Minimum Riesz Energy Problem on the Hyperdisk

Mykhailo Bilogliadov

Oklahoma State University, Stillwater, Oklahoma

Abstract

We consider the minimum Riesz s-energy problem on the unit disk in the Euclidean space \mathbb{R}^d , $d \geq 3$, immersed into a smooth rotationally invariant external field Q. The charges are assumed to interact via the Riesz potential $1/r^s$, with d-3 < s < d-1, where r denotes the Euclidean distance. The problem is solved by finding an explicit expression for the extremal measure. We then consider the applications of the obtained results to a monomial external field and an external field generated by a positive point charge, located at some distance above the disk on the polar axis.

Minimum Riesz s-energy problem

Let $\mathbb{S}^{d-1} := \{x \in \mathbb{R}^d : |x| = 1\}$ be the unit sphere in \mathbb{R}^d , and $\mathbb{D}_R := \{(x_1, \dots, x_d) \in \mathbb{R}^d : x_1 = 0, x_2^2 + x_3^2 + \dots + x_d^2 \leq R^2\}$ be the disk of radius R in \mathbb{R}^d , with $d \geq 3$, and where $|\cdot|$ is the Euclidean distance. The ring $\mathcal{R}(a, b)$ in \mathbb{R}^d is defined as $\mathcal{R}(a, b) := \{(0, r\bar{x}) \in \mathbb{R}^d : a \leq r \leq b, \bar{x} \in \mathbb{S}^{d-2}\}$, and the unit disk in \mathbb{R}^d will be denoted by \mathbb{D} . Given a compact set $E \subset \mathbb{D}$, consider the class $\mathcal{M}(E)$ of unit positive Borel measures supported on E. For 0 < s < d, the **Riesz** s-potential and **Riesz** s-energy of a measure $\mu \in \mathcal{M}(E)$ are defined respectively as

$$U_s^{\mu}(x) := \int \frac{1}{|x-y|^s} d\mu(y), \quad I_s(\mu) := \iint \frac{1}{|x-y|^s} d\mu(x) d\mu(y).$$

Let $W_s(E) := \inf\{I_s(\mu) : \mu \in \mathcal{M}(E)\}$. Define the **Riesz** s-capacity of E as $\operatorname{cap}_s(E) := 1/W_s(E)$. When $\operatorname{cap}_s(E) > 0$, there is a unique μ_E such that $I_s(\mu_E) = W_s(E)$. Such μ_E is called the **Riesz** s-equilibrium measure for E.

An **external field** is defined as a continuous function $Q: E \to [0, \infty]$, such that $Q(x) < \infty$ on a set of positive surface area measure.

The weighted energy associated with Q(x) is then defined by

$$I_Q(\mu) := I_s(\mu) + 2 \int Q(x) d\mu(x).$$

The minimum energy problem on \mathbb{D} in the presence of the external field Q(x) refers to the minimal quantity

$$V_Q := \inf\{I_Q(\mu) : \mu \in \mathcal{M}(E)\}.$$

A measure $\mu_Q \in \mathcal{M}(E)$ such that $I_Q(\mu_Q) = V_Q$ is called the s-extremal (or positive Riesz s-equilibrium) measure associated with Q(x). The potential $U_s^{\mu_Q}$ of the measure μ_Q satisfies the Gauss variational inequalities

$$U_s^{\mu_Q}(x) + Q(x) \ge F_Q \quad \text{on } E,$$

$$U_s^{\mu_Q}(x) + Q(x) = F_Q \quad \text{for all } x \in S_Q,$$

$$(2)$$

where $F_Q := V_Q - \int Q(x) d\mu_Q(x)$, and $S_Q := \operatorname{supp} \mu_Q$.

Sufficient conditions on an external field Q that guarantee that the support of the extremal measure μ_Q is a ring or a disk

Theorem

Let $s = (d-3) + 2\lambda$, with $0 < \lambda < 1$. Assume that an external field $Q : \mathbb{D} \to [0, \infty]$ is invariant with respect to the rotations about the polar axis, that is Q(x) = Q(r), where $x = (0, r\bar{x}) \in \mathbb{D}$, $\bar{x} \in \mathbb{S}^{d-2}$, $0 \le r \le 1$. Further suppose that Q is a convex function, that is Q(r) is convex on (0,1). Then the support of the extremal measure μ_Q is a ring $\mathcal{R}(a,b)$, contained in the disk \mathbb{D} . In other words, there exist real numbers a and b such that $0 \le a < b \le 1$, so that supp $\mu_Q = \mathcal{R}(a,b)$.

