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Abstract
Applications

We consider the minimum Riesz s-energy problem on the unit disk in the Euclidean space R, d > 3, immersed into a smooth
rotationally invariant external field ). The charges are assumed to interact via the Riesz potential 1/r®, withd —3 < s < d — 1,
where r denotes the Euclidean distance. The problem is solved by finding an explicit expression for the extremal measure. We then

Definition

consider the applications of the obtained results to a monomial external field and an external field generated by a positive point

charge, located at some distance above the disk on the polar axis. The F-functional of a compact subset E C ID of positive Riesz s-capacity is defined as

FAE) = W(B) + [ Q) dpus(w)

where W(F) is the Riesz s-energy of the compact E and pp is the equilibrium measure (with no external field) on E. (see [1])

Minimum Riesz s-energy problem

Let S! := {x € R? : |z| = 1} be the unit sphere in RY, and Dg = {(z1,...,24) € R : 2y = 0,25 + 23 + ... + 25 < R?} Proposition

be the disk of radius R in RY, with d > 3, and where | - | is the Euclidean distance. The ring #(a,b) in R? is defined as . S

#(a,b) = {(0,r7) € RY : a < r < b,7 € S¥?}, and the unit disk in R? will be denoted by ID. Given a compact set E C D, Let () be an external field on ID. Then J-functional is minimized for Sq = supp pq.
consider the class M(F) of unit positive Borel measures supported on E. For 0 < s < d, the Riesz s-potential and Riesz Proposition

s-energy of a measure u € M(FE) are defined respectively as

U{(x) ZZ/‘:E_ly‘Sdu(y), Ii(p) = // |l,_1y|sdu(x)du(y)-

Let W(E) = inf{l,() : p € M(E)}. Define the Riesz s-capacity of F as cap (F) .= 1/W(E). When cap,(F) > 0, there is
a unique pp such that I(ug) = W(FE). Such pg is called the Riesz s-equilibrium measure for E.

An external field is defined as a continuous function @ : £ — |0, oo|, such that Q(x) < oo on a set of positive surface area
measure.

The weighted energy associated with ()(x) is then defined by

Io(n) = L) +2 [ Qz)dp(x)

If £ =1Dg, then Fs-functional is given by
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External field generated by a monomial

Consider the situation when the disk D is immersed into an external field given by a monomial, namely

— qr'™ — (0,17 T e St? <r<l.
The minimum energy problem on I in the presence of the external field Q)(z) refers to the minimal quantity Q)= ¢>0, m>1, 2z=0r1)eD, ze8 0O0<r<li (3)
Vo == inf{Ig(p) : p € M(E)}. Theorem
A measure pug € M(FE) such that Ig(pg) = Vi is called the s-extremal (or positive Riesz s-equilibrium) measure
associated with Q(z). The potential Us® of the measure ¢ satisfies the Gauss variational inequalities Let s = (d — 3) + 2\, with 0 < A < 1. The extremal measure pg, corresponding to the monomial external field (3), s
supported on the disk Dg_, where R, is defined as
U: (@) + Q@) 2 Fo on E, () d+2) — 3)7l((d o\ — 1)/2)\ Y drmt2A=s)
Ure(z) + Q(z) = Fo forall = € So, (2) p_ (@22 =3)rl(d+m+2X ~1)/2) |
gmsin(Am) (M ((d+m —1)/2)

where Fp = Vg — /Q(aj) dug(x), and Sg := supp po. For the extremal measure pg we have

dug(z) = f(r)r**drdos_1(z), x=(0,72) €D, z€S"?% 0<r<R,
with the density f(r) is given by
['((d+2X—1)/2) { 1 ~gsin(Am) T((d+m —1)/2) T(A)

Sufficient conditions on an external field () that guarantee that the support of the

extremal measure p is a ring or a disk

RT} (RZ— )"+ F(r), 0<r <R,

Hr) == @ 0rro) \RED=S T al((d+m+ 2h—1)/2) STS
where
Theorem j r —1)/2)T 2\ —3)/2
F(r) = q sin(Am) I'((m +d )/2)T((d+ 2\ —3)/ )R:v, (Rz B TQ))\—lx
D2 T((d +m + 2X — 3)/2)
Let s = (d—3)+ 2\, with 0 < X\ < 1. Assume that an external field Q) : D — |0, 00| 4s invariant with respect to the rotations m r\’ m r\’ m r\’°
: : o o _ _ d—2 : —2F1 ——,1;)\+1;1— — | 1 2F1 1——,2;)\—|—2;1 ) OSTSR*
about the polar axis, that is Q(x) = Q(r), where x = (0,rz) € D, T € S*°, 0 < r < 1. Further suppose that () is a convex 9 R, AN+ 1) R, 9 R,

function, that is Q(r) is convex on (0,1). Then the support of the extremal measure pg is a ring %(a,b), contained in the
disk D. In other words, there exist real numbers a and b such that 0 < a < b <1, so that supp pg = %(a,b).

Furthermore, if Q(r) is, in addition, an increasing function, then then a = 0, which implies that the support of the
extremal measure pg is a disk of radius b < 1, centered at the origin. On the other hand, if Q(r) is a decreasing function,

External field generated by a positive unit point charge corresponding to the Coulomb
then b =1, that is the support of the extremal measure pg will be a ring with outer radius 1. potential in R?

Theorem

Recovering of the extremal measure g

Suppose the external field Q is given by Q(x) = 1/vVr?+h?%, x=(0,rz) €D, z €S, 0<r <1 and where h is chosen

Theorem such that h > h_, where h, s the unique positive root of the function
1 2htan~'(1/h 1 1
. . o . . p(h) = — (1 | an_(1/ )> tan~*(1/h).
Suppose that the support of the extremal measure pg ts the disk Dr, and the external field () is invariant with respect to 27 1 + h? mh  w2h?
rotations about the polar axis, that is Q(x) = Q(r), where x = (0,7Z) € Dp, T € S¥2, 0 < r < R. Also assume that Then, under these assumptions Sg = D, and the extremal measure po is given by
2 L .
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Then for the extremal measure g we have f(r)y=—1_11 tan , 0 r <1
2 aV1+h2 JV1I=r2 7m2h2+r)1—1r2 w2(h2 4 r?)3/? h? + r? -

dug(z) = f(r)r®*drdog_1(z), x=1(0,77)€Dr, 7€S"? 0<r<R,

This Theorem is a consequence of a more general statement valid for the general Riesz s-potentials generated by a
positive point charge in higher dimensions (see also [2]).

where the density f is explicitly given by
fr)=Co(R* =)'+ F(r), 0<r<R,

with the constant Cg uniquely defined by References
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