C-Leja points–all that is needed is to
reorder the polynomials using an ordering that respects the
C-degree. We have also proven that these arrays are asymptotically
fekete.
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Extremal Function

From the work of Zaharjuta, we can define the extremal function as

VK (z) := sup

{(
1

deg(p)

)
log|p(z)| : ‖p‖K ≤ 1

}

Remark: In one variable, this is the potential generated by the
equilibrium measure, up to an additive constant.
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Extremal: Lev and Bayraktar, Menuja

Siciak proved that the sequence of functions Φk(z), defined

log(Φk(z)) := sup

{
1

k
log|p(z)| : p ∈ PC (k), ‖p‖K ≤ 1

}
Converges locally uniformly in Cn to VK (z)

Most of convex generalization is completed: current work by T.
Bayraktar, N. Levenberg, M. Perera, and SH.

With this proven, we can move forward with generalizing Thm. 1
from Pluripotential Numerics, (F. Piazzon), which gives several
ways to approximate the extremal function using various kernels.
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Thank you all for attending!
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