Furthermore, if Q(r) is, in addition, an increasing function, then then a=0, which implies that the support of the extremal measure μ_Q is a disk of radius $b \leq 1$, centered at the origin. On the other hand, if Q(r) is a decreasing function, then b=1, that is the support of the extremal measure μ_Q will be a ring with outer radius 1.

Recovering of the extremal measure μ_Q

Theorem

Suppose that the support of the extremal measure μ_Q is the disk \mathbb{D}_R , and the external field Q is invariant with respect to rotations about the polar axis, that is Q(x) = Q(r), where $x = (0, r\bar{x}) \in \mathbb{D}_R$, $\bar{x} \in \mathbb{S}^{d-2}$, $0 \le r \le R$. Also assume that $Q \in C^2(\mathbb{D}_R)$. Let $s = (d-3) + 2\lambda$, with $0 < \lambda < 1$, and let

$$F(t) = \frac{\sin(\lambda \pi) \Gamma((d-3)/2 + \lambda)}{\pi^{(d+1)/2} \Gamma(\lambda)} \frac{1}{t} \frac{d}{dt} \int_{t}^{R} \frac{g(r) r dr}{(r^2 - t^2)^{1 - \lambda}}, \quad g(r) = \frac{1}{r^{d+2\lambda - 4}} \frac{d}{dr} \int_{0}^{r} \frac{Q(u) u^{d-2} du}{(r^2 - u^2)^{1 - \lambda}}, \quad 0 \le r \le R.$$

Then for the extremal measure μ_Q we have

$$d\mu_{O}(x) = f(r) r^{d-2} dr d\sigma_{d-1}(\bar{x}), \quad x = (0, r\bar{x}) \in \mathbb{D}_{R}, \quad \bar{x} \in \mathbb{S}^{d-2}, \quad 0 \le r \le R,$$

where the density f is explicitly given by

$$f(r) = C_O (R^2 - r^2)^{\lambda - 1} + F(r), \quad 0 \le r \le R,$$

with the constant C_Q uniquely defined by

$$C_Q = \frac{2\Gamma((d-1)/2 + \lambda)}{\Gamma(\lambda)\Gamma((d-1)/2)} \frac{1}{R^{d+2\lambda-3}} \left\{ \frac{\Gamma((d-1)/2)}{2\pi^{(d-1)/2}} - \int_0^R F(t) t^{d-2} dt \right\}.$$

Applications

Definition

The \mathcal{F} -functional of a compact subset $E \subset \mathbb{D}$ of positive Riesz s-capacity is defined as

$$\mathcal{F}_s(E) := W_s(E) + \int Q(x) \, d\mu_E(x),$$

where $W_s(E)$ is the Riesz s-energy of the compact E and μ_E is the equilibrium measure (with no external field) on E. (see [1])

Proposition

Let Q be an external field on \mathbb{D} . Then \mathcal{F}_s -functional is minimized for $S_Q = \operatorname{supp} \mu_Q$.

Proposition

If $E=\mathbb{D}_R$, then \mathcal{F}_s -functional is given by

$$\mathcal{F}_{s}(\mathbb{D}_{R}) = \frac{\pi \Gamma((d+2\lambda-1)/2)}{\sin(\lambda\pi) \Gamma(\lambda) \Gamma((d-1)/2)} \frac{1}{R^{d+2\lambda-3}} \left\{ 1 + \frac{2\sin(\lambda\pi)}{\pi} \int_{0}^{R} Q(r) (R^{2} - r^{2})^{\lambda-1} r^{d-2} dr \right\}.$$

External field generated by a monomial

Consider the situation when the disk \mathbb{D} is immersed into an external field given by a monomial, namely

$$Q(x) = qr^m, \quad q > 0, \quad m > 1, \quad x = (0, r\bar{x}) \in \mathbb{D}, \quad \bar{x} \in \mathbb{S}^{d-2}, \quad 0 \le r \le 1.$$

Theorem

Let $s = (d-3) + 2\lambda$, with $0 < \lambda < 1$. The extremal measure μ_Q , corresponding to the monomial external field (3), is supported on the disk \mathbb{D}_{R_*} , where R_* is defined as

$$R_* = \left(\frac{(d+2\lambda - 3)\pi\Gamma((d+m+2\lambda - 1)/2)}{qm\sin(\lambda\pi)\Gamma(\lambda)\Gamma((d+m-1)/2)}\right)^{1/(d+m+2\lambda-3)}.$$

For the extremal measure μ_O we have

$$d\mu_Q(x) = f(r) r^{d-2} dr d\sigma_{d-1}(\bar{x}), \quad x = (0, r\bar{x}) \in \mathbb{D}_{R_*}, \quad \bar{x} \in \mathbb{S}^{d-2}, \quad 0 \le r \le R_*,$$

with the density f(r) is given by

$$f(r) = \frac{\Gamma((d+2\lambda-1)/2)}{\pi^{(d-1)/2}\Gamma(\lambda)} \left\{ \frac{1}{R_*^{d+2\lambda-3}} + \frac{q\sin(\lambda\pi)\Gamma((d+m-1)/2)\Gamma(\lambda)}{\pi\Gamma((d+m+2\lambda-1)/2)} R_*^m \right\} (R^2 - r^2)^{\lambda-1} + F(r), \quad 0 \le r \le R_*,$$

where

$$F(r) = \frac{q \sin(\lambda \pi) \Gamma((m+d-1)/2) \Gamma((d+2\lambda-3)/2)}{\pi^{(d+1)/2} \Gamma((d+m+2\lambda-3)/2)} R_*^m (R_*^2 - r^2)^{\lambda-1} \times$$

$$\left\{-{}_{2}F_{1}\left(-\frac{m}{2},1;\lambda+1;1-\left(\frac{r}{R_{*}}\right)^{2}\right)+\frac{m}{2\lambda(\lambda+1)}\left(1-\left(\frac{r}{R_{*}}\right)^{2}\right){}_{2}F_{1}\left(1-\frac{m}{2},2;\lambda+2;1-\left(\frac{r}{R_{*}}\right)^{2}\right)\right\},\quad 0\leq r\leq R_{*}.$$

External field generated by a positive unit point charge corresponding to the Coulomb potential in \mathbb{R}^3

Theorem

Suppose the external field Q is given by $Q(x) = 1/\sqrt{r^2 + h^2}$, $x = (0, r\bar{x}) \in \mathbb{D}$, $\bar{x} \in \mathbb{S}^1$, $0 \le r \le 1$ and where h is chosen such that $h > h_+$, where h_+ is the unique positive root of the function

$$p(h) = \frac{1}{2\pi} \left(1 + \frac{2h \tan^{-1}(1/h)}{\pi \sqrt{1 + h^2}} \right) - \frac{1}{\pi^2 h} - \frac{1}{\pi^2 h^2} \tan^{-1}(1/h).$$

Then, under these assumptions $S_Q = \mathbb{D}$, and the extremal measure μ_Q is given by

$$d\mu_Q(x) = f(r) r dr d\sigma_2(\bar{x}), \quad x = (0, r\bar{x}) \in \mathbb{D}, \quad \bar{x} \in \mathbb{S}^1, \quad 0 \le r \le 1,$$

where the density f(r) is

$$f(r) = \frac{1}{2\pi} \left(1 + \frac{2h \tan^{-1}(1/h)}{\pi \sqrt{1 + h^2}} \right) \frac{1}{\sqrt{1 - r^2}} - \frac{h}{\pi^2 (h^2 + r^2)} \frac{1}{\sqrt{1 - r^2}} - \frac{h}{\pi^2} \frac{1}{(h^2 + r^2)^{3/2}} \tan^{-1} \sqrt{\frac{1 - r^2}{h^2 + r^2}}, \quad 0 \le r \le 1.$$

This Theorem is a consequence of a more general statement valid for the general Riesz s-potentials generated by a positive point charge in higher dimensions (see also [2]).

References

- [1] Brauchart J., Dragnev P., Saff E.: Riesz extremal measures on the sphere for axis-supported external fields, J. Math. Anal. Appl., 356, pp. 769–792 (2009)
- [2] Copson, E.T.: On the problem of the electrified disc, Proc. Edinburgh Math. Soc., 8, pp. 14–19 (1947